Lung Epithelial Cell Line Immune Responses to Pneumocystis
Abstract
:1. Introduction
2. Lung Epithelium Cell Types
2.1. Alveolar Type 1 (AT1)
2.2. Alveolar Type 2 (AT2)
2.3. Club Cells
3. Continuous Cultured Lung Epithelial Cell Lines (Table 1)
3.1. A549
3.2. HAEo−
3.3. Murine Lung Epithelial Cell Line 12 (MLE-12)
3.4. Murine Lung Epithelial Cell Line 12 (MLE-15)
Cell Line | Source | Immune Response | Reference |
---|---|---|---|
A549 | Lung explant culture, epithelial-like (human) | CCL20 CXCL2 GM-CSF ICAM-1 IL-1a IL-6 IL-8 MCP-1 TNF-α TNFA IP2/3 | [19,42,43,45,46,48,53] |
1HAEo− | Airway epithelial (human) | IL-8 | [55] |
MLE-12 | Airway epithelial (mouse) | IL-6 | [60] |
MLE-15 | Airway epithelial (mouse) | MIP-2 | [26] |
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Gigliotti, F.; Limper, A.H.; Wright, T. Pneumocystis. Cold Spring Harb Perspect. Med. 2014, 4, a019828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edman, J.C.; Kovacs, J.A.; Masur, H.; Santi, D.V.; Elwood, H.J.; Sogin, M.L. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 1988, 334, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, D.M.; Weldon, A.D.; Beck, K.A.; Rowland, P.H. Recognition of Pneumocystis carinii in foals with respiratory distress. Equine Vet. J. 1993, 25, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Kureljusic, B.; Milicevic, V.; Cirovic, D.; Kurucki, M.; Glisic, D.; Sapundzic, Z.Z.; Milovanovic, B.; Weissenbacher-Lang, C. First Molecular Detection of Pneumocystis spp. in the Golden Jackal (Canis aureus). J. Wildl. Dis. 2022, 58, 897–901. [Google Scholar] [CrossRef]
- Settnes, O.P.; Henriksen, S.A. Pneumocystis carinii in large domestic animals in Denmark. A preliminary report. Acta Vet. Scand. 1989, 30, 437–440. [Google Scholar] [CrossRef]
- Ma, L.; Chen, Z.; Huang, D.W.; Kutty, G.; Ishihara, M.; Wang, H.; Abouelleil, A.; Bishop, L.; Davey, E.; Deng, R.; et al. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat. Commun. 2016, 7, 10740. [Google Scholar] [CrossRef] [Green Version]
- Weissenbacher-Lang, C.; Blasi, B.; Bauer, P.; Binanti, D.; Bittermann, K.; Ergin, L.; Hogler, C.; Hogler, T.; Klier, M.; Matt, J.; et al. Detection of Pneumocystis and Morphological Description of Fungal Distribution and Severity of Infection in Thirty-Six Mammal Species. J. Fungi. 2023, 9, 220. [Google Scholar] [CrossRef]
- Smulian, A.G. Pneumocystis carinii: Genetic diversity and cell biology. Fungal Genet. Biol. 2001, 34, 145–154. [Google Scholar] [CrossRef]
- Cushion, M.T.; Tisdale-Macioce, N.; Sayson, S.G.; Porollo, A. The Persistent Challenge of Pneumocystis Growth Outside the Mammalian Lung: Past and Future Approaches. Front. Microbiol. 2021, 12, 681474. [Google Scholar] [CrossRef]
- Winkelmann, A.; Noack, T. The Clara cell: A “Third Reich eponym”? Eur Respir J 2010, 36, 722–727. [Google Scholar] [CrossRef] [Green Version]
- Little, D.R.; Gerner-Mauro, K.N.; Flodby, P.; Crandall, E.D.; Borok, Z.; Akiyama, H.; Kimura, S.; Ostrin, E.J.; Chen, J. Transcriptional control of lung alveolar type 1 cell development and maintenance by NK homeobox 2-1. Proc. Natl. Acad. Sci. USA 2019, 116, 20545–20555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, Z.; Chu, Q.; Jiang, K.; Li, J.; Tang, N. The Strength of Mechanical Forces Determines the Differentiation of Alveolar Epithelial Cells. Dev. Cell 2018, 44, 297–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanken, P.N.; Minda, M.; Pietra, G.G.; Fishman, A.P. Alveolar response to experimental Pneumocystis carinii pneumonia in the rat. Am. J. Pathol. 1980, 99, 561–588. [Google Scholar] [PubMed]
- Yoshida, Y.; Matsumoto, Y.; Yamada, M.; Okabayashi, K.; Yoshikawa, H.; Nakazawa, M. Pneumocystis carinii: Electron microscopic investigation on the interaction of trophozoite and alveolar lining cell. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1984, 256, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Joffrion, T.M.; Cushion, M.T. Sterol biosynthesis and sterol uptake in the fungal pathogen Pneumocystis carinii. FEMS Microbiol. Lett. 2010, 311, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cushion, M.T.; Collins, M.S.; Sesterhenn, T.; Porollo, A.; Vadukoot, A.K.; Merino, E.J. Functional Characterization of Pneumocystis carinii Inositol Transporter 1. mBio 2016, 7, e01851-16. [Google Scholar] [CrossRef] [Green Version]
- Shiota, T.; Yamada, M.; Yoshida, Y. Morphology, development and behavior of Pneumocystis carinii observed by light-microscopy in nude mice. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1986, 262, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.M.; Preston, A.M.; Wagner, J.G.; Wilcoxen, S.E.; Hossler, P.; Meshnick, S.R.; Paine, R., 3rd. Interaction of rat Pneumocystis carinii and rat alveolar epithelial cells in vitro. Am. J. Physiol. 1998, 275, L118–L125. [Google Scholar] [CrossRef]
- Hahn, P.Y.; Evans, S.E.; Kottom, T.J.; Standing, J.E.; Pagano, R.E.; Limper, A.H. Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J. Biol. Chem. 2003, 278, 2043–2050. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.E.; Hahn, P.Y.; McCann, F.; Kottom, T.J.; Pavlovic, Z.V.; Limper, A.H. Pneumocystis cell wall beta-glucans stimulate alveolar epithelial cell chemokine generation through nuclear factor-kappaB-dependent mechanisms. Am. J. Respir. Cell Mol. Biol. 2005, 32, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.E.; Kottom, T.J.; Pagano, R.E.; Limper, A.H. Primary alveolar epithelial cell surface membrane microdomain function is required for Pneumocystis beta-glucan-induced inflammatory responses. Innate Immun. 2012, 18, 709–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Nazario, N.; Rangel-Moreno, J.; O’Reilly, M.A.; Pasparakis, M.; Gigliotti, F.; Wright, T.W. Selective ablation of lung epithelial IKK2 impairs pulmonary Th17 responses and delays the clearance of Pneumocystis. J. Immunol. 2013, 191, 4720–4730. [Google Scholar] [CrossRef] [Green Version]
- Brandt, J.P.; Mandiga, P. Histology, Alveolar Cells; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Long, E.G.; Smith, J.S.; Meier, J.L. Attachment of Pneumocystis carinii to rat pneumocytes. Lab. Invest 1986, 54, 609–615. [Google Scholar] [PubMed]
- Pesanti, E.L. Interaction of cytokines and alveolar cells with Pneumocystis carinii in vitro. J. Infect. Dis. 1991, 163, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gigliotti, F.; Maggirwar, S.; Johnston, C.; Finkelstein, J.N.; Wright, T.W. Pneumocystis carinii activates the NF-kappaB signaling pathway in alveolar epithelial cells. Infect. Immun. 2005, 73, 2766–2777. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gigliotti, F.; Bhagwat, S.P.; Maggirwar, S.B.; Wright, T.W. Pneumocystis stimulates MCP-1 production by alveolar epithelial cells through a JNK-dependent mechanism. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 292, L1495–L1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolliker, A. Zur Kenntniss des Baues der Lunge des Menschen. Verhandl. Phys. Med. Ges Wurzburg 1881, 16, 1. [Google Scholar]
- Reynolds, S.D.; Malkinson, A.M. Clara cell: Progenitor for the bronchiolar epithelium. Int. J. Biochem. Cell Biol. 2010, 42, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Tsao, P.N.; Wei, S.C.; Wu, M.F.; Huang, M.T.; Lin, H.Y.; Lee, M.C.; Lin, K.M.; Wang, I.J.; Kaartinen, V.; Yang, L.T.; et al. Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development 2011, 138, 3533–3543. [Google Scholar] [CrossRef] [Green Version]
- Mendez, A.; Rojas, D.A.; Ponce, C.A.; Bustamante, R.; Beltran, C.J.; Toledo, J.; Garcia-Angulo, V.A.; Henriquez, M.; Vargas, S.L. Primary infection by Pneumocystis induces Notch-independent Clara cell mucin production in rat distal airways. PLoS ONE 2019, 14, e0217684. [Google Scholar] [CrossRef] [Green Version]
- Giard, D.J.; Aaronson, S.A.; Todaro, G.J.; Arnstein, P.; Kersey, J.H.; Dosik, H.; Parks, W.P. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 1973, 51, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Swain, R.J.; Kemp, S.J.; Goldstraw, P.; Tetley, T.D.; Stevens, M.M. Assessment of cell line models of primary human cells by Raman spectral phenotyping. Biophys. J. 2010, 98, 1703–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limper, A.H.; Pottratz, S.T.; Martin, W.J., 2nd. Modulation of Pneumocystis carinii adherence to cultured lung cells by a mannose-dependent mechanism. J. Lab. Clin. Med. 1991, 118, 492–499. [Google Scholar] [PubMed]
- Pottratz, S.T.; Paulsrud, J.; Smith, J.S.; Martin, W.J., 2nd. Pneumocystis carinii attachment to cultured lung cells by Pneumocystis gp 120, a fibronectin binding protein. J. Clin. Investig. 1991, 88, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Leroy-Dudal, J.; Gagniere, H.; Cossard, E.; Carreiras, F.; Di Martino, P. Role of alphavbeta5 integrins and vitronectin in Pseudomonas aeruginosa PAK interaction with A549 respiratory cells. Microbes Infect. 2004, 6, 875–881. [Google Scholar] [CrossRef]
- Pottratz, S.T.; Weir, A.L.; Wisniowski, P.E. Pneumocystis carinii attachment increases expression of fibronectin-binding integrins on cultured lung cells. Infect. Immun. 1994, 62, 5464–5469. [Google Scholar] [CrossRef] [Green Version]
- Furlong, S.T.; Koziel, H.; Bartlett, M.S.; McLaughlin, G.L.; Shaw, M.M.; Jack, R.M. Lipid transfer from human epithelial cells to Pneumocystis carinii in vitro. J. Infect. Dis. 1997, 175, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Kottom, T.J.; Kohler, J.R.; Thomas, C.F., Jr.; Fink, G.R.; Limper, A.H. Lung epithelial cells and extracellular matrix components induce expression of Pneumocystis carinii STE20, a gene complementing the mating and pseudohyphal growth defects of STE20 mutant yeast. Infect. Immun. 2003, 71, 6463–6471. [Google Scholar] [CrossRef] [Green Version]
- Kottom, T.J.; Limper, A.H. Microarray analysis of lung epithelial responses to Pneumocystis carinii. J. Eukaryot. Microbiol. 2003, 50, 629. [Google Scholar] [CrossRef]
- Kutty, G.; England, K.J.; Kovacs, J.A. Expression of Pneumocystis jirovecii major surface glycoprotein in Saccharomyces cerevisiae. J. Infect. Dis. 2013, 208, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.L.; Limper, A.H. Pneumocystis carinii induces ICAM-1 expression in lung epithelial cells through a TNF-alpha-mediated mechanism. Am. J. Physiol. 1997, 273, L1103–L1111. [Google Scholar] [CrossRef] [PubMed]
- Pottratz, S.T.; Reese, S.; Sheldon, J.L. Pneumocystis carinii induces interleukin 6 production by an alveolar epithelial cell line. Eur. J. Clin. Investig. 1998, 28, 424–429. [Google Scholar] [CrossRef]
- Kottom, T.J.; Kennedy, C.C.; Limper, A.H. Pneumocystis PCINT1, a molecule with integrin-like features that mediates organism adhesion to fibronectin. Mol. Microbiol. 2008, 67, 747–761. [Google Scholar] [CrossRef] [PubMed]
- Benfield, T.L.; Lundgren, B.; Shelhamer, J.H.; Lundgren, J.D. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line. Eur. J. Clin. Investig. 1999, 29, 717–722. [Google Scholar] [CrossRef]
- Benfield, T.L. Clinical and experimental studies on inflammatory mediators during AIDS-associated Pneumocystis carinii pneumonia. Dan. Med. Bull. 2003, 50, 161–176. [Google Scholar]
- Chen, W.; Zhang, Z.; Zhang, S.; Zhu, P.; Ko, J.K.; Yung, K.K. MUC1: Structure, Function, and Clinic Application in Epithelial Cancers. Int. J. Mol. Sci. 2021, 22, 6567. [Google Scholar] [CrossRef]
- Liu, Y.; Davis, A.S.; Ma, L.; Bishop, L.; Cisse, O.H.; Kutty, G.; Kovacs, J.A. MUC1 mediates Pneumocystis murina binding to airway epithelial cells. Cell. Microbiol. 2020, 22, e13182. [Google Scholar] [CrossRef]
- Hara, E.; Yamaguchi, T.; Nojima, H.; Ide, T.; Campisi, J.; Okayama, H.; Oda, K. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J. Biol. Chem. 1994, 269, 2139–2145. [Google Scholar] [CrossRef]
- Liu, X.X.; Wang, M.J.; Kan, Q.N.; Li, C.; Xiao, Z.; Jiang, Y.H.; Li, W.; Li, X.; Jiang, Z.Y. Kukoamine A Improves Mycoplasma pneumoniae Pneumonia by Regulating miR-222-3p/Superoxide Dismutase 2. Biomed. Res. Int. 2022, 2022, 2064013. [Google Scholar] [CrossRef]
- Harun, A.; Kan, A.; Schwabenbauer, K.; Gilgado, F.; Perdomo, H.; Firacative, C.; Losert, H.; Abdullah, S.; Giraud, S.; Kaltseis, J.; et al. Multilocus Sequence Typing Reveals Extensive Genetic Diversity of the Emerging Fungal Pathogen Scedosporium aurantiacum. Front. Cell. Infect. Microbiol. 2021, 11, 761596. [Google Scholar] [CrossRef]
- Kim, V.Y.; Batty, A.; Li, J.; Kirk, S.G.; Crowell, S.A.; Jin, Y.; Tang, J.; Zhang, J.; Rogers, L.K.; Deng, H.X.; et al. Glutathione Reductase Promotes Fungal Clearance and Suppresses Inflammation during Systemic Candida albicans Infection in Mice. J. Immunol. 2019, 203, 2239–2251. [Google Scholar] [CrossRef] [PubMed]
- Kottom, T.J.; Carmona, E.M.; Limper, A.H. Gene expression in lung epithelial cells following interaction with Pneumocystis carinii and its specific life forms yields insights into host gene responses to infection. Microbiol. Immunol. 2022, 66, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Cozens, A.L.; Yezzi, M.J.; Yamaya, M.; Steiger, D.; Wagner, J.A.; Garber, S.S.; Chin, L.; Simon, E.M.; Cutting, G.R.; Gardner, P.; et al. A transformed human epithelial cell line that retains tight junctions post crisis. In Vitro Cell. Dev. Biol. 1992, 28, 735–744. [Google Scholar] [CrossRef]
- Carmona, E.M.; Lamont, J.D.; Xue, A.; Wylam, M.; Limper, A.H. Pneumocystis cell wall beta-glucan stimulates calcium-dependent signaling of IL-8 secretion by human airway epithelial cells. Respir. Res. 2010, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Mir-Kasimov, M.; Sturrock, A.; McManus, M.; Paine, R., 3rd. Effect of alveolar epithelial cell plasticity on the regulation of GM-CSF expression. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L504–L511. [Google Scholar] [CrossRef] [Green Version]
- Wikenheiser, K.A.; Vorbroker, D.K.; Rice, W.R.; Clark, J.C.; Bachurski, C.J.; Oie, H.K.; Whitsett, J.A. Production of immortalized distal respiratory epithelial cell lines from surfactant protein C/simian virus 40 large tumor antigen transgenic mice. Proc. Natl. Acad. Sci. USA 1993, 90, 11029–11033. [Google Scholar] [CrossRef]
- Zaas, D.W.; Duncan, M.J.; Li, G.; Wright, J.R.; Abraham, S.N. Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2. J. Biol. Chem. 2005, 280, 4864–4872. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.L.; Wang, C.T.; Yang, S.J.; Leu, C.H.; Chen, S.H.; Wu, C.L.; Shiau, A.L. IL-6 ameliorates acute lung injury in influenza virus infection. Sci. Rep. 2017, 7, 43829. [Google Scholar] [CrossRef] [Green Version]
- Kottom, T.J.; Schaefbauer, K.; Carmona, E.M.; Limper, A.H. EphA2 Is a Lung Epithelial Cell Receptor for Pneumocystis beta-Glucans. J. Infect. Dis. 2022, 225, 525–530. [Google Scholar] [CrossRef]
- Stappers, M.H.T.; Nikolakopoulou, C.; Wiesner, D.L.; Yuecel, R.; Klein, B.S.; Willment, J.A.; Brown, G.D. Characterization of antifungal C-type lectin receptor expression on murine epithelial and endothelial cells in mucosal tissues. Eur. J. Immunol. 2021, 51, 2341–2344. [Google Scholar] [CrossRef]
- Swidergall, M.; Solis, N.V.; Lionakis, M.S.; Filler, S.G. EphA2 is an epithelial cell pattern recognition receptor for fungal beta-glucans. Nat. Microbiol. 2018, 3, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkland, T.N.; Fierer, J. Innate Immune Receptors and Defense Against Primary Pathogenic Fungi. Vaccines 2020, 8, 303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Hu, Y.; Li, R.; Li, T. Single-cell atlas of murine adrenal glands reveals immune-adrenal crosstalk during systemic Candida albicans infection. Front. Immunol. 2022, 13, 966814. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, K.; Jiang, W.; Li, H.; Huang, Y.; Du, M.; Wan, J.; Cao, Y.; Du, L.; Liu, X.; et al. Single-cell RNA sequencing combined with whole exome sequencing reveals the landscape of the immune pathogenic response to chronic mucocutaneous candidiasis with STAT1 GOF mutation. Front. Immunol. 2022, 13, 988766. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Velasquez, S.D.; Perez, J.C. Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans. mSphere 2021, 6, e0041121. [Google Scholar] [CrossRef]
- Deerhake, M.E.; Reyes, E.Y.; Xu-Vanpala, S.; Shinohara, M.L. Single-Cell Transcriptional Heterogeneity of Neutrophils During Acute Pulmonary Cryptococcus neoformans Infection. Front. Immunol. 2021, 12, 670574. [Google Scholar] [CrossRef]
- Tisdale-Macioce, N.; Green, J.; Perl, A.-K.T.; Ashbaugh, A.; Wiederhold, N.P.; Patterson, T.F.; Cushion, M.T. The Promise of Lung Organoids for Growth and Investigation of Pneumocystis Species. Front. Fungal Biol. 2021, 2, 740845. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Dong, X.; Zhu, B. Targeting beta-glucans, vital components of the Pneumocystis cell wall. Front. Immunol. 2023, 14, 1094464. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kottom, T.J.; Carmona, E.M.; Limper, A.H. Lung Epithelial Cell Line Immune Responses to Pneumocystis. J. Fungi 2023, 9, 729. https://doi.org/10.3390/jof9070729
Kottom TJ, Carmona EM, Limper AH. Lung Epithelial Cell Line Immune Responses to Pneumocystis. Journal of Fungi. 2023; 9(7):729. https://doi.org/10.3390/jof9070729
Chicago/Turabian StyleKottom, Theodore J., Eva M. Carmona, and Andrew H. Limper. 2023. "Lung Epithelial Cell Line Immune Responses to Pneumocystis" Journal of Fungi 9, no. 7: 729. https://doi.org/10.3390/jof9070729
APA StyleKottom, T. J., Carmona, E. M., & Limper, A. H. (2023). Lung Epithelial Cell Line Immune Responses to Pneumocystis. Journal of Fungi, 9(7), 729. https://doi.org/10.3390/jof9070729