The Effect of Ustilago maydis and Delayed Harvesting on A- and B-Type Trichothecene Concentrations in Maize Grain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial Experimental Design
2.2. Meteorology
2.3. Ustilago Maydis Rating
2.4. Fusarium spp. Rating
2.5. Mycotoxin Analyses
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suganya, A.; Saravanan, A.; Manivannan, N. Role of Zinc Nutrition for Increasing Zinc Availability, Uptake, Yield, and Quality of Maize (Zea mays L.) Grains: An Overview. Commun. Soil Sci. Plant Anal. 2020, 51, 2001–2021. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2022–2031; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- Parent, B.; Leclere, M.; Lacube, S.; Semenov, M.A.; Welcker, C.; Martre, P.; Tardieuu, F. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proc. Natl. Acad. Sci. USA 2018, 115, 10642–10647. [Google Scholar] [CrossRef] [Green Version]
- Official Statistics Portal. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize#/ (accessed on 9 June 2023).
- Frommer, D.; Veres, S.; Radócz, L. Susceptibility of stem infected sweet corn hybrids to common smut disease. Acta Agrar. Debre-Ceniensis 2018, 74, 55–57. [Google Scholar] [CrossRef]
- Yu, C.; Qi, J.; Han, H.; Wang, P.; Liu, C. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. Mol. Plant Pathol. 2023, 24, 495–509. [Google Scholar] [CrossRef]
- Szulc, P.; Ambroży-Deręgowska, K.; Mejza, I.; Kobus-Cisowska, J.; Ligaj, M.; Krauklis, D. The Role of Agrotechnical Factors in Shaping the Health of Maize Plants (Zea mays L.). Pol. J. Environ. Stud. 2021, 30, 863–869. [Google Scholar] [CrossRef]
- Kelly, H.; McLaughlin, A.; Zuchelli, E. Diagnosis and Management of Ear Rot Disease. Available online: https://news.utcrops.com/wp-content/uploads/2022/08/Corn-Ear-Rots_Mycotoxins_ExtensionPub2022.pdf (accessed on 9 May 2023).
- Radócz, L.; Szabó, A.; Tamás, A.; Illés, Á.; Bojtor, C.; Ragán, P.; Vad, A.; Széles, A.; Harsányi, E.; Radócz, L. Investigation of the Detectability of Corn Smut Fungus (Ustilago maydis DC. Corda) Infection Based on UAV Multispectral Technology. Agronomy 2023, 13, 1499. [Google Scholar] [CrossRef]
- Ruan, X.; Ma, L.; Zhang, Y.; Wang, Q.; Gao, X. Dissection of the Complex Transcription and Metabolism Regulation Networks Associated with Maize Resistance to Ustilago maydis. Genes 2021, 12, 1789. [Google Scholar] [CrossRef]
- Pathi, K.M.; Rink, P.; Budhagatapalli, N.; Betz, R.; Saado, I.; Hiekel, S.; Becker, M.; Djamei, A.; Kumlehn, J. Engineering Smut Resistance in Maize by Site-Directed Mutagenesis of LIPOXYGENASE 3. Front. Plant Sci. 2020, 11, 543895. [Google Scholar] [CrossRef]
- Abbas, H.K.; Zablotowicz, R.M.; Shier, W.T.; Johnson, B.J.; Phillips, N.A.; Weaver, M.A.; Abel, C.A.; Bruns, H.A. Aflatoxin and Fumonisin in Corn (Zea mays) Infected by Common Smut Ustilago maydis. Plant Dis. 2015, 99, 1236–1240. [Google Scholar] [CrossRef]
- Anggreini, R.A.; Rahmadhini, D.N. The Potential Nutrition and Food Safety of Corn Smut Galls. J. Teknol. Pangan 2020, 14, 44–51. [Google Scholar] [CrossRef]
- Abbas, H.K.; Shier, W.T.; Plasencia, J.; Weaver, M.A.; Bellaloui, N.; Kotowicz, J.K.; Butler, A.M.; Accinelli, C.; de la Torre-Hernandez, M.E.; Zablotowicz, R.M. Mycotoxin contamination in corn smut (Ustilago maydis) galls in the field and in the commercial food products. Food Control 2017, 71, 57–63. [Google Scholar] [CrossRef]
- Aydoğdu, M.; Gölükçü, M. Nutritional value of huitlacoche, maize mushroom caused by Ustilago maydis. Food Sci. Technol. 2017, 37, 531–535. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Lu, Y. Impact of Fungi on Agriculture Production, Productivity, and Sustainability. In Fungal Diversity, Ecology and Control Management; Springer Nature Singapore: Singapore, 2022; pp. 401–413. [Google Scholar] [CrossRef]
- Bertero, A.; Moretti, A.; Spicer, L.J.; Caloni, F. Fusarium Molds and Mycotoxins: Potential Species-Specific Effects. Toxins 2018, 10, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajnal, E.J.; Kos, J.; Radić, B.; Anić, M.; Radović, R.; Kudumija, N.; Vulić, A.; Đekić, S.; Pleadin, J. Impact of Climate Changes on the Natural Prevalence of Fusarium Mycotoxins in Maize Harvested in Serbia and Croatia. Foods 2023, 12, 1002. [Google Scholar] [CrossRef]
- European Food Safety Authority. Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J. 2013, 11, 3379. [Google Scholar] [CrossRef]
- European Food Safety Authority; Arcella, D.; Gergelova, P.; Innocenti, M.L.; Steinkellner, H. Human and animal dietary exposure to T-2 and HT-2 toxin. EFSA J. 2017, 15, 4972. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.J.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chem. 2020, 312, 126034. [Google Scholar] [CrossRef]
- Venslovas, E.; Mankevičienė, A.; Kochiieru, Y.; Merkevičiūtė-Venslovė, L.; Janavičienė, S. Effect of storage conditions on the occurrence of mycotoxins and nutrient composition in maize grains. Zemdirb.-Agric. 2022, 109, 359–364. [Google Scholar] [CrossRef]
- Kaaya, A.N.; Warren, H.L.; Kyamanywa, S.; Kyamuhangire, W. The effect of delayed harvest on moisture content, insect damage, moulds and aflatoxin contamination of maize in Mayuge district of Uganda. J. Sci. Food Agric. 2005, 85, 2595–2599. [Google Scholar] [CrossRef]
- da Costa, R.V.; Queiroz, V.A.V.; Cota, L.V.; da Silva, D.D.; Lanza, F.E.; de Almeida, R.E.M.; Pereira, A.A.; Alves, R.R.; Campos, L.M. Delaying harvest for naturally drying maize grain increases the risk of kernel rot and fumonisin contamination. Trop. Plant Pathol. 2018, 43, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Leggieri, M.C.; Lanubile, A.; Dall’Asta, C.; Pietri, A.; Battilani, P. The impact of seasonal weather variation on mycotoxins: Maize crop in 2014 in northern Italy as a case study. World Mycotoxin J. 2020, 13, 25–36. [Google Scholar] [CrossRef]
- Ekwomadu, T.I.; Akinola, S.A.; Mwanza, M. Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked), Food Safety Concerns, and Health Impacts. Environ. Res. Public Health 2021, 18, 11741. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Recommendation of 17 August 2006 on the prevention and reduction of Fusarium toxins in cereals and cereal products (Text with EEA relevance). Off. J. Eur. Union 2006, L 234, 35–40. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance). Off. J. Eur. Union 2006, L 364, 5–24. [Google Scholar]
- European Commission. 2013/165/EU: Commission recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Off. J. Eur. Union 2013, L 91, 12–15. [Google Scholar]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Czembor, E.; Frasiński, S. Polish maize elite inbred lines as a source of resistance for ear rot (Fusarium spp.) and common smut (Ustilago maydis). Prog. Plant Prot. 2018, 58, 22–27. [Google Scholar] [CrossRef]
- European and Mediterranean Plant Protection Organization. PP 1/019 (5) Seed-borne cereal fungi. EPPO Bull. 2021, 51, 83–87. [Google Scholar] [CrossRef]
- Mathur, S.B.; Kongsdal, O. Common Laboratory Seed Health Testing Methods for Detecting Fungi, 1st ed.; International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2003. [Google Scholar]
- Nelson, P.E.; Toussoun, T.A.; Marasas, W.F.O. Fusarium Species: An Illustrated Manual for Identification; Pennsylvania State University Press: University Park, PA, USA, 1983. [Google Scholar]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Ames, IA, USA, 2006. [Google Scholar]
- Gonsalves, C.; Storka, J. Cross-reactivity features of deoxynivalenol (DON)-targeted immunoaffinity columns aiming to achieve simultaneous analysis of DON and major conjugates in cereal samples. Food Addit. Contam. Part A 2016, 33, 1053–1062. [Google Scholar] [CrossRef]
- Bartkienė, E.; Zokaitytė, E.; Lėlė, V.; Starkutė, V.; Zavistanavičiūtė, P.; Klupsaitė, P.; Černauskas, D.; Ružauskas, M.; Bartkevičs, V.; Pugajeva, I.; et al. Combination of Extrusion and Fermentation with Lactobacillus plantarum and L. uvarum Strains for Improving the Safety Characteristics of Wheat Bran. Toxins 2021, 13, 163. [Google Scholar] [PubMed]
- Pospielov, S.V.; Pospielova, G.D.; Nechiporenko, N.I.; Kovalenko, N.P.; Ochrimenko, V.V. Monitoring corn diseases in poltava region. Bull. Poltava State Agrar. Acad. 2021, 3, 37–44. [Google Scholar] [CrossRef]
- Pfordt, A.; Romero, L.R.; Schiwek, S.; Karlovsky, P.; von Tiedemann, A. Impact of Environmental Conditions and Agronomic Practices on the Prevalence of Fusarium Species Associated with Ear- and Stalk Rot in Maize. Pathogens 2020, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czarnecka, D.; Czubacka, A.; Agacka-Mołdoch, M.; Trojak-Goluch, A.; Księżak, J. The Occurrence of Fungal Diseases in Maize in Organic Farming Versus an Integrated Management System. Agronomy 2022, 12, 558. [Google Scholar] [CrossRef]
- Vandicke, J.; de Visschere, K.; Croubels, S.; de Saeger, S.; Audenaert, K.; Haesaert, G. Mycotoxins in Flanders’ Fields: Occurrence and Correlations with Fusarium Species in Whole-Plant Harvested Maize. Microorganisms 2019, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.C.; Birr, T.; Hennies, I.; Wessels, D.; Schwarz, K. Reduction of deoxynivalenol, T-2 and HT-2 toxins and associated Fusarium species during commercial and laboratory de-hulling of milling oats. Food Addit. Contam. Part A 2022, 39, 1163–1183. [Google Scholar] [CrossRef]
- Somma, S.; Scarpino, V.; Quaranta, F.; Logrieco, A.F.; Reyneri, A.; Blandino, M.; Morreti, A. Impact of fungicide application to control T-2 and HT-2 toxin contamination and related Fusarium sporotrichioides and F. langsethiae producing species in durum wheat. Crop Prot. 2022, 159, 106020. [Google Scholar] [CrossRef]
Year | Lapriora Hybrid | Duxxbury Hybrid | ||||
---|---|---|---|---|---|---|
First Harvest | Second Harvest | Third Harvest | First Harvest | Second Harvest | Third Harvest | |
DON | ||||||
2020 | 198 a | 229.3 a | 272.5 a | 149.8 a | 202.3 ab | 232.5 b |
2021 | 227 a | 518 a | 3481 b | 1880 a | 4456 a | 15019 b |
2022 | 13 a | <LOD | 69 a | 346 a | 192 a | <LOD |
3ADON | ||||||
2020 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
2021 | <LOD | <LOD | 64 | 31 a | 40 a | 322 b |
15ADON | ||||||
2020 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
2021 | <LOD | 35 a | 246 b | 109 a | 169 a | 968 b |
Sum of 3ADON and 15ADON | ||||||
2022 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
HT-2 | ||||||
2020 | 49.9 a | 34.8 a | 101.9 b | 50.2 a | 52.6 a | 41.2 a |
2021 | 22.1 a | 16.6 a | 154.2 b | 884 a | 830.9 a | 1196.8 b |
2022 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 | ||||||
2020 | 27.3 a | 27.8 a | 62.5 a | 23.2 a | 36.1 a | 23.6 a |
2021 | 24.6 a | 16.3 a | 174.4 b | 1960.1 a | 2098.5 a | 1413.2 a |
2022 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
DON | 3ADON | 15ADON | T-2 | HT-2 | |
---|---|---|---|---|---|
F. graminearum | 0.192 | 0.07 | 0.110 | 0.290 * | 0.339 ** |
F. culmorum | 0.731 *** | 0.809 ** | 0.831 ** | 0.161 | 0.365 ** |
F. sporotrichioides | 0.559 *** | 0.333 ** | 0.358 ** | 0.272 * | 0.445 *** |
F. poae | −0.063 | −0.064 | −0.064 | −0.031 | 0.026 |
Infection | N | Positive Samples, % | Mean | SE | 95% Confidence Interval for Mean | Min. | Max. | ||
---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||||
DON | Asymptomatic | 8 | 0% | <LOD | NA | NA | NA | <LOD | <LOD |
Ustilago maydis | 8 | 100% | 285 b | 73.3 | 128.6 | 440.9 | 92 | 896 | |
Fusarium spp. | 8 | 50% | <LOD | NA | NA | NA | <LOD | 88 | |
Both pathogens | 8 | 100% | 4175 c | 32.4 | 4097.8 | 4251.2 | 4060 | 4280 | |
3ADON | Asymptomatic | 8 | 0% | <LOD | NA | NA | NA | <LOD | <LOD |
Ustilago maydis | 8 | 25% | <LOD | NA | NA | NA | <LOD | 28 | |
Fusarium spp. | 8 | 0% | <LOD | NA | NA | NA | <LOD | <LOD | |
Both pathogens | 8 | 100% | 993 | 124.6 | 697.8 | 1287.2 | 652 | 1344 | |
15ADON | Asymptomatic | 8 | 100% | 49 a | 6.4 | 34.0 | 64.0 | 20 | 76 |
Ustilago maydis | 8 | 50% | 44 a | 11.6 | 19.4 | 68.6 | <LOD | 120 | |
Fusarium spp. | 8 | 100% | 68 a | 8.5 | 47.9 | 88.1 | 40 | 96 | |
Both pathogens | 8 | 100% | 2929 b | 381.3 | 2027.3 | 3830.7 | 1872 | 4028 | |
T-2 | Asymptomatic | 8 | 0% | <LOD | NA | NA | NA | <LOD | <LOD |
Ustilago maydis | 8 | 25% | <LOD | NA | NA | NA | <LOD | 23 | |
Fusarium spp. | 8 | 50% | 132 | 47.0 | 21.0 | 243.2 | <LOD | 259 | |
Both pathogens | 8 | 50% | <LOD | 2.9 | 6.7 | 20.3 | <LOD | 24 | |
HT-2 | Asymptomatic | 8 | 0% | <LOD | NA | NA | NA | <LOD | <LOD |
Ustilago maydis | 8 | 19% | <LOD | NA | NA | NA | <LOD | 24 | |
Fusarium spp. | 8 | 50% | 72 b | 25.2 | 12.6 | 131.9 | <LOD | 143 | |
Both pathogens | 8 | 50% | 31 a | 9.4 | 8.5 | 52.7 | <LOD | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venslovas, E.; Mankevičienė, A.; Kochiieru, Y.; Janavičienė, S.; Dabkevičius, Z.; Bartkevičs, V.; Bērziņa, Z.; Pavlenko, R. The Effect of Ustilago maydis and Delayed Harvesting on A- and B-Type Trichothecene Concentrations in Maize Grain. J. Fungi 2023, 9, 794. https://doi.org/10.3390/jof9080794
Venslovas E, Mankevičienė A, Kochiieru Y, Janavičienė S, Dabkevičius Z, Bartkevičs V, Bērziņa Z, Pavlenko R. The Effect of Ustilago maydis and Delayed Harvesting on A- and B-Type Trichothecene Concentrations in Maize Grain. Journal of Fungi. 2023; 9(8):794. https://doi.org/10.3390/jof9080794
Chicago/Turabian StyleVenslovas, Eimantas, Audronė Mankevičienė, Yuliia Kochiieru, Sigita Janavičienė, Zenonas Dabkevičius, Vadims Bartkevičs, Zane Bērziņa, and Romans Pavlenko. 2023. "The Effect of Ustilago maydis and Delayed Harvesting on A- and B-Type Trichothecene Concentrations in Maize Grain" Journal of Fungi 9, no. 8: 794. https://doi.org/10.3390/jof9080794
APA StyleVenslovas, E., Mankevičienė, A., Kochiieru, Y., Janavičienė, S., Dabkevičius, Z., Bartkevičs, V., Bērziņa, Z., & Pavlenko, R. (2023). The Effect of Ustilago maydis and Delayed Harvesting on A- and B-Type Trichothecene Concentrations in Maize Grain. Journal of Fungi, 9(8), 794. https://doi.org/10.3390/jof9080794