Dual-Action Gemcitabine Delivery: Chitosan–Magnetite–Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense
Abstract
:1. Introduction
2. Results and Discussion
2.1. Initial Material Characterization
2.2. Macrocapsule Characterization
2.2.1. Transmission Electron Microscopy and High-Resolution Transmission Electron Microscopy (TEM–HRTEM)
2.2.2. Field Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy (FESEM–EDS)
2.2.3. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.4. Thermogravimetric Analysis (TGA)
2.3. Gemcitabine Quantification, Encapsulation, and Release Profiles
2.3.1. Gemcitabine Quantification by High-Performance Liquid Chromatography (HPLC)
2.3.2. Release Profiles
2.4. Viability Cellular Assays
2.5. Microbiological Assays
3. Conclusions
4. Materials and Methods
4.1. Material Pretreatment and Characterization of Precursor Materials
4.2. Macrocapsule Synthesis by the Ionic Gelation Method
4.3. Macrocapsule Characterization
4.3.1. Transmission Electron Microscopy and High-Resolution Transmission Electron Microscopy (TEM–HRTEM)
4.3.2. Field Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy (FESEM–EDS)
4.3.3. Fourier Transform Infrared Spectroscopy (FT-IR)
4.3.4. Thermogravimetric Analysis (TGA)
4.4. Gemcitabine Quantification, Encapsulation, and Delivery Profiles
4.4.1. Encapsulation Efficiency (E.E.%)
4.4.2. Release Profiles
4.5. Viability Cellular Assays
4.6. Microbiological Assays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GEM | Gemcitabine |
HRTEM–ED | High-Resolution Transmission Electron Microscopy–Electron Diffraction |
FESEM–EDS | Field Emission Scanning Electron Microscopy–Energy-Dispersive Spectroscopy. |
FT-IR | Fourier Transform Infrared Spectroscopy |
TGA | Thermogravimetric Analysis |
HPLC | High-Performance Liquid Chromatography |
CS | Chitosan |
References
- Pecorino, L. Molecular Biology of Cancer Topics; Oxford University Press: Oxford, UK, 2016; 397p, Available online: https://books.google.com.au/books/about/Molecular_Biology_of_Cancer.html?id=KbvyDwAAQBAJ&redir_esc=y (accessed on 20 January 2020).
- International Agency for Research on Cancer. Cancer Tomorrow. Global Cancer Observatory. 2018. Available online: https://gco.iarc.fr/tomorrow/graphic-isotype?type=0&population=900&mode=population&sex=0&cancer=39&age_group=value&apc_male=0&apc_female=0 (accessed on 10 October 2019).
- DeRidder, L.; Rubinson, D.A.; Langer, R.; Traverso, G. The past, present, and future of chemotherapy with a focus on individualization of drug dosing. J. Control Release 2022, 352, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y.; Shiranthika, C.; Wang, C.-Y.; Chen, K.-W.; Sumathipala, S. Reinforcement learning strategies in cancer chemotherapy treatments: A review. Comput. Methods Programs Biomed. 2023, 229, 107280. [Google Scholar] [CrossRef] [PubMed]
- Flórez, J.; Armijo, J.A.; Mediavilla, Á. Farmacología Humana; Masson, S.A., Ed.; Barcelona, España, 1998; 1302p, Available online: https://clea.edu.mx/biblioteca/files/original/3233e9fb8d4c9c4419774a62e7d587c6.pdf (accessed on 13 March 2020).
- André, T.; Noirclerc, M.; Hammel, P.; Meckenstock, R.; Landi, B.; Cattan, S.; Selle, F.; Codoul, J.-F.; Guerrier-Parmentier, B.; Mokhtar, R.; et al. Phase II study of leucovorin, 5-fluorouracil metastatic pancreatic cancer (FOLFUGEM 2). Gastroenterol. Clin. Biol. 2004, 28, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Forster, M.; Hackshaw, A.; De Pas, T.; Cobo, M.; Garrido, P.; Summers, Y.; Dingemans, A.-M.C.; Flynn, M.; Schnell, D.; von Wangenheim, U.; et al. A phase I study of nintedanib combined with cisplatin/gemcitabine as first-line therapy for advanced squamous non-small cell lung cancer (LUME-Lung 3). Lung Cancer 2018, 120, 27–33. [Google Scholar] [CrossRef]
- Bobek, V.; Pinterova, D.; Kolostova, K.; Boubelik, M.; Douglas, J.; Teyssler, P.; Pavlasek, J.; Kovarik, J. Streptokinase increases the sensitivity of colon cancer cells to chemotherapy by gemcitabine and cis-platine in vitro. Cancer Lett. 2006, 237, 95–101. [Google Scholar] [CrossRef]
- Aydin, A.M.; Cheriyan, S.K.; Reich, R.; Hajiran, A.; Peyton, C.C.; Zemp, L.; Yu, A.; Li, R.; Poch, M.A.; Spiess, P.E.; et al. Comparative analysis of three vs. four cycles of neoadjuvant gemcitabine and cisplatin for muscle invasive bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2022, 40, 453.e19–453.e26. [Google Scholar] [CrossRef]
- Jordheim, L.P.; Ben Larbi, S.; Fendrich, O.; Ducrot, C.; Bergeron, E.; Dumontet, C.; Freney, J.; Doléans-Jordheim, A. Gemcitabine is active against clinical multiresistant Staphylococcus aureus strains and is synergistic with gentamicin. Int. J. Antimicrob. Agents 2012, 39, 444–447. [Google Scholar] [CrossRef]
- Dahiya, J.; Jalwal, P.; Lata, S.; Mehndiratta, P. Development and evaluation oh Eethanol free ready to use injection og gemcitabine hydrochloride. Int. J. Pharma Prof. Res. 2015, 6, 1218–1222. [Google Scholar]
- Paroha, S.; Verma, J.; Dubey, R.D.; Dewangan, R.P.; Molugulu, N.; Bapat, R.A.; Sahoo, P.K.; Kesharwani, P. Recent advances and prospects in gemcitabine drug delivery systems. Int. J. Pharm. 2020, 592, 120043. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, P.; Guo, C.; Zhang, C.; Zhao, Y.; Tan, D.; An, J.; Shi, C. Lipocalin 2 may be a key factor regulating the chemosensitivity of pancreatic cancer to gemcitabine. Biochem. Biophys. Rep. 2022, 31, 101291. [Google Scholar] [CrossRef]
- Singh, B.; Maharjan, S.; Pan, D.C.; Zhao, Z.; Gao, Y.; Zhang, Y.S.; Mitragotri, S. Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials 2021, 280, 121302. [Google Scholar] [CrossRef] [PubMed]
- Samimi, S.; Ardestani, M.S.; Dorkoosh, F.A. Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells. J. Drug Deliv. Sci. Technol. 2020, 61, 102287. [Google Scholar] [CrossRef]
- Moharil, P.; Wan, Z.; Pardeshi, A.; Li, J.; Huang, H.; Luo, Z.; Rathod, S.; Zhang, Z.; Chen, Y.; Zhang, B.; et al. Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: Dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm. Sin. B 2021, 12, 1148–1162. [Google Scholar] [CrossRef]
- Han, H.; Li, S.; Zhong, Y.; Huang, Y.; Wang, K.; Jin, Q.; Ji, J.; Yao, K. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian J. Pharm. Sci. 2021, 17, 35–52. [Google Scholar] [CrossRef]
- Liang, T.-J.; Zhou, Z.-M.; Cao, Y.-Q.; Ma, M.-Z.; Wang, X.-J.; Jing, K. Gemcitabine-based polymer-drug conjugate for enhanced anticancer effect in colon cancer. Int. J. Pharm. 2016, 513, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Guarín-González, Y.A.; Cárdenas-Triviño, G. New chitosan-based chemo pharmaceutical delivery systems for tumor cancer treatment: Short-review. J. Chil. Chem. Soc. 2022, 67, 5425–5432. [Google Scholar] [CrossRef]
- Dubey, S.K.; Bhatt, T.; Agrawal, M.; Saha, R.N.; Saraf, S.; Saraf, S.; Alexander, A. Application of chitosan modified nanocarriers in breast cancer. Int. J. Biol. Macromol. 2021, 194, 521–538. [Google Scholar] [CrossRef]
- Oyekunle, D.T.; Nia, M.H.; Wilson, L.D. Recent Progress on the Application of Chitosan, Starch and Chitosan–Starch Composites for Meat Preservation—A Mini Review. J. Compos. Sci. 2024, 8, 302. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, P.; Kaur, L.; Sharma, R.; Kush, P. Thiolated chitosan nanoparticles for augmented oral bioavailability of gemcitabine: Preparation, optimization, in vitro and in vivo study. J. Drug Deliv. Sci. Technol. 2020, 61, 102169. [Google Scholar] [CrossRef]
- Chen, G.; Svirskis, D.; Lu, W.; Ying, M.; Li, H.; Liu, M.; Wen, J. N-trimethyl chitosan coated nano-complexes enhance the oral bioavailability and chemotherapeutic effects of gemcitabine. Carbohydr. Polym. 2021, 273, 118592. [Google Scholar] [CrossRef]
- Yu, H.; Song, H.; Xiao, J.; Chen, H.; Jin, X.; Lin, X.; Pan, B.; Ji, W. The effects of novel chitosan-targeted gemcitabine nanomedicine mediating cisplatin on epithelial mesenchymal transition, invasion and metastasis of pancreatic cancer cells. Biomed. Pharmacother. 2017, 96, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-H.; Hsu, S.-H.; Chang, S.-W. Molecular interaction mechanisms of glycol chitosan self-healing hydrogel as a drug delivery system for gemcitabine and doxorubicin. Comput. Struct. Biotechnol. J. 2022, 20, 700–709. [Google Scholar] [CrossRef]
- Karuppaiah, A.; Babu, D.; Selvaraj, D.; Natrajan, T.; Rajan, R.; Gautam, M.; Ranganathan, H.; Siram, K.; Nesamony, J.; Sankar, V. Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats. Eur. J. Pharm. Sci. 2021, 165, 105938. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.K.; Dwivedi, P.; Campbell, C.; Tyagi, R.K. Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: An improved understanding of lung cancer therapeutic intervention. Eur. J. Pharm. Sci. 2012, 47, 1006–1014. [Google Scholar] [CrossRef]
- Unsoy, G.; Khodadust, R.; Yalcin, S.; Mutlu, P.; Gunduz, U. Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur. J. Pharm. Sci. 2014, 62, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.U.; Chen, L.; Ge, G. Recent development for biomedical applications of magnetic nanoparticles. Inorg. Chem. Commun. 2021, 134, 108995. [Google Scholar] [CrossRef]
- Trujillo Herrera, W.V. Preparación y Caracterización de Nanopartículas de Magnetita Funcionalizados con ácido láurico, oleico y Etilendiamino Tetraacético para Aplicaciones Biomédicas y Remediación Ambiental. Bachelor’s, Thesis, Universidad Nacional Mayor de San Marcos, Lima, Peru, 2013. [Google Scholar]
- Viota, J.; Carazo, A.; Munoz-Gamez, J.; Rudzka, K.; Gómez-Sotomayor, R.; Ruiz-Extremera, A.; Salmerón, J.; Delgado, A. Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug gemcitabine to tumor cells. Physicochemical in vitro evaluation. Mater. Sci. Eng. C 2012, 33, 1183–1192. [Google Scholar] [CrossRef]
- Khan, S.; Setua, S.; Kumari, S.; Dan, N.; Massey, A.; Bin Hafeez, B.; Yallapu, M.M.; Stiles, Z.E.; Alabkaa, A.; Yue, J.; et al. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials 2019, 208, 83–97. [Google Scholar] [CrossRef]
- Jakubowski, M.; Kucinska, M.; Ratajczak, M.; Pokora, M.; Murias, M.; Voelkel, A.; Sandomierski, M. Zinc forms of faujasite zeolites as a drug delivery system for 6-mercaptopurine. Microporous Mesoporous Mater. 2022, 343, 112194. [Google Scholar] [CrossRef]
- Souza, I.M.; Borrego-Sánchez, A.; Rigoti, E.; Sainz-Díaz, C.I.; Viseras, C.; Pergher, S.B. Experimental and molecular modelling study of beta zeolite as drug delivery system. Microporous Mesoporous Mater. 2021, 321, 111152. [Google Scholar] [CrossRef]
- Servatan, M.; Zarrintaj, P.; Mahmodi, G.; Kim, S.-J.; Ganjali, M.R.; Saeb, M.R.; Mozafari, M. Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discov. Today 2020, 25, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Sandomierski, M.; Adamska, K.; Ratajczak, M.; Voelkel, A. Chitosan-zeolite scaffold as a potential biomaterial in the controlled release of drugs for osteoporosis. Int. J. Biol. Macromol. 2022, 223, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Dizaji, B.F.; Azerbaijan, M.H.; Sheisi, N.; Goleij, P.; Mirmajidi, T.; Chogan, F.; Irani, M.; Sharafian, F. Synthesis of PLGA/chitosan/zeolites and PLGA/chitosan/metal organic frameworks nanofibers for targeted delivery of Paclitaxel toward prostate cancer cells death. Int. J. Biol. Macromol. 2020, 164, 1461–1474. [Google Scholar] [CrossRef]
- Serati-Nouri, H.; Jafari, A.; Roshangar, L.; Dadashpour, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Biomedical applications of zeolite-based materials: A review. Mater. Sci. Eng. C 2020, 116, 111225. [Google Scholar] [CrossRef]
- Nawrotek, K.; Tylman, M.; Adamus-Włodarczyk, A.; Rudnicka, K.; Gatkowska, J.; Wieczorek, M.; Wach, R. Influence of chitosan average molecular weight on degradation and stability of electrodeposited conduits. Carbohydr. Polym. 2020, 244, 116484. [Google Scholar] [CrossRef] [PubMed]
- Korkuna, O.; Leboda, R.; Skubiszewska-Zie¸ba, J.; Vrublevs’Ka, T.; Gun’Ko, V.; Ryczkowski, J. Structural and physicochemical properties of natural zeolites: Clinoptilolite and mordenite. Microporous Mesoporous Mater. 2006, 87, 243–254. [Google Scholar] [CrossRef]
- Cerri, G.; Farina, M.; Brundu, A.; Daković, A.; Giunchedi, P.; Gavini, E.; Rassu, G. Natural zeolites for pharmaceutical formulations: Preparation and evaluation of a clinoptilolite-based material. Microporous Mesoporous Mater. 2016, 223, 58–67. [Google Scholar] [CrossRef]
- Favvas, E.P.; Tsanaktsidis, C.G.; Sapalidis, A.A.; Tzilantonis, G.T.; Papageorgiou, S.K.; Mitropoulos, A.C. Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous Mesoporous Mater. 2016, 225, 385–391. [Google Scholar] [CrossRef]
- Güngör, D.; Özen, S. Development and characterization of clinoptilolite-, mordenite-, and analcime-based geopolymers: A comparative study. Case Stud. Constr. Mater. 2021, 15, e00576. [Google Scholar] [CrossRef]
- Manjunatha, M.; Kumar, R.; Anupama, A.V.; Khopkar, V.B.; Damle, R.; Ramesh, K.P.; Sahoo, B. XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. J. Mater. Res. Technol. 2019, 8, 2192–2200. [Google Scholar] [CrossRef]
- Mohanta, S.C.; Saha, A.; Devi, P.S. PEGylated Iron Oxide Nanoparticles for pH Responsive Drug Delivery Application. Mater. Today Proc. 2018, 5, 9715–9725. [Google Scholar] [CrossRef]
- Cárdenas-Triviño, G.; Monsalve-Rozas, S.; Vergara-González, L. Microencapsulation of Erlotinib and Nanomagnetite Supported in Chitosan as Potential Oncologic Carrier. Polymers 2021, 13, 1244. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Rivas, F.; Rodríguez-Fuentes, G.; Berlier, G.; Rodríguez-Iznaga, I.; Petranovskii, V.; Zamorano-Ulloa, R.; Coluccia, S. Evidence for controlled insertion of Fe ions in the framework of clinoptilolite natural zeolites. Microporous Mesoporous Mater. 2012, 167, 76–81. [Google Scholar] [CrossRef]
- Yilmaz, S.; Ucar, S.; Artok, L.; Gulec, H. The kinetics of citral hydrogenation over Pd supported on clinoptilolite rich natural zeolite. Appl. Catal. A Gen. 2005, 287, 261–266. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Khorsandi, S. Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. J. Ind. Eng. Chem. 2014, 20, 937–946. [Google Scholar] [CrossRef]
- Tadic, M.; Kralj, S.; Kopanja, L. Synthesis, particle shape characterization, magnetic properties and surface modification of superparamagnetic iron oxide nanochains. Mater. Charact. 2018, 148, 123–133. [Google Scholar] [CrossRef]
- Yousefi, T.; Davarkhah, R.; Golikand, A.N.; Mashhadizadeh, M.H.; Abhari, A. Facile cathodic electrosynthesis and characterization of iron oxide nano-particles. Prog. Nat. Sci. 2013, 23, 51–54. [Google Scholar] [CrossRef]
- Velsankar, K.; Parvathy, G.; Mohandoss, S.; Ravi, G.; Sudhahar, S. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: A greener nano drug for potential biomedical applications. J. Drug Deliv. Sci. Technol. 2022, 76, 103799. [Google Scholar] [CrossRef]
- Atyabi, F.; Dinarvand, R.; Ostad, S.N. Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: Preparation and in vitro study. Int. J. Nanomed. 2012, 7, 1851–1863. [Google Scholar] [CrossRef]
- Yazdi, F.; Anbia, M.; Salehi, S. Characterization of functionalized chitosan-clinoptilolite nanocomposites for nitrate removal from aqueous media. Int. J. Biol. Macromol. 2019, 130, 545–555. [Google Scholar] [CrossRef]
- Cárdenas-Triviño, G.; Burgos, M.; von Plessing, C. Microencapsulation of oxolinic acid with chitosan beads. J. Chil. Chem. Soc. 2018, 63, 4229–4238. [Google Scholar] [CrossRef]
- Kazemi-Andalib, F.; Mohammadikish, M.; Divsalar, A.; Sahebi, U. Hollow microcapsule with pH-sensitive chitosan/polymer shell for in vitro delivery of curcumin and gemcitabine. Eur. Polym. J. 2022, 162, 110887. [Google Scholar] [CrossRef]
- Arias, J.L.; Reddy, L.H.; Couvreur, P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J. Mater. Chem. 2012, 22, 7622–7632. [Google Scholar] [CrossRef]
- Paroha, S.; Verma, J.; Chandel, A.K.S.; Kumari, S.; Rani, L.; Dubey, R.D.; Mahto, A.K.; Panda, A.K.; Sahoo, P.K.; Dewangan, R.P. Augmented therapeutic efficacy of Gemcitabine conjugated self-assembled nanoparticles for cancer chemotherapy. J. Drug Deliv. Sci. Technol. 2022, 76, 103796. [Google Scholar] [CrossRef]
- Xia, W.; Wei, X.-Y.; Xie, Y.-Y.; Zhou, T. A novel chitosan oligosaccharide derivative: Synthesis, antioxidant and antibacterial properties. Carbohydr. Polym. 2022, 291, 119608. [Google Scholar] [CrossRef]
- Guarín-González, Y.A.; Cabello-Guzmán, G.; Von-Plessing, C.; Segura, R.; Barraza, L.F.; Martin-Martín, A.; López-Muñoz, R.; Cárdenas-Triviño, G. Multifunctional nano-in-microparticles for targeted lung cancer cells: Synthesis, characterization and efficacy assessment. Mater. Today Chem. 2024, 38, 102072. [Google Scholar] [CrossRef]
- Demirbuken, S.E.; Karaca, G.Y.; Kaya, H.K.; Oksuz, L.; Garipcan, B.; Oksuz, A.U.; Kuralay, F. Paclitaxel-conjugated phenylboronic acid-enriched catalytic robots as smart drug delivery systems. Mater. Today Chem. 2022, 26, 101172. [Google Scholar] [CrossRef]
- Bhadra, D.; Bhadra, S.; Jain, S.; Jain, N. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm. 2003, 257, 111–124. [Google Scholar] [CrossRef]
- Barraza, L.F.; Jiménez, V.A.; Alderete, J.B. Methotrexate Complexation with Native and PEGylated PAMAM-G4: Effect of the PEGylation Degree on the Drug Loading Capacity and Release Kinetics. Macromol. Chem. Phys. 2015, 217, 605–613. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, 1–7. [Google Scholar]
Molecular Mass | Degree of Deacetylation | Thermal Stability | FT-IR | |
---|---|---|---|---|
λ (cm−1) | Functional Group | |||
217,996.17 g/mol | 96.64% | Peak of greatest mass lost: 315.47 °C Total mass lost 66.66%. | 3430 | -OH bond stretching vibration |
2881 | -CH bond stretchingvibration | |||
1647 | C=O of Amide I | |||
1599 | NH2 group torsion | |||
1379 | Amide III axial deformation | |||
1160 | -O-C-O- group stretching vibration | |||
604 | NH2 group deformation |
Group | GEM μg/mL in Supernatant | Total Mass of Initial GEM (mg) | Final Mass of GEM (mg) | Final Mass of Encapsulated GEM (mg) | Efficiency Encapsulation (%) | S.D * |
---|---|---|---|---|---|---|
3 | 0.6473 | 3.8 | 0.198 | 3.602 | 94.80 | 0.04 |
10 | 1.0765 | 3.8 | 0.352 | 3.448 | 90.73 | 0.05 |
11 | 1.0063 | 3.8 | 0.317 | 3.483 | 91.66 | 0.30 |
12 | 1.4347 | 3.8 | 0.455 | 3.345 | 88.03 | 1.06 |
13 | 1.1081 | 3.8 | 0.338 | 3.462 | 91.10 | 0.28 |
14 | 1.1188 | 3.8 | 0.355 | 3.445 | 90.66 | 0.07 |
Samples | STRAINS | |||
---|---|---|---|---|
S. epidermidis | S. aureus | |||
MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | |
Group 10 | 0.625 | 0.625 | 1.250 | 10.0 |
Group 11 | 0.625 | 0.625 | 1.250 | 10.0 |
Group 12 | 0.625 | 5.0 | 0.313 | 10.0 |
Group 13 | 0.156 | 1.250 | 0.625 | 5.0 |
Group 14 | 0.156 | 0.156 | 1.250 | 1.250 |
Group | Macrocapsules | Materials | |||
---|---|---|---|---|---|
Chitosan | Nanomagnetite | Zeolite | GEM * | ||
2 | Chitosan | 4.0% | - | - | - |
3 | Chitosan + gemcitabine | 4.0% | - | - | 0.0025% |
4 | Chitosan + nanomagnetite | 4.0% | 0.0225% | - | - |
5 | Chitosan + nanomagnetite | 4.0% | 0.1% | - | - |
6 | Chitosan + zeolite | 4.0% | - | 0.0225% | - |
7 | Chitosan + zeolite | 4.0% | - | 0.1% | - |
8 | Chitosan + nanomagnetite + zeolite | 4.0% | 0.0225% | 0.0225% | - |
9 | Chitosan + nanomagnetite + zeolite | 4.0% | 0.1% | 0.1% | - |
10 | Chitosan + nanomagnetite + gemcitabine | 4.0% | 0.0225% | - | 0.0025% |
11 | Chitosan + nanomagnetite + gemcitabine | 4.0% | 0.1% | - | 0.0025% |
12 | Chitosan + zeolite + gemcitabine | 4.0% | - | 0.0225% | 0.0025% |
13 | Chitosan + zeolite + gemcitabine | 4.0% | - | 0.1% | 0.0025% |
14 | Chitosan + nanomagnetite + zeolite + gemcitabine | 4.0% | 0.0225% | 0.0225% | 0.0025% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarín-González, Y.A.; Cabello-Guzmán, G.; Reyes-Gasga, J.; Moreno-Navarro, Y.; Vergara-González, L.; Martin-Martín, A.; López-Muñoz, R.; Cárdenas-Triviño, G.; Barraza, L.F. Dual-Action Gemcitabine Delivery: Chitosan–Magnetite–Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Gels 2024, 10, 672. https://doi.org/10.3390/gels10100672
Guarín-González YA, Cabello-Guzmán G, Reyes-Gasga J, Moreno-Navarro Y, Vergara-González L, Martin-Martín A, López-Muñoz R, Cárdenas-Triviño G, Barraza LF. Dual-Action Gemcitabine Delivery: Chitosan–Magnetite–Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Gels. 2024; 10(10):672. https://doi.org/10.3390/gels10100672
Chicago/Turabian StyleGuarín-González, Yuly Andrea, Gerardo Cabello-Guzmán, José Reyes-Gasga, Yanko Moreno-Navarro, Luis Vergara-González, Antonia Martin-Martín, Rodrigo López-Muñoz, Galo Cárdenas-Triviño, and Luis F. Barraza. 2024. "Dual-Action Gemcitabine Delivery: Chitosan–Magnetite–Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense" Gels 10, no. 10: 672. https://doi.org/10.3390/gels10100672
APA StyleGuarín-González, Y. A., Cabello-Guzmán, G., Reyes-Gasga, J., Moreno-Navarro, Y., Vergara-González, L., Martin-Martín, A., López-Muñoz, R., Cárdenas-Triviño, G., & Barraza, L. F. (2024). Dual-Action Gemcitabine Delivery: Chitosan–Magnetite–Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Gels, 10(10), 672. https://doi.org/10.3390/gels10100672