Study on Thermal Insulation Performance of Silica Aerogel Thermal Insulation Blankets
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aerogel Insulation Model
- λ-value through the solid skeleton
- λ-value through the gas particles
- λ-value through heat radiation
- λ-value through gas convection the terms (λconv) that have high importance in fibrous insulations
- λ-value through trapped air or air layer
- λ-value through holes
2.2. Model Solving
2.3. Experiments on Aerogel Thermal Insulation Effect
2.4. Model Testing
3. Conclusions
- The heating curve of aerogel is the classic “saturation curve”. Firstly, it has a rapid rising stage, then it tends to stabilize gradually and finally, it no longer shows the obvious growth trend; at room temperature, aerogel can reach the thermal equilibrium within 10 min in general.
- The distance between the aerogel and the heat source has an important influence on the heat insulation effect. In the case of space permitting the distance between the aerogel and the heat source to increase, it is found that when this distance reaches 10 cm, even if the heat source is 90 °C, the surface temperature of the aerogel can still be close to the ambient temperature.
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daneshazarian, R.; Berardi, U. Nano-enhanced thermal energy storage coupled to a hybrid renewable system for a high-rise zero emission building. Energy Convers. Manag. 2023, 291, 117301. [Google Scholar] [CrossRef]
- Schito, E.; Lucchi, E. Advances in the Optimization of Energy Use in Buildings. Sustainability 2023, 15, 13050. [Google Scholar] [CrossRef]
- Liang, W.; Di, X.; Zheng, S.; Wu, L.; Zhang, J. A study on thermal bridge effect of vacuum insulation panels (VIPs). J. Build. Eng. 2023, 71, 106492. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Alvur, E.; Yilmaz, Y.N.; Saboor, S.; Ustabas, I.; Linul, E.; Asif, M. Experimental performance assessment of a novel insulation plaster as an energy-efficient retrofit solution for external walls: A key building material towards low/zero carbon buildings. Case Stud. Therm. Eng. 2023, 49, 103350. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.; Xu, N.; Liu, H.; Wu, N.; Chen, H.; Wang, B.; Wang, K. Thermal stable, fire-resistant and high strength SiBNO fiber/SiO2 aerogel composites with excellent thermal insulation and wave-transparent performances. Mater. Today Commun. 2022, 33, 104261. [Google Scholar] [CrossRef]
- Aegerter, M.A.; Leventis, N.; Koebel, M.M. Aerogels Handbook; Springer: New York, NY, USA, 2011. [Google Scholar]
- Ákos, L. Investigation of the moisture induced degradation of the thermal properties of Aerogel blankets: Measurements, calculations, simulations. Energy Build. 2017, 139, 506–516. [Google Scholar]
- Kistler, S.S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Jones, S. Aerogel: Space exploration applications. J. Sole Gel Sci. Technol. 2006, 40, 351–357. [Google Scholar] [CrossRef]
- He, Y.L.; Xie, T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 2015, 81, 28–50. [Google Scholar] [CrossRef]
- Xiao, J.; Pan, Z.; Zhang, T.; Lu, Y.; Wang, Y. Preparation of rutile titanium-nickel yellow/silica aerogel composite colorants and their thermal insulation properties. J. Silic. 2023, 51, 3177–3188. [Google Scholar]
- Merillas, B.; Lamy-Mendes, A.; Villafañe, F.; Durães, L.; Rodríguez-Pérez, M. Silica-Based Aerogel Composites Reinforced with Reticulated Polyurethane Foams: Thermal and Mechanical Properties. Gels 2022, 8, 392. [Google Scholar] [CrossRef] [PubMed]
- Ákos, S.; Ákos, L. Thermal analysis of aerogels and their vacuum-formed forms, their potential uses, and their effects on the environment. Case Stud. Therm. Eng. 2024, 56, 104284. [Google Scholar]
- Ákos, L. Thermal insulation capability of nanostructured insulations and their combination as hybrid insulation systems. Case Stud. Therm. Eng. 2023, 41, 102633. [Google Scholar]
- Ákos, L.; Elena, L. Thermal performances of Super Insulation Materials (SIMs): A comprehensive analysis of characteristics, heat transfer mechanisms, laboratory tests, and experimental comparisons. Int. Commun. Heat Mass Transf. 2024, 152, 107293. [Google Scholar]
- Zhao, Z.; Cui, Y.; Kong, Y.; Ren, J.; Jiang, X.; Yan, W.; Li, M.; Tang, J.; Liu, X.; Shen, X. Thermal and Mechanical Performances of the Superflexible, Hydrophobic, Silica-Based Aerogel for Thermal Insulation at Ultralow Temperature. ACS Appl. Mater. Interfaces 2021, 13, 21286–21298. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, Y.; Jiang, X.; Zhong, Y.; Chen, Y.; Shen, X. Synthesis of hydrophobic silica aerogel and its composite using functional precursor. J. Porous Mater. 2020, 27, 295–301. [Google Scholar] [CrossRef]
- Sambucci, M.; Savoni, F.; Valente, M. Aerogel Technology for Thermal Insulation of Cryogenic Tanks-Numerical Analysis for Comparison with Traditional Insulating Materials. Gels 2023, 9, 307. [Google Scholar] [CrossRef]
- Kalnæs, S.E.; Jelle, B.P. Vacuum insulation panel products: A state-of-the-art review and future research pathways. Appl. Energy 2014, 116, 355–375. [Google Scholar] [CrossRef]
- Hamdaoui, M.A.; Benzaama, M.-H.; El Mendili, Y.; Chateigner, D.; Gascoin, S. Investigation of the mechanical and hygrothermal behavior of coffee ground wastes valorized as a building material: Analysis of mix designs performance and sorption curve linearization effect. Arch. Civ. Mech. Eng. 2023, 23, 57. [Google Scholar] [CrossRef]
- Jiang, Y.; Feng, J.; Feng, J. Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity. J. Sol-Gel Sci. Technol. 2017, 83, 64–71. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, W.; Wang, X.; Li, Y.-M.; Tao, W.-Q. Thermal conductivity of fiber and opacifier loaded silica aerogel composite. Int. J. Heat Mass Transf. 2017, 115, 21–31. [Google Scholar] [CrossRef]
- Liu, H.; Xia, X.; Xie, X.; Ai, Q.; Li, D. Experiment and identification of thermal conductivity and extinction coefficient of silica aerogel composite. Int. J. Therm. Sci. 2017, 121, 192–203. [Google Scholar] [CrossRef]
- Yang, S.M.; Tao, W.Q. Heat Transfer, 4th ed.; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Xiong, H.; Qin, Z.; Qin, S.; Li, M. Optimization model of furnace temperature profile based on Newton’s cooling law. Exp. Sci. Technol. 2022, 20, 9–14. [Google Scholar]
- Chen, L.; Fu, F.; Xu, Z.; Ma, T.; Yao, J.; Liu, X. Preparation of silica aerogel-filled rushes fiber composites and their thermal stealth properties. Mod. Text. Technol. 2023, 31, 30–40. [Google Scholar]
- Xu, Z.; Zhao, W.; Yan, L.; Tang, X.; Feng, Y. Flame retardant effects of hydroxylated boron nitride and ammonium dihydrogen phosphate in densified wood. China Saf. Prod. Sci. Technol. 2023, 19, 151–157. [Google Scholar]
- Sun, X.; Gao, M.; Yu, P.; Zhang, W.; Wu, Q. A review of contact temperature measurement technologies for industrial use. Electron. World 2021, 26, 23–24. [Google Scholar]
- Zhang, Z. Analysis of common problems and solution strategies in the process of temperature measurement. Sci. Technol. Innov. Appl. 2022, 12, 152–154+158. [Google Scholar]
- Babiarczuk, B.A.; Lewandowski, D.; Kierzek, K.; Detyna, J.; Jones, W.; Kaleta, J.; Krzak, J. Mechanical properties of silica aerogels controlled by synthesis parameters. J. Non-Cryst. Solids 2023, 606, 122171. [Google Scholar] [CrossRef]
- Ma, A.; Cai, C.; Peng, S.; Zhou, T. Combined measurement and calibration method for the thermal conductivity of phase change materials. Int. J. Therm. Sci. 2023, 184, 107987. [Google Scholar] [CrossRef]
- Venkataraman, M.; Mishra, R.; Wiener, J.; Militky, J.; Kotresh, T.M.; Vaclavik, M. Novel techniques to analyse thermal performance of aerogel-treated blankets under extreme temperatures. J. Text. Inst. 2015, 106, 736–747. [Google Scholar] [CrossRef]
Symbol | Specification |
---|---|
λ-value through the solid skeleton | |
λ-value through the gas particles | |
λ-value through heat radiation | |
λ-value through gas convection the terms | |
λ-value through trapped air or air layer | |
λ-value through holes | |
Heat absorbed | |
Heat dissipated | |
Radiant heat transfer | |
Conduction heat transfer | |
Convection heat transfer | |
The heat flow density per unit area | |
The surface emissivity of the heat source | |
Stefan–Boltzmann constant | |
Material density | |
Material-specific heat capacity | |
T | Surface temperature of the heat source |
Properties | Values |
---|---|
Temperature of the heat source (T) | 30/50/70/90 °C |
Aerogel thickness (d) | 3/6/9 mm |
Environmental temperature | 10 °C |
Convection coefficient | 0 W/m2·K |
Heat source material | Alloy steel |
Heat source emissivity | 0.9 |
Thermal conductivity of aerogel * | 0.015 W/m·K |
Aerogel density | 250 Kg/m3 |
T | 30 °C | 50 °C | 70 °C | 90 °C | |
---|---|---|---|---|---|
d | |||||
3 mm | max | 20.6 | 32.3 | 45 | 58.5 |
min | 10.4 | 10.9 | 11.5 | 12.3 | |
ave | 15.4 | 20.9 | 29.5 | 37.6 | |
6 mm | max | 19.2 | 29.4 | 40.4 | 52.1 |
min | 10.2 | 10.6 | 11.1 | 11.6 | |
ave | 14.3 | 19.3 | 24.9 | 33.5 | |
12 mm | max | 17.3 | 25.4 | 34.1 | 43.2 |
min | 10.0 | 10.2 | 10.4 | 10.7 | |
ave | 13.3 | 17.1 | 22.5 | 25.9 |
Test Temperature | Mean Thermal Conductivity (W/m·K) | Thermal Conductivity-1 (W/m·K) | Thermal Conductivity-2 (W/m·K) | Thermal Conductivity-3 (W/m·K) |
---|---|---|---|---|
15 °C | 0.0143 | 0.0143 | 0.0143 | 0.01423 |
30 °C | 0.0149 | 0.0148 | 0.0149 | 0.0149 |
150 °C | 0.0153 | 0.0152 | 0.0153 | 0.0154 |
70 °C | 0.0159 | 0.0159 | 0.0159 | 0.0158 |
90 °C | 0.0167 | 0.0165 | 0.0168 | 0.0168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xu, W.; Zhu, L.; Xiao, F.; Yu, Z.; Hao, B.; Huang, W.; Zhao, K. Study on Thermal Insulation Performance of Silica Aerogel Thermal Insulation Blankets. Gels 2024, 10, 707. https://doi.org/10.3390/gels10110707
Li H, Xu W, Zhu L, Xiao F, Yu Z, Hao B, Huang W, Zhao K. Study on Thermal Insulation Performance of Silica Aerogel Thermal Insulation Blankets. Gels. 2024; 10(11):707. https://doi.org/10.3390/gels10110707
Chicago/Turabian StyleLi, Hao, Weidong Xu, Liyan Zhu, Feifei Xiao, Zhou Yu, Bentian Hao, Wei Huang, and Kai Zhao. 2024. "Study on Thermal Insulation Performance of Silica Aerogel Thermal Insulation Blankets" Gels 10, no. 11: 707. https://doi.org/10.3390/gels10110707
APA StyleLi, H., Xu, W., Zhu, L., Xiao, F., Yu, Z., Hao, B., Huang, W., & Zhao, K. (2024). Study on Thermal Insulation Performance of Silica Aerogel Thermal Insulation Blankets. Gels, 10(11), 707. https://doi.org/10.3390/gels10110707