Advanced Applications of Polymer Hydrogels in Electronics and Signal Processing
Abstract
:1. Introduction
2. From “Binary” Electronics to Polymer-Based Neural Networks
3. Variability in the Physicochemical Foundations of Computational Science and Their Complementary Algorithms
4. Metamaterials Based on Polymer Hydrogels: Prerequisites for Practical Applications in Signal Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schaller, R.R. Moore’s Law: Past, Present and Future. IEEE Spectr. 1997, 34, 52–59. [Google Scholar] [CrossRef]
- Kim, N.S.; Austin, T.; Blaauw, D.; Mudge, T.; Flautner, K.; Hu, J.S.; Irwin, M.J.; Kandemir, M.; Narayanan, V. Leakage Current: Moore’s Law Meets Static Power. Computer 2003, 36, 68–75. [Google Scholar] [CrossRef]
- Aharonov, Y.; Popescu, S.; Rohrlich, D. Conservation Laws and the Foundations of Quantum Mechanics. Proc. Natl. Acad. Sci. USA 2023, 120, e2220810120. [Google Scholar] [CrossRef]
- Corichi, A.; Vukašinac, T.; Zapata, J.A. Polymer Quantum Mechanics and Its Continuum Limit. Phys. Rev. D 2007, 76, 044016. [Google Scholar] [CrossRef]
- De Donno, M.; Tange, K.; Dragoni, N. Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog. IEEE Access 2019, 7, 150936–150948. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, F.; Wang, T.; Wang, X.; Lin, Y. Social Computing and Computational Societies: The Foundation and Consequence of Smart Societies. Chin. Sci. Bull. 2015, 60, 460–469. [Google Scholar] [CrossRef]
- Yukun, S.; Bo, L.; Junlin, L.; Haonan, H.; Xing, Z.; Jing, P.; Wenbo, W. Computing Power Network: A Survey. China Commun. 2024, 21, 109–145. [Google Scholar] [CrossRef]
- Demir, B.; Akin Gultakti, C.; Koker, Z.; Anantram, M.P.; Oren, E.E. Electronic Properties of DNA Origami Nanostructures Revealed by In Silico Calculations. J. Phys. Chem. B 2024, 128, 4646–4654. [Google Scholar] [CrossRef] [PubMed]
- Katz, E. DNA- and RNA-Based Computing Systems, 1st ed.; WILEY-VCH: Weinheim, Germany, 2021. [Google Scholar]
- Fan, D.; Wang, J.; Wang, E.; Dong, S. Propelling DNA Computing with Materials’ Power: Recent Advancements in Innovative DNA Logic Computing Systems and Smart Bio-Applications. Adv. Sci. 2020, 7, 2001766. [Google Scholar] [CrossRef]
- Suleimenov, I.; Gabrielyan, O.; Vitulyova, Y. Dialectics of Scientific Revolutions from the Point of View of Innovations Theory. Wisdom 2022, 24, 25–35. [Google Scholar] [CrossRef]
- Brusentsov, N.P.; Ramil Alvarez, J. Ternary Computers: The Setun and the Setun 70. In Perspectives on Soviet and Russian Computing; Impagliazzo, J., Proydakov, E., Eds.; IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2011; Volume 357, pp. 74–80. [Google Scholar] [CrossRef]
- Arpasi, J. A Brief Introduction to Ternary Logic. 2003; pp. 1–13. Available online: https://www.academia.edu/78266529/A_Brief_Introduction_to_Ternary_Logic?uc-sb-sw=7626680 (accessed on 1 November 2024).
- Suleimenov, I.; Bakirov, A.; Moldakhan, I. Formalization of Ternary Logic for Application to Digital Signal Processing. In Proceedings of the International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019; Murgul, V., Pukhkal, V., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2021; Volume 1259, pp. 26–35. [Google Scholar] [CrossRef]
- Gumyusenge, A.; Melianas, A.; Keene, S.T.; Salleo, A. Materials Strategies for Organic Neuromorphic Devices. Annu. Rev. Mater. Res. 2021, 51, 47–71. [Google Scholar] [CrossRef]
- Kim, K.; Sung, M.; Park, H.; Lee, T. Organic Synaptic Transistors for Bio-Hybrid Neuromorphic Electronics. Adv. Elect. Mater. 2022, 8, 2100935. [Google Scholar] [CrossRef]
- Seo, D.-G.; Lee, Y.; Go, G.-T.; Pei, M.; Jung, S.; Jeong, Y.H.; Lee, W.; Park, H.-L.; Kim, S.-W.; Yang, H.; et al. Versatile Neuromorphic Electronics by Modulating Synaptic Decay of Single Organic Synaptic Transistor: From Artificial Neural Networks to Neuro-Prosthetics. Nano Energy 2019, 65, 104035. [Google Scholar] [CrossRef]
- Laftah, W.A.; Hashim, S.; Ibrahim, A.N. Polymer Hydrogels: A Review. Polym.-Plast. Technol. Eng. 2011, 50, 1475–1486. [Google Scholar] [CrossRef]
- Zhou, T.; Yuk, H.; Hu, F.; Wu, J.; Tian, F.; Roh, H.; Shen, Z.; Gu, G.; Xu, J.; Lu, B.; et al. 3D Printable High-Performance Conducting Polymer Hydrogel for All-Hydrogel Bioelectronic Interfaces. Nat. Mater. 2023, 22, 895–902. [Google Scholar] [CrossRef]
- Dergunov, S.A.; Mun, G.A.; Dergunov, M.A.; Suleimenov, I.E.; Pinkhassik, E. Tunable Thermosensitivity in Multistimuli-Responsive Terpolymers. React. Funct. Polym. 2011, 71, 1129–1136. [Google Scholar] [CrossRef]
- Liu, R.-R.; Mao, L.-B.; Yu, S.-H. Strong and Tough Chitin Hydrogel Constructed by Dehydration and Rehydration Strategy. Nano Res. 2024, 17, 8192–8199. [Google Scholar] [CrossRef]
- Sadia, S.; Jat, R.K.; Malthar, P. Superporous Hydrogel: An Innovative Method for Secure Gastroretentive Drug Delivery Systems. Int. J. Adv. Res. Sci. Commun. Technol. 2024, 4, 47–56. [Google Scholar] [CrossRef]
- Budtova, T.; Suleimenov, I. Swelling Behaviour of a Polyelectrolyte Network under Load. Polymer 1997, 38, 5947–5952. [Google Scholar] [CrossRef]
- Appel, E.A.; Del Barrio, J.; Loh, X.J.; Scherman, O.A. Supramolecular Polymeric Hydrogels. Chem. Soc. Rev. 2012, 41, 6195. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, G.; Liu, S. Enzyme-Responsive Polymeric Assemblies, Nanoparticles and Hydrogels. Chem. Soc. Rev. 2012, 41, 5933. [Google Scholar] [CrossRef] [PubMed]
- Budtova, T.; Suleimenov, I. Physical Principles of Using Polyelectrolyte Hydrogels for Purifying and Enrichment Technologies. J. Appl. Polym. Sci. 1995, 57, 1653–1658. [Google Scholar] [CrossRef]
- Xu, Y.; Tong, J.; Zhang, J.; Li, Y.; Shi, X.; Deng, H.; Du, Y. Continuous Electro-Growth of a Hierarchically Structured Hydrogel on a Non-Conductive Surface. Mater. Adv. 2024, 5, 3850–3857. [Google Scholar] [CrossRef]
- Rasool, A.; Qureshi, M.A.U.R.; Islam, A.; Fayyaz, S. Hydrogels and Their Emerging Applications. In Hydrogels; CRC Press: Boca Raton, FL, USA, 2023; pp. 103–126. [Google Scholar] [CrossRef]
- Budtova, T.; Suleimenov, I.; Frenkel, S. Electrokinetics of the Contraction of a Polyelectrolyte Hydrogel under the Influence of Constant Electric Current. Polym. Gels Netw. 1995, 3, 387–393. [Google Scholar] [CrossRef]
- Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chem. Rev. 2020, 120, 7642–7707. [Google Scholar] [CrossRef]
- Wang, Z.; Cong, Y.; Fu, J. Stretchable and Tough Conductive Hydrogels for Flexible Pressure and Strain Sensors. J. Mater. Chem. B 2020, 8, 3437–3459. [Google Scholar] [CrossRef]
- Mondal, S.; Das, S.; Nandi, A.K. A Review on Recent Advances in Polymer and Peptide Hydrogels. Soft Matter 2020, 16, 1404–1454. [Google Scholar] [CrossRef]
- Suleymenov, I.E.; Sedlakova, Z.Z.; Kopishev, E.E. New Polymer Materials for Optical Sensor Systems. J. Inorg. Organomet. Polym. 2019, 29, 758–764. [Google Scholar] [CrossRef]
- Koo, J.H.; Song, J.; Yoo, S.; Sunwoo, S.; Son, D.; Kim, D. Unconventional Device and Material Approaches for Monolithic Biointegration of Implantable Sensors and Wearable Electronics. Adv. Mater. Technol. 2020, 5, 2000407. [Google Scholar] [CrossRef]
- Ghomian, T.; Mehraeen, S. Survey of Energy Scavenging for Wearable and Implantable Devices. Energy 2019, 178, 33–49. [Google Scholar] [CrossRef]
- Han, W.B.; Ko, G.-J.; Jang, T.-M.; Hwang, S.-W. Materials, Devices, and Applications for Wearable and Implantable Electronics. ACS Appl. Electron. Mater. 2021, 3, 485–503. [Google Scholar] [CrossRef]
- Zhu, Y.; Haghniaz, R.; Hartel, M.C.; Mou, L.; Tian, X.; Garrido, P.R.; Wu, Z.; Hao, T.; Guan, S.; Ahadian, S.; et al. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomater. Sci. Eng. 2023, 9, 2048–2069. [Google Scholar] [CrossRef] [PubMed]
- Fromm, J.; Lautner, S. Electrical Signals and Their Physiological Significance in Plants. Plant Cell Environ. 2007, 30, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, V.; Ingebrandt, S. Biologically Sensitive Field-Effect Transistors: From ISFETs to NanoFETs. Essays Biochem. 2016, 60, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Koutsouras, D.A.; Kazemzadeh, S.; Van De Burgt, Y.; Yan, F.; Gkoupidenis, P. Electrolyte-Gated Transistors for Synaptic Electronics, Neuromorphic Computing, and Adaptable Biointerfacing. Appl. Phys. Rev. 2020, 7, 011307. [Google Scholar] [CrossRef]
- Niu, X.; Tian, B.; Zhu, Q.; Dkhil, B.; Duan, C. Ferroelectric Polymers for Neuromorphic Computing. Appl. Phys. Rev. 2022, 9, 021309. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, W.; Zeng, J.; Fan, F.; Gu, J.; Chen, X.; Yan, L.; Xie, G.; Liu, S.; Yan, Q.; et al. 90% Yield Production of Polymer Nano-Memristor for in-Memory Computing. Nat. Commun. 2021, 12, 1984. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Huang, W.; Dong, Y.; Wang, Z.; Huang, W. Wearable In-Sensor Reservoir Computing Using Optoelectronic Polymers with through-Space Charge-Transport Characteristics for Multi-Task Learning. Nat. Commun. 2023, 14, 468. [Google Scholar] [CrossRef]
- Krauhausen, I.; Coen, C.; Spolaor, S.; Gkoupidenis, P.; Van De Burgt, Y. Brain-Inspired Organic Electronics: Merging Neuromorphic Computing and Bioelectronics Using Conductive Polymers. Adv. Funct. Mater. 2024, 34, 2307729. [Google Scholar] [CrossRef]
- Kim, Y.; Chortos, A.; Xu, W.; Liu, Y.; Oh, J.Y.; Son, D.; Kang, J.; Foudeh, A.M.; Zhu, C.; Lee, Y.; et al. A Bioinspired Flexible Organic Artificial Afferent Nerve. Science 2018, 360, 998–1003. [Google Scholar] [CrossRef]
- Melianas, A.; Quill, T.J.; LeCroy, G.; Tuchman, Y.; Loo, H.V.; Keene, S.T.; Giovannitti, A.; Lee, H.R.; Maria, I.P.; McCulloch, I.; et al. Temperature-Resilient Solid-State Organic Artificial Synapses for Neuromorphic Computing. Sci. Adv. 2020, 6, eabb2958. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, Y.; Zhong, D.; Zhang, Z.; Choudhury, S.; Lai, J.-C.; Gong, H.; Niu, S.; Yan, X.; Zheng, Y.; et al. Neuromorphic Sensorimotor Loop Embodied by Monolithically Integrated, Low-Voltage, Soft e-Skin. Science 2023, 380, 735–742. [Google Scholar] [CrossRef]
- Giovannitti, A.; Sbircea, D.-T.; Inal, S.; Nielsen, C.B.; Bandiello, E.; Hanifi, D.A.; Sessolo, M.; Malliaras, G.G.; McCulloch, I.; Rivnay, J. Controlling the Mode of Operation of Organic Transistors through Side-Chain Engineering. Proc. Natl. Acad. Sci. USA 2016, 113, 12017–12022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Van Doremaele, E.R.W.; Ye, G.; Stevens, T.; Song, J.; Chiechi, R.C.; Van De Burgt, Y. Adaptive Biosensing and Neuromorphic Classification Based on an Ambipolar Organic Mixed Ionic–Electronic Conductor. Adv. Mater. 2022, 34, 2200393. [Google Scholar] [CrossRef]
- Krauhausen, I.; Koutsouras, D.A.; Melianas, A.; Keene, S.T.; Lieberth, K.; Ledanseur, H.; Sheelamanthula, R.; Giovannitti, A.; Torricelli, F.; Mcculloch, I.; et al. Organic Neuromorphic Electronics for Sensorimotor Integration and Learning in Robotics. Sci. Adv. 2021, 7, eabl5068. [Google Scholar] [CrossRef] [PubMed]
- Bartolozzi, C.; Indiveri, G.; Donati, E. Embodied neuromorphic intelligence. Nat. Commun. 2022, 13, 1024. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Pedreschi, D.; Giannotti, F. A Survey Of Methods For Explaining Black Box Models. arXiv 2018, arXiv:1802.01933. [Google Scholar] [CrossRef]
- Samek, W.; Wiegand, T.; Müller, K.-R. Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. arXiv 2017, arXiv:1708.08296. [Google Scholar]
- Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608. [Google Scholar]
- Damilola, S. A Review of Unsupervised Artificial Neural Networks with Applications. Int. J. Comput. Appl. 2019, 181, 22–26. [Google Scholar] [CrossRef]
- Dike, H.U.; Zhou, Y.; Deveerasetty, K.K.; Wu, Q. Unsupervised Learning Based On Artificial Neural Network: A Review. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018; pp. 322–327. [Google Scholar] [CrossRef]
- Zhang, Z.; Sabbagh, B.; Chen, Y.; Yossifon, G. Geometrically Scalable Iontronic Memristors: Employing Bipolar Polyelectrolyte Gels for Neuromorphic Systems. ACS Nano 2024, 18, 15025–15034. [Google Scholar] [CrossRef] [PubMed]
- Bischak, C.G.; Flagg, L.Q.; Ginger, D.S. Ion Exchange Gels Allow Organic Electrochemical Transistor Operation with Hydrophobic Polymers in Aqueous Solution. Adv. Mater. 2020, 32, 2002610. [Google Scholar] [CrossRef]
- Rao, Z.; Thukral, A.; Yang, P.; Lu, Y.; Shim, H.; Wu, W.; Karim, A.; Yu, C. All-Polymer Based Stretchable Rubbery Electronics and Sensors. Adv. Funct. Mater. 2022, 32, 2111232. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, L.; Wan, P. Polymer Nanocomposite Meshes for Flexible Electronic Devices. Prog. Polym. Sci. 2020, 107, 101279. [Google Scholar] [CrossRef]
- Suleimenov, I.E.; Gabrielyan, O.A.; Bakirov, A.S.; Vitulyova, Y.S. Dialectical Understanding of Information in the Context of the Artificial Intelligence Problems. IOP Conf. Ser. Mater. Sci. Eng. 2019, 630, 012007. [Google Scholar] [CrossRef]
- Vitulyova, Y.S.; Bakirov, A.S.; Baipakbayeva, S.T.; Suleimenov, I.E. Interpretation of the Category of “Complex” in Terms of Dialectical Positivism. IOP Conf. Ser. Mater. Sci. Eng. 2020, 946, 012004. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, L.; Yang, S.; Tang, X.; Chang, K.; Chen, M. Boolean Logic Gate Based on DNA Strand Displacement for Biosensing: Current and Emerging Strategies. Nanoscale Horiz. 2021, 6, 298–310. [Google Scholar] [CrossRef]
- Chen, J.; Fu, S.; Zhang, C.; Liu, H.; Su, X. DNA Logic Circuits for Cancer Theranostics. Small 2022, 18, 2108008. [Google Scholar] [CrossRef]
- Bardales, A.C.; Vo, Q.; Kolpashchikov, D.M. Singleton {NOT} and Doubleton {YES.; NOT} Gates Act as Functionally Complete Sets in DNA-Integrated Computational Circuits. Nanomaterials 2024, 14, 600. [Google Scholar] [CrossRef]
- Voigt, A.; Greiner, R.; Allerdißen, M.; Richter, A. Towards Computation with Microchemomechanical Systems. In Unconventional Computation and Natural Computation; Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E., Eds.; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., et al, Series Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7956, pp. 232–243. [Google Scholar] [CrossRef]
- Abu-Mahfouz, I. Semiconductors and Logic Circuits. In Instrumentation: Theory and Practice, Part 1; Synthesis Lectures on Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 97–114. [Google Scholar] [CrossRef]
- Liu, Y.; Zhai, Y.; Hu, H.; Liao, Y.; Liu, H.; Liu, X.; He, J.; Wang, L.; Wang, H.; Li, L.; et al. Erasable and Field Programmable DNA Circuits Based on Configurable Logic Blocks. Adv. Sci. 2024, 11, 2400011. [Google Scholar] [CrossRef] [PubMed]
- Bardales, A.C.; Smirnov, V.; Taylor, K.; Kolpashchikov, D.M. DNA Logic Gates Integrated on DNA Substrates in Molecular Computing. ChemBioChem 2024, 25, e202400080. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, P.; Wang, Z.; Ren, Y.; Zhu, X.; Wang, J.; Yan, H.; Hua, L.; Gao, F. Sea Anemone-like Nanomachine Based on DNA Strand Displacement Composed of Three Boolean Logic Gates: Diversified Input for Intracellular Multitarget Detection. Anal. Chem. 2024, 96, 4120–4128. [Google Scholar] [CrossRef] [PubMed]
- Andreev, M.; Seo, S.; Jung, K.; Park, J. Looking Beyond 0 and 1: Principles and Technology of Multi-Valued Logic Devices. Adv. Mater. 2022, 34, 2108830. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Oh, S.; Kang, D.-H.; Jo, S.-H.; Ali, M.H.; Choi, W.-Y.; Heo, K.; Jeon, J.; Lee, S.; Kim, M.; et al. Phosphorene/Rhenium Disulfide Heterojunction-Based Negative Differential Resistance Device for Multi-Valued Logic. Nat. Commun. 2016, 7, 13413. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Cho, J.; Jung, K.; Andreev, M.; Lee, J.; Ahn, H.; Jung, S.; Lee, T.; Kim, B.; Lee, S.; et al. A Van Der Waals Reconfigurable Multi-Valued Logic Device and Circuit Based on Tunable Negative-Differential-Resistance Phenomenon. Adv. Mater. 2022, 34, 2202799. [Google Scholar] [CrossRef]
- Kobashi, K.; Hayakawa, R.; Chikyow, T.; Wakayama, Y. Multi-Valued Logic Circuits Based on Organic Anti-Ambipolar Transistors. Nano Lett. 2018, 18, 4355–4359. [Google Scholar] [CrossRef]
- Vitulyova, Y.S.; Bakirov, A.S.; Shaltykova, D.B.; Suleimenov, I.E. Prerequisites for the Analysis of the Neural Networks Functioning in Terms of Projective Geometry. IOP Conf. Ser. Mater. Sci. Eng. 2020, 946, 012001. [Google Scholar] [CrossRef]
- Suleimenov, I.E.; Bakirov, A.S.; Matrassulova, D.K. A technique for analyzing neural networks in terms of ternary logic. J. Theor. Appl. Inf. Technol. 2021, 99, 2537–2553. [Google Scholar]
- Ben-Ari, M. Mathematical Logic for Computer Science; Springer London: London, UK, 2012. [Google Scholar] [CrossRef]
- Balaji Girisankar, S.; Nasseri, M.; Priscilla, J.; Lin, S.; Akella, V. Multiplier-Free Implementation of Galois Field Fourier Transform on a FPGA. IEEE Trans. Circuits Syst. II 2019, 66, 1815–1819. [Google Scholar] [CrossRef]
- Matrassulova, D.K.; Vitulyova, Y.S.; Konshin, S.V.; Suleimenov, I.E. Algebraic Fields and Rings as a Digital Signal Processing Tool. Indones. J. Electr. Eng. Comput. Sci. 2022, 29, 206. [Google Scholar] [CrossRef]
- Nardo, L.G.; Nepomuceno, E.G.; Bastos, G.T.; Santos, T.A.; Butusov, D.N.; Arias-Garcia, J. A Reliable Chaos-Based Cryptography Using Galois Field. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 091101. [Google Scholar] [CrossRef] [PubMed]
- Hazzazi, M.M.; Attuluri, S.; Bassfar, Z.; Joshi, K. A Novel Cipher-Based Data Encryption with Galois Field Theory. Sensors 2023, 23, 3287. [Google Scholar] [CrossRef] [PubMed]
- Bakirov, A.; Matrassulova, D.; Vitulyova, Y.; Shaltykova, D.; Suleimenov, I. The Specifics of the Galois Field GF(257) and Its Use for Digital Signal Processing. Sci. Rep. 2024, 14, 15376. [Google Scholar] [CrossRef] [PubMed]
- Moldakhan, I.; Matrassulova, D.K.; Shaltykova, D.B.; Suleimenov, I.E. Some Advantages of Non-Binary Galois Fields for Digital Signal Processing. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 871. [Google Scholar] [CrossRef]
- Vitulyova, E.S.; Matrassulova, D.K.; Suleimenov, I.E. New Application of Non-Binary Galois Fields Fourier Transform: Digital Analog of Convolution Theorem. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 1718. [Google Scholar] [CrossRef]
- Jenkins, W.; Leon, B. The Use of Residue Number Systems in the Design of Finite Impulse Response Digital Filters. IEEE Trans. Circuits Syst. 1977, 24, 191–201. [Google Scholar] [CrossRef]
- Aithal, G.; Bhat, K.N.H.; Sripathi, U. Implementation of Stream Cipher System Based on Representation of Integers in Residue Number System. In Proceedings of the 2010 IEEE 2nd International Advance Computing Conference (IACC), Patiala, India, 19–20 February 2010; pp. 210–217. [Google Scholar] [CrossRef]
- Valueva, M.V.; Nagornov, N.N.; Lyakhov, P.A.; Valuev, G.V.; Chervyakov, N.I. Application of the Residue Number System to Reduce Hardware Costs of the Convolutional Neural Network Implementation. Math. Comput. Simul. 2020, 177, 232–243. [Google Scholar] [CrossRef]
- Nakahara, H.; Sasao, T. A Deep Convolutional Neural Network Based on Nested Residue Number System. In Proceedings of the 2015 25th International Conference on Field Programmable Logic and Applications (FPL), London, UK, 2–4 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Dubey, A.; Ahmad, A.; Pasha, M.A.; Cammarota, R.; Aysu, A. ModuloNET: Neural Networks Meet Modular Arithmetic for Efficient Hardware Masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2022, 506–556. [Google Scholar] [CrossRef]
- Ishii, M.; Detrey, J.; Gaudry, P.; Inomata, A.; Fujikawa, K. Fast Modular Arithmetic on the Kalray MPPA-256 Processor for an Energy-Efficient Implementation of ECM. IEEE Trans. Comput. 2017, 66, 2019–2030. [Google Scholar] [CrossRef]
- Suleimenov, I.E.; Vitulyova, Y.S.; Kabdushev, S.B.; Bakirov, A.S. Improving the Efficiency of Using Multivalued Logic Tools. Sci. Rep. 2023, 13, 1108. [Google Scholar] [CrossRef] [PubMed]
- Suleimenov, I.E.; Vitulyova, Y.S.; Kabdushev, S.B.; Bakirov, A.S. Improving the Efficiency of Using Multivalued Logic Tools: Application of Algebraic Rings. Sci. Rep. 2023, 13, 22021. [Google Scholar] [CrossRef] [PubMed]
- Hidenori Ebihara, Kiyoto c/o Kawasaki Denki Co., Ltd. Kawasaki Circuit for Modulo Multiplication and Exponentiation Arithmetic. Patent EP0801345B1, 16 October 2002.
- Sengchanh, C. Multi-Value Digital Calculating Circuits, Including Multipliers. Patent US20060031278A1, 9 February 2006. [Google Scholar]
- Pisek, E.; Henige, T.M. Method and Apparatus for Efficient Modulo Multiplication. Patent US8417756B2, 9 April 2013. [Google Scholar]
- Suleimenov, I.E.; Guven, O.; Mun, G.A.; Uzun, C.; Gabrielyan, O.A.; Kabdushev, S.B.; Agibaeva, L.; Nurtazin, A. Hysteresis Effects During the Phase Transition in Solutions of Temperature Sensitive Polymers. Eurasian Chem. Technol. J. 2017, 19, 41. [Google Scholar] [CrossRef]
- Bakirov, A.; Kopishev, E.; Kadyrzhan, K.; Donbaeva, E.; Zhaxybayeva, A.; Duisembiyev, M.; Suyundikova, F.; Suleimenov, I. The Method of Direct and Reverse Phase Portraits as a Tool for Systematizing the Results of Studies of Phase Transitions in Solutions of Thermosensitive Polymers. Gels 2024, 10, 395. [Google Scholar] [CrossRef]
- Kabdushev, S.; Mun, G.; Suleimenov, I.; Alikulov, A.; Shaikhutdinov, R.; Kopishev, E. Formation of Hydrophobic–Hydrophilic Associates in the N-Vinylpyrrolidone and Vinyl Propyl Ether Copolymer Aqueous Solutions. Polymers 2023, 15, 3578. [Google Scholar] [CrossRef]
- Shaikhutdinov, R.; Mun, G.; Kopishev, E.; Bakirov, A.; Kabdushev, S.; Baipakbaeva, S.; Suleimenov, I. Effect of the Formation of Hydrophilic and Hydrophobic–Hydrophilic Associates on the Behavior of Copolymers of N-Vinylpyrrolidone with Methyl Acrylate in Aqueous Solutions. Polymers 2024, 16, 584. [Google Scholar] [CrossRef]
- Suleimenov, I.E.; Mun, G.A.; Pak, I.T.; Kabdushev, S.B.; Kenessova, Z.A.; Kopishev, E.E. Redistribution of the concentrations in polyelectrolyte hydrogels contacts as the basis of new desalination technologies. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2017, 3, 198–205. [Google Scholar]
- Jumadilov, T.; Kondaurov, R.; Imangazy, A.; Myrzakhmetova, N.; Saparbekova, I. Phenomenon of Remote Interaction and Sorption Ability of Rare Cross-Linked Hydrogels of Polymethacrylic Acid and Poly-4-Vinylpyridine in Relation to Erbium Ions. ChChT 2019, 13, 451–458. [Google Scholar] [CrossRef]
- Jumadilov, T.K.; Kondaurov, R.G. Self-Organization and Sorption Properties in Relation to Lanthanum Ions of Polyacrylic Acid and Poly-2-Methyl-5-Vinylpyridine Hydrogels in Intergel System. In Science and Technology of Polymers and Advanced Materials; Mukbaniani, O.V., Tatrishvili, T.N., Abadie, M.J.M., Eds.; Apple Academic Press: New York, NY, USA, 2019; pp. 243–261. [Google Scholar] [CrossRef]
- Jumadilov, T.; Yskak, L.; Imangazy, A.; Suberlyak, O. Ion Exchange Dynamics in Cerium Nitrate Solution Regulated by Remotely Activated Industrial Ion Exchangers. Materials 2021, 14, 3491. [Google Scholar] [CrossRef] [PubMed]
- Jumadilov, T.K.; Imangazy, A.M.; Khimersen, K.; Haponiuk, J.T. Remote Interaction Effect of Industrial Ion Exchangers on the Electrochemical and Sorption Equilibrium in Scandium Sulfate Solution. Polym. Bull. 2024, 81, 2023–2041. [Google Scholar] [CrossRef]
- Kozhunova, E.Y.; Makhaeva, E.E.; Khokhlov, A.R. Effect of Ionogenic Groups on the Collapse of Thermosensitive Gels. Polym. Sci. Ser. A 2011, 53, 1135–1140. [Google Scholar] [CrossRef]
- Kozhunova, E.Y.; Makhaeva, E.E.; Grinberg, N.V.; Burova, T.V.; Grinberg, V.Y.; Khokhlov, A.R. Collapse of Hydrogels Based on Copolymers of N-Isopropylacrylamide and Sodium Vinylsulfonate. Moscow Univ. Phys. 2012, 67, 372–376. [Google Scholar] [CrossRef]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Fundamentals of Artificial Neural Networks and Deep Learning. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer: Cham, Switzerland, 2022; pp. 379–425. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xue, W.; Yun, Z.; Liu, Q.; Sun, X. Biomedical Applications of Stimuli-Responsive “Smart” Interpenetrating Polymer Network Hydrogels. Mater. Today Bio 2024, 25, 100998. [Google Scholar] [CrossRef] [PubMed]
- Bunuasunthon, S.; Nakamoto, M.; Hoven, V.P.; Matsusaki, M. Construction of Tough Hydrogel Cross-Linked via Ionic Interaction by Protection Effect of Hydrophobic Domains. ACS Biomater. Sci. Eng. 2024, 10, 4245–4258. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, H.J.; Xi, S.; Zhang, Y.; Rao, P.; You, X.; Qu, S. Lignin-Based Ultrathin Hydrogel Coatings with Strong Substrate Adhesion Enabled by Hydrophobic Association. Adv. Funct. Mater. 2024, 2413464. [Google Scholar] [CrossRef]
- Shu, X.Z.; Liu, Y.; Luo, Y.; Roberts, M.C.; Prestwich, G.D. Disulfide Cross-Linked Hyaluronan Hydrogels. Biomacromolecules 2002, 3, 1304–1311. [Google Scholar] [CrossRef]
- Gong, Z.; Zhang, G.; Zeng, X.; Li, J.; Li, G.; Huang, W.; Sun, R.; Wong, C. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network. ACS Appl. Mater. Interfaces 2016, 8, 24030–24037. [Google Scholar] [CrossRef] [PubMed]
- Dash, R.; Foston, M.; Ragauskas, A.J. Improving the Mechanical and Thermal Properties of Gelatin Hydrogels Cross-Linked by Cellulose Nanowhiskers. Carbohydr. Polym. 2013, 91, 638–645. [Google Scholar] [CrossRef]
- Al, E.B.; Ali, N.; Endut, R.; Aljunid, S.A.; Ali, N.R.; Yusof, N.R. Linear and Nonlinear Optical Properties of Symmetric and Asymmetric Double Triangular Quantum Dots Withinside the Presence of Magnetic Field. Adv. Theory Simul. 2024, 2400554. [Google Scholar] [CrossRef]
- Suleimenov, I.; Kabdushev, S.; Yermukhambetova, B.; Irmukhametova, G.; Bakirov, A.; Mun, G. Prerequisites for Creating Programmable Structures Based on Stimuli-Sensitive Hydrophilic Polymers, 28 October 2024, Preprint (Version 1). Research Square. Available online: https://www.researchsquare.com/article/rs-5280041/v1 (accessed on 1 November 2024).
- Bakirov, A.S.; Suleimenov, I.E. On the Possibility of Implementing Artificial Intelligence Systems Based on Error-Correcting Code Algorithms. J. Theor. Appl. Inf. Technol. 2021, 99, 83–99. Available online: https://www.researchgate.net/publication/349819448_ON_THE_POSSIBILITY_OF_IMPLEMENTING_ARTIFICIAL_INTELLIGENCE_SYSTEMS_BASED_ON_ERROR-_CORRECTING_CODE_ALGORITHMS (accessed on 1 November 2024).
- Parthasarathy, S.; Moharana, S.; Behera, S. Carbon Nanotube-Polymer Nanocomposites for Wearable Electronics. In Carbon Nanotube-Polymer Nanocomposites; Moharana, S., Rout, L., Sagadevan, S., Eds.; Engineering Materials; Springer Nature: Singapore, 2024; pp. 461–487. [Google Scholar] [CrossRef]
- Yue, Y. Nanocomposite Hydrogels for Strain Sensing Based on Optical and Electrical Signals: A Review. Chem. Commun. 2023, 59, 8894–8910. [Google Scholar] [CrossRef] [PubMed]
- Nikfarjam, S.; Gibbons, R.; Burni, F.; Raghavan, S.R.; Anisimov, M.A.; Woehl, T.J. Chemically Fueled Dissipative Cross-Linking of Protein Hydrogels Mediated by Protein Unfolding. Biomacromolecules 2023, 24, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Skarsetz, O.; Mathes, R.; Schmidt, R.S.; Simon, M.; Slesarenko, V.; Walther, A. Hard- and Soft-Coded Strain Stiffening in Metamaterials via Out-of-Plane Buckling Using Highly Entangled Active Hydrogel Elements. ACS Appl. Mater. Interfaces 2024, 16, 38511–38519. [Google Scholar] [CrossRef] [PubMed]
- Hess, A.J.; Funk, A.J.; Liu, Q.; De La Cruz, J.A.; Sheetah, G.H.; Fleury, B.; Smalyukh, I.I. Plasmonic Metamaterial Gels with Spatially Patterned Orientational Order via 3D Printing. ACS Omega 2019, 4, 20558–20563. [Google Scholar] [CrossRef]
- Skarsetz, O.; Slesarenko, V.; Walther, A. Programmable Auxeticity in Hydrogel Metamaterials via Shape-Morphing Unit Cells. Adv. Sci. 2022, 9, 2201867. [Google Scholar] [CrossRef]
- Pishvar, M.; Harne, R.L. Foundations for Soft, Smart Matter by Active Mechanical Metamaterials. Adv. Sci. 2020, 7, 2001384. [Google Scholar] [CrossRef]
- Almesmari, A.; Baghous, N.; Ejeh, C.J.; Barsoum, I.; Abu Al-Rub, R.K. Review of Additively Manufactured Polymeric Metamaterials: Design, Fabrication, Testing and Modeling. Polymers 2023, 15, 3858. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Ferraro, A.; Zografopoulos, D.C.; Caputo, R. Soft-Matter-Based Hybrid and Active Metamaterials. Adv. Opt. Mater. 2022, 10, 2200750. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, X.; Zhang, J. Active Metamaterials and Metadevices: A Review. J. Phys. D Appl. Phys. 2020, 53, 503002. [Google Scholar] [CrossRef]
- Kadic, M.; Milton, G.W.; Van Hecke, M.; Wegener, M. 3D Metamaterials. Nat. Rev. Phys. 2019, 1, 198–210. [Google Scholar] [CrossRef]
- Lu, C.; Rong, C.; Huang, X.; Hu, Z.; Tao, X.; Wang, S.; Chen, J.; Liu, M. Investigation of Negative and Near-Zero Permeability Metamaterials for Increased Efficiency and Reduced Electromagnetic Field Leakage in a Wireless Power Transfer System. IEEE Trans. Electromagn. Compat. 2019, 61, 1438–1446. [Google Scholar] [CrossRef]
- Yao, L.; Liang, Y.; Huang, X.; Hu, S.; Cheng, K.; Liu, J. Dual-Tunable Metamaterial Absorber Based on Solid Ion Gel-Graphene Sandwich Structure. In AOPC 2020: Display Technology; Photonic MEMS, THz MEMS, and Metamaterials; and AI in Optics and Photonics; Wang, Q., Luo, H., Xie, H., Lee, C., Cao, L., Yang, B., Cheng, J., Xu, Z., Wang, Y., Wang, Y., et al., Eds.; SPIE: Beijing, China, 2020; p. 29. [Google Scholar] [CrossRef]
- Wei, Y.-L.; Yang, Q.-S.; Ma, L.-H.; Tao, R.; Shang, J.-J. Design and Analysis of 2D/3D Negative Hydration Expansion Metamaterial Driven by Hydrogel. Mater. Des. 2020, 196, 109084. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Li, Q.M. Hydrogel-Driven Origami Metamaterials for Tunable Swelling Behavior. Mater. Des. 2021, 207, 109819. [Google Scholar] [CrossRef]
- Veerabagu, U.; Palza, H.; Quero, F. Review: Auxetic Polymer-Based Mechanical Metamaterials for Biomedical Applications. ACS Biomater. Sci. Eng. 2022, 8, 2798–2824. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Sun, W.; Liu, Y.; Du, A.; Zhang, Z.; Wu, G.; Fan, R. Carbon Aerogels towards New Candidates for Double Negative Metamaterials of Low Density. Carbon 2018, 129, 598–606. [Google Scholar] [CrossRef]
- Patel, H.; Chen, J.; Hu, Y.; Erturk, A. Photo-Responsive Hydrogel-Based Re-Programmable Metamaterials. Sci. Rep. 2022, 12, 13033. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.L.; Wang, Z.; Neogi, A. Radio-Frequency Actuated Polymer-Based Phononic Meta-Materials for Control of Ultrasonic Waves. NPG Asia Mater. 2017, 9, e350. [Google Scholar] [CrossRef]
- Kolanowska, A.; Janas, D.; Herman, A.P.; Jędrysiak, R.G.; Giżewski, T.; Boncel, S. From Blackness to Invisibility–Carbon Nanotubes Role in the Attenuation of and Shielding from Radio Waves for Stealth Technology. Carbon 2018, 126, 31–52. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Zhang, Y.; Park, S.; Gu, J. Carbon-Based Radar Absorbing Materials toward Stealth Technologies. Adv. Sci. 2023, 10, 2303104. [Google Scholar] [CrossRef]
- Shi, C.; Dong, J.; Zhou, J.; Wang, F. Overview of aircraft radio frequency stealth technology. Syst. Eng. Electron. 2021, 43, 1452–1467. [Google Scholar] [CrossRef]
- Ahmad, H.; Tariq, A.; Shehzad, A.; Faheem, M.S.; Shafiq, M.; Rashid, I.A.; Afzal, A.; Munir, A.; Riaz, M.T.; Haider, H.T.; et al. Stealth Technology: Methods and Composite Materials—A Review. Polym. Compos. 2019, 40, 4457–4472. [Google Scholar] [CrossRef]
- Dorigo, M.; Theraulaz, G.; Trianni, V. Swarm Robotics: Past, Present, and Future [Point of View]. Proc. IEEE 2021, 109, 1152–1165. [Google Scholar] [CrossRef]
- Chung, S.-J.; Paranjape, A.A.; Dames, P.; Shen, S.; Kumar, V. A Survey on Aerial Swarm Robotics. IEEE Trans. Robot. 2018, 34, 837–855. [Google Scholar] [CrossRef]
- Liu, W.; Gao, Z. A Distributed Flocking Control Strategy for UAV Groups. Comput. Commun. 2020, 153, 95–101. [Google Scholar] [CrossRef]
- Zheng, Y.; Huepe, C.; Han, Z. Experimental Capabilities and Limitations of a Position-Based Control Algorithm for Swarm Robotics. Adapt. Behav. 2022, 30, 19–35. [Google Scholar] [CrossRef]
- Quesada, W.O.; Rodriguez, J.I.; Murillo, J.C.; Cardona, G.A.; Yanguas-Rojas, D.; Jaimes, L.G.; Calderón, J.M. Leader-Follower Formation for UAV Robot Swarm Based on Fuzzy Logic Theory. In Artificial Intelligence and Soft Computing; Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 10842, pp. 740–751. [Google Scholar] [CrossRef]
- Hafez, A.T.; Kamel, M.A. Fault-Tolerant Control for Cooperative Unmanned Aerial Vehicles Formation via Fuzzy Logic. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 1261–1266. [Google Scholar] [CrossRef]
- Aissaoui, R.; Deneuville, J.-C.; Guerber, C.; Pirovano, A. A Survey on Cryptographic Methods to Secure Communications for UAV Traffic Management. Veh. Commun. 2023, 44, 100661. [Google Scholar] [CrossRef]
- Rotta, R.; Mykytyn, P. Secure Multi-Hop Telemetry Broadcasts for UAV Swarm Communication. 2023. [Google Scholar] [CrossRef]
- Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2019, 21, 1773–1828. [Google Scholar] [CrossRef]
- Wang, D.; Bai, B.; Zhao, W.; Han, Z. A Survey of Optimization Approaches for Wireless Physical Layer Security. IEEE Commun. Surv. Tutor. 2019, 21, 1878–1911. [Google Scholar] [CrossRef]
- Zoli, M.; Mitev, M.; Barreto, A.N.; Fettweis, G. Estimation of the Secret Key Rate in Wideband Wireless Physical-Layer-Security. In Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 6–9 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ermukhambetova, B.B.; Mun, G.A.; Kabdushev, S.B.; Kadyrzhan, A.B.; Kadyrzhan, K.K.; Vitulyova, Y.S.; Suleimenov, I.E. New Approaches to the Development of Information Security Systems for Unmanned Vehicles. Indones. J. Electr. Eng. Comput. Sci. 2023, 31, 810. [Google Scholar] [CrossRef]
- Vitulyova, Y.; Kadyrzhan, K.; Kadyrzhan, A.; Suleimenov, I. Application of focusing systems to the protection of information during data transmission in the zone of direct radio visibility. Int. J. Electron. Telecommun. 2024, 70, 699–705. [Google Scholar] [CrossRef]
- Muhamad, A.; Panjaitan, S.D.; Yacoub, R.R. Design and development of flight controller for quadcopter drone control. Telectrical 2024, 1, 279. [Google Scholar] [CrossRef]
- Cheng, J.; Mahmud, S.; Mohammed, M.; Singh, A.; Kim, J.-H. Design of a Novice-Friendly Drone Control System. In Proceedings of the 2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–10 January 2024; pp. 0184–0190. [Google Scholar] [CrossRef]
- Litchinitser, N.M. Nonlinear Optics in Metamaterials. Adv. Phys. X 2018, 3, 1367628. [Google Scholar] [CrossRef]
- Ali, A.; Mitra, A.; Aïssa, B. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials 2022, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Mi, C.C.; He, F.; Jiang, M.; Hua, D. Investigation of negative permeability metamaterials for wireless power transfer. AIP Adv. 2017, 7, 115316. [Google Scholar] [CrossRef]
- Hossain, M.J.; Faruque, M.R.I.; Islam, M.T. Design and Analysis of a New Composite Double Negative Metamaterial for Multi-Band Communication. Curr. Appl. Phys. 2017, 17, 931–939. [Google Scholar] [CrossRef]
- Xu, L.; Zuo, Y. Design Study on the Digital Correlator Using for Radio Holography. In Recent Developments in Intelligent Systems and Interactive Applications; Xhafa, F., Patnaik, S., Yu, Z., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2017; Volume 541, pp. 377–382. [Google Scholar] [CrossRef]
- Igarashi, K.; Pavelyev, A.; Hocke, K.; Pavelyev, D.; Kucherjavenkov, I.A.; Matyugov, S.; Zakharov, A.; Yakovlev, O. Radio Holographic Principle for Observing Natural Processes in the Atmosphere and Retrieving Meteorological Parameters from Radio Occultation Data. Earth Planet. Sp. 2014, 52, 893–899. [Google Scholar] [CrossRef]
- Cherepenin, V.A.; Zhuravlev, A.V.; Chizh, M.A.; Kokoshkin, A.V.; Korotkov, V.A.; Korotkov, K.V.; Novichikhin, E.P. Reconstruction of Subsurface Radio Holograms Fully and Partially Measured by Different Methods. J. Commun. Technol. Electron. 2017, 62, 780–787. [Google Scholar] [CrossRef]
- Poittevin, J.; Gautier, F.; Pézerat, C.; Picart, P. High-Speed Holographic Metrology: Principle, Limitations, and Application to Vibroacoustics of Structures. Opt. Eng. 2016, 55, 121717. [Google Scholar] [CrossRef]
- Ahmed, M.; Wang, K.Y.; Metherell, A.F. Holography and Its Application to Acoustic Imaging. Proc. IEEE 1979, 67, 466–483. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Cheng, Y.; Liu, X. Acoustic Holography Using Composite Metasurfaces. Appl. Phys. Lett. 2020, 116, 030501. [Google Scholar] [CrossRef]
- Vitulyova, Y.S.; Suleimenov, I.E.; Matrassulova, D.K.; Bakirov, A.S. Discrete Form of the Huygens-Fresnel Principle: To the Multi-Dimensional Analog of the Nyquist–Shannon Sampling Theorem. Int. J. Inf. Technol. 2023, 15, 3751–3759. [Google Scholar] [CrossRef]
- Vitulyova, Y.; Kadyrzhan, K.; Kadyrzhan, A.; Shaltykova, D.; Suleimenov, I. Reducing the Description of Arbitrary Wave Field Converters to Tensor Form. Int. J. Inf. Technol. 2024. [Google Scholar] [CrossRef]
- Suleimenov, I.E.; Tolmachev, Y.A. Generalized Fourier optics: II. application of the stationary phase method to the description of wavefront propagation and reflection. Opt. Spectrosc. 1994, 77, 422–428. [Google Scholar]
- Suleimenov, I.E.; Tolmachev, Y.A. Generalized fourier optics: III. Description of the wave front reflection from nonplanar mirrors in terms of local curvature. Opt. Spectrosc. 1995, 78, 98–100. [Google Scholar]
- Ivashov, S.I.; Capineri, L.; Bechtel, T.D.; Razevig, V.V.; Inagaki, M.; Gueorguiev, N.L.; Kizilay, A. Design and Applications of Multi-Frequency Holographic Subsurface Radar: Review and Case Histories. Remote Sens. 2021, 13, 3487. [Google Scholar] [CrossRef]
- Rymarczyk, T. Object Detection Using Radio Imaging Tomography and Tomographic Sensors. Electrotech. Rev. 2020, 1, 184–187. [Google Scholar] [CrossRef]
- Machado Brito-da-Costa, A.; Martins, D.; Rodrigues, D.; Fernandes, L.; Moura, R.; Madureira-Carvalho, Á. Ground Penetrating Radar for Buried Explosive Devices Detection: A Case Studies Review. Aust. J. Forensic Sci. 2022, 54, 559–578. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleimenov, I.; Gabrielyan, O.; Kopishev, E.; Kadyrzhan, A.; Bakirov, A.; Vitulyova, Y. Advanced Applications of Polymer Hydrogels in Electronics and Signal Processing. Gels 2024, 10, 715. https://doi.org/10.3390/gels10110715
Suleimenov I, Gabrielyan O, Kopishev E, Kadyrzhan A, Bakirov A, Vitulyova Y. Advanced Applications of Polymer Hydrogels in Electronics and Signal Processing. Gels. 2024; 10(11):715. https://doi.org/10.3390/gels10110715
Chicago/Turabian StyleSuleimenov, Ibragim, Oleg Gabrielyan, Eldar Kopishev, Aruzhan Kadyrzhan, Akhat Bakirov, and Yelizaveta Vitulyova. 2024. "Advanced Applications of Polymer Hydrogels in Electronics and Signal Processing" Gels 10, no. 11: 715. https://doi.org/10.3390/gels10110715
APA StyleSuleimenov, I., Gabrielyan, O., Kopishev, E., Kadyrzhan, A., Bakirov, A., & Vitulyova, Y. (2024). Advanced Applications of Polymer Hydrogels in Electronics and Signal Processing. Gels, 10(11), 715. https://doi.org/10.3390/gels10110715