Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Principles
2.2. Morphological Characterization of the Hydrogels
2.3. Gel Fraction and Swelling Degree
2.4. FT-IR Analysis
2.5. Mechanical Properties of the Hydrogels
2.6. Hg2+Decontamination Survey
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Synthesis of Rhodamine-TETA Derivative (RTTA)
4.2.2. Synthesis of RTTA-Based Hydrogels Incorporating Distinct Chelating Agents
4.2.3. Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, M.-M.; Liu, A.-F.; Xu, Y.; Xu, D.-M. Synthesis and properties of three novel rhodamine-based fluorescent sensors for Hg2+. Chin. Chem. Lett. 2016, 27, 989–992. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, X.; Zhao, Y.; Chen, M.; Liu, J.; Wang, P.; Guo, W. A naphthalimide–rhodamine ratiometric fluorescent probe for Hg2+ based on fluorescence resonance energy transfer. Dye. Pigment. 2012, 92, 909–915. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F.; Wei, J. Enhanced adsorption properties of interpenetrating polymer network hydrogels for heavy metal ion removal. Polym. Bull. 2011, 67, 1709–1720. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.-C. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, A. Superadsorbent with three-dimensional networks: From bulk hydrogel to granular hydrogel. Eur. Polym. J. 2015, 72, 661–686. [Google Scholar] [CrossRef]
- Sekizkardes, B.; Su, E.; Okay, O. Mechanically Strong Superabsorbent Terpolymer Hydrogels Based on AMPS via Hydrogen-Bonding Interactions. ACS Appl. Polym. Mater. 2023, 5, 2043–2050. [Google Scholar] [CrossRef]
- Su, E.; Yurtsever, M.; Okay, O. A Self-Healing and Highly Stretchable Polyelectrolyte Hydrogel via Cooperative Hydrogen Bonding as a Superabsorbent Polymer. Macromolecules 2019, 52, 3257–3267. [Google Scholar] [CrossRef]
- Porkaew, J.; Somsunan, R.; Nalampang, K.; Molloy, R. Synthesis and Characterization of Sodium AMPS-Based Interpenetrating Network Hydrogels for Use as Temporary Wound Dressing. Adv. Mater. Res. 2014, 894, 300–304. [Google Scholar] [CrossRef]
- Podaru, A.-I.; Moldovan, A.E.; Ionita, M.; Rusen, E.; Diacon, A.; Toader, G.; Ginghina, E.R.; Gavrila, A.-M. N-Vinylpyrrolidone-based polymeric networks incorporating functionalized carbon nanofibers. UPB Sci. Bull. Ser. B 2023, 85, 31–42. [Google Scholar]
- Jiang, D.; Zheng, M.; Ma, X.; Zhang, Y.; Jiang, S.; Li, J.; Zhang, C.; Liu, K.; Li, L. Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe3+. Molecules 2023, 28, 6572. [Google Scholar] [CrossRef]
- Lv, Z.; Xu, J.; Li, C.; Dai, L.; Li, H.; Zhong, Y.; Si, C. pH-Responsive Lignin Hydrogel for Lignin Fractionation. ACS Sustain. Chem. Eng. 2021, 9, 13972–13978. [Google Scholar] [CrossRef]
- Roy, A.; Manna, K.; Pal, S. Recent advances in various stimuli-responsive hydrogels: From synthetic designs to emerging healthcare applications. Mater. Chem. Front. 2022, 6, 2338–2385. [Google Scholar] [CrossRef]
- Lin, S.-B.; Yuan, C.-H.; Ke, A.-R.; Quan, Z.-L. Electrical response characterization of PVA–P(AA/AMPS) IPN hydrogels in aqueous Na2SO4 solution. Sens. Actuators B Chem. 2008, 134, 281–286. [Google Scholar] [CrossRef]
- Ali, I.; Ali Shah, L.; Rehman, T.U.; Faizan, S. Investigation of the viscoelastic behavior of PVA-P(AAm/AMPS) IPN hydrogel with enhanced mechanical strength and excellent recoverability. J. Polym. Res. 2021, 29, 7. [Google Scholar] [CrossRef]
- Dragan, E.S. Advances in interpenetrating polymer network hydrogels and their applications. Pure Appl. Chem. 2014, 86, 1707–1721. [Google Scholar] [CrossRef]
- Qu, Z.; Meng, X.; Duan, H.; Qin, D.; Wang, L. Rhodamine-immobilized optical hydrogels with shape deformation and Hg2+-sensitive fluorescence behaviors. Sci. Rep. 2020, 10, 7723. [Google Scholar] [CrossRef]
- Kim, M.Y.; Seo, H.; Lee, T.G. Removal of Hg(II) ions from aqueous solution by poly(allylamine-co-methacrylamide-co-dimethylthiourea). J. Ind. Eng. Chem. 2020, 84, 82–86. [Google Scholar] [CrossRef]
- Rani, L.; Srivastav, A.L.; Kaushal, J.; Nguyen, X.C. Recent advances in nanomaterial developments for efficient removal of Hg(II) from water. Environ. Sci. Pollut. Res. 2022, 29, 62851–62869. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.; Xi, C.; Jiang, B.; Zhang, F. Adsorption and Removal of Mercury(II) by a Crosslinked Hyperbranched Polymer Modified via Sulfhydryl. ACS Omega 2022, 7, 12231–12241. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, M.Y.; Song, M.G.; Baeck, S.-H.; Shim, S.E.; Qian, Y. Highly selective removal of Hg(II) ions from aqueous solution using thiol-modified porous polyaminal-networked polymer. Sep. Purif. Technol. 2020, 250, 117120. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Roy, P.; Bonilla-Petriciolet, A.; Badawi, M.; Ganachari, S.V.; Shetti, N.P.; Aminabhavi, T.M. Polymeric hydrogels-based materials for wastewater treatment. Chemosphere 2023, 331, 138743. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Gao, R.; Kan, C.; Xu, J. Portable quantitative detection of Fe3+ by integrating a smartphone with colorimetric responses of a rhodamine-functionalized polyacrylamide hydrogel chemosensor. Sens. Actuators B Chem. 2021, 340, 129958. [Google Scholar] [CrossRef]
- Ali, I.; Shah, L.A. Rheological investigation of the viscoelastic thixotropic behavior of synthesized polyethylene glycol-modified polyacrylamide hydrogels using different accelerators. Polym. Bull. 2021, 78, 1275–1291. [Google Scholar] [CrossRef]
- Choudhury, N.; Ruidas, B.; Mukhopadhyay, C.D.; De, P. Rhodamine-Appended Polymeric Probe: An Efficient Colorimetric and Fluorometric Sensing Platform for Hg2+ in Aqueous Medium and Living Cells. ACS Appl. Polym. Mater. 2020, 2, 5077–5085. [Google Scholar] [CrossRef]
- Nshnsh, K.M.; Cavoura, O.; Davidson, C.M.; Gibson, L.T. Low-cost colorimetric mercury sensor based on immobilisation of rhodamine B thiolactone in a sustainable agar-agar gel substrate. Microchem. J. 2023, 195, 109481. [Google Scholar] [CrossRef]
- Chen, Y.; Mu, S. Silica nanospheres functionalized by a rhodamine-based Hg(II)-sensing probe having two sensing channels: Preparation, characterization and sensing performance. J. Lumin. 2014, 145, 760–766. [Google Scholar] [CrossRef]
- Huang, W.; Wu, D.; Wu, G.; Wang, Z. Dual functional rhodamine-immobilized silica toward sensing and extracting mercury ions in natural water samples. Dalton Trans. 2012, 41, 2620–2625. [Google Scholar] [CrossRef] [PubMed]
- Chockala, B.; Krishnan, S.; Aruliah, R.; Kadarkarai, M.; Benelli, G.; Kannaiyan, D. Organic-inorganic hybrid fluorescent sensor thin films of rhodamine B embedded Ag-SBA15 for selective recognition of Hg (II) ions in water. Chin. Chem. Lett. 2017, 28, 1399–1405. [Google Scholar] [CrossRef]
- Wei, S.; Li, Z.; Lu, W.; Liu, H.; Zhang, J.; Chen, T.; Tang, B.Z. Multicolor Fluorescent Polymeric Hydrogels. Angew. Chem. Int. Ed. 2021, 60, 8608–8624. [Google Scholar] [CrossRef]
- He, J.; Yun, L.; Cheng, X. Organic-soluble chitosan-g-PHMA (PEMA/PBMA)-bodipy fluorescent probes and film by RAFT method for selective detection of Hg2+/Hg+ ions. Int. J. Biol. Macromol. 2023, 237, 124255. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y. Recent advances in fluorescent materials for mercury(ii) ion detection. RSC Adv. 2023, 13, 19429–19446. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Yang, L.; Zhang, Z.; Zhang, Z.; Xu, D. A novel rhodamine-based colorimetric and fluorescent sensor for the dual-channel detection of Cu2+ and Fe3+ in aqueous solutions. Dye. Pigment. 2013, 99, 472–479. [Google Scholar] [CrossRef]
- Hong, M.; Lu, S.; Lv, F.; Xu, D. A novel facilely prepared rhodamine-based Hg2+ fluorescent probe with three thiourea receptors. Dye. Pigment. 2016, 127, 94–99. [Google Scholar] [CrossRef]
- Ozmen, M.M.; Okay, O. Superfast responsive ionic hydrogels with controllable pore size. Polymer 2005, 46, 8119–8127. [Google Scholar] [CrossRef]
- Kim, B.; Hong, D.; Chang, W.V. EDTA and pH-sensitive crosslinking polymerization of acrylic acid, 2-acrylamidoglycolic acid, and 2-acrylamide-2-methyl-1-propanesulfonic acid. J. Appl. Polym. Sci. 2014, 131, 41026. [Google Scholar] [CrossRef]
- Milakin, K.A.; Morávková, Z.; Acharya, U.; Kašparová, M.; Breitenbach, S.; Taboubi, O.; Hodan, J.; Hromádková, J.; Unterweger, C.; Humpolíček, P.; et al. Enhancement of conductivity, mechanical and biological properties of polyaniline-poly(N-vinylpyrrolidone) cryogels by phytic acid. Polymer 2021, 217, 123450. [Google Scholar] [CrossRef]
- Elhady, M.A.; Awadallah, A.M. A Comparative Study of Poly(vinyl alcohol)/Poly(N-vinyl-2-pyrrolidinone) Hydrogels Induced by Ultrasound and Gamma Rays for Ionoprinting Technique. Egypt. J. Radiat. Sci. Appl. 2018, 31, 19–29. [Google Scholar] [CrossRef]
- Sheth, G.N. Studies in interaction between poly(vinyl pyrrolidone) and azo dyes. J. Appl. Polym. Sci. 1985, 30, 4659–4668. [Google Scholar] [CrossRef]
- Barleany, D.R.; Ananta, C.V.; Maulina, F.; Erizal, H.A.; Rochmat, A. Controlled Release of Metformin Hydrogen Chloride from Stimuli-Responsive Hydrogel Based on Poly(N-Isopropylacrylamide)/Chitosan/Polyvinyl Alcohol Composite. Int. J. Technol. 2020, 11, 291–319. [Google Scholar] [CrossRef]
- Alcântara, M.T.S.; Brant, A.J.C.; Giannini, D.R.; Pessoa, J.O.C.P.; Andrade, A.B.; Riella, H.G.; Lugão, A.B. Influence of dissolution processing of PVA blends on the characteristics of their hydrogels synthesized by radiation—Part I: Gel fraction, swelling, and mechanical properties. Radiat. Phys. Chem. 2012, 81, 1465–1470. [Google Scholar] [CrossRef]
- Nurkeeva, Z.S.; Mun, G.A.; Khutoryanskiy, V.V.; Bitekenova, A.B.; Dubolazov, A.V.; Esirkegenova, S.Z. pH effects in the formation of interpolymer complexes between poly(N-vinylpyrrolidone) and poly(acrylic acid) in aqueous solutions. Eur. Phys. J. E 2003, 10, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Pakuro, N.; Yakimansky, A.; Chibirova, F.; Arest-Yakubovich, A. Thermo- and pH-sensitivity of aqueous poly(N-vinylpyrrolidone) solutions in the presence of organic acids. Polymer 2009, 50, 148–153. [Google Scholar] [CrossRef]
- Rivero, R.E.; Alustiza, F.; Rodríguez, N.; Bosch, P.; Miras, M.C.; Rivarola, C.R.; Barbero, C.A. Effect of functional groups on physicochemical and mechanical behavior of biocompatible macroporous hydrogels. React. Funct. Polym. 2015, 97, 77–85. [Google Scholar] [CrossRef]
- Ghilan, A.; Nita, L.E.; Pamfil, D.; Simionescu, N.; Tudorachi, N.; Rusu, D.; Rusu, A.G.; Bercea, M.; Rosca, I.; Ciolacu, D.E.; et al. One-Step Preparation of Carboxymethyl Cellulose—Phytic Acid Hydrogels with Potential for Biomedical Applications. Gels 2022, 8, 647. [Google Scholar] [CrossRef] [PubMed]
- Manish, V.; Arockiarajan, A.; Tamadapu, G. Influence of water content on the mechanical behavior of gelatin based hydrogels: Synthesis, characterization, and modeling. Int. J. Solids Struct. 2021, 233, 111219. [Google Scholar] [CrossRef]
- Dave, P.N.; Macwan, P.M.; Kamaliya, B. Synthesis and rheological investigations of gum-ghatti-cl-poly(NIPA-co-AA)-graphene oxide based hydrogels. Mater. Adv. 2023, 4, 2971–2980. [Google Scholar] [CrossRef]
- Böhning, M.; Frasca, D.; Schulze, D.; Schartel, B. Chapter Six—Multilayer Graphene/Elastomer Nanocomposites. In Carbon-Based Nanofillers and Their Rubber Nanocomposites; Yaragalla, S., Mishra, R.K., Thomas, S., Kalarikkal, N., Maria, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 139–200. [Google Scholar]
- Zuidema, J.M.; Rivet, C.J.; Gilbert, R.J.; Morrison, F.A. A protocol for rheological characterization of hydrogels for tissue engineering strategies. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1063–1073. [Google Scholar] [CrossRef]
- Akhtar, R.; Draper, E.R.; Adams, D.J.; Hay, J. Oscillatory nanoindentation of highly compliant hydrogels: A critical comparative analysis with rheometry. J. Mater. Res. 2018, 33, 873–883. [Google Scholar] [CrossRef]
- Vildanova, R.R.; Sigaeva, N.N.; Kukovinets, O.S.; Kolesov, S.V. Preparation and rheological properties of hydrogels based on N-succinyl chitosan and hyaluronic acid dialdehyde. Polym. Test. 2021, 96, 107120. [Google Scholar] [CrossRef]
- Udhayakumari, D. Review on fluorescent sensors-based environmentally related toxic mercury ion detection. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 451–476. [Google Scholar] [CrossRef]
- Radiul, S.M.; Chowdhury, J.; Hazarika, S. Fluorescent H-aggregates of pure rhodamine B (RhB) in glycerol, ethylene glycol, methanol and butanol under ambient condition. J. Mol. Struct. 2023, 1275, 12. [Google Scholar] [CrossRef]
- Thomas, S.A.; Gaillard, J.-F. The Molecular Structure of Aqueous Hg(II)-EDTA As Determined by X-ray Absorption Spectroscopy. J. Phys. Chem. A 2015, 119, 2878–2884. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, S.; De Stefano, C.; Gianguzza, A.; Pettignano, A. Sequestration of (CH3)Hg+ by amino-polycarboxylic chelating agents. J. Mol. Liq. 2012, 172, 46–52. [Google Scholar] [CrossRef]
- Bretti, C.; Cigala, R.M.; De Stefano, C.; Lando, G.; Sammartano, S. Interaction of Phytate with Ag+, CH3Hg+, Mn2+, Fe2+, Co2+, and VO2+: Stability Constants and Sequestering Ability. J. Chem. Eng. Data 2012, 57, 2838–2847. [Google Scholar] [CrossRef]
- Genc, H.N.; Guctekin Yasar, O.; Karuk Elmas, S.N.; Arslan, F.N.; Yilmaz, I.; Sirit, A. Naked-eye colorimetric and switch-on fluorescence chemosensor based on a rhodamine derivative for Hg2+: Smartphone device, test-kit and food sample applications. J. Photochem. Photobiol. A Chem. 2023, 438, 114558. [Google Scholar] [CrossRef]
- Liang, B.; Wang, B.; Ma, Q.; Xie, C.; Li, X.; Wang, S. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative. Spectrochim. Acta Mol. Biomol. Spectros. 2018, 192, 67–74. [Google Scholar] [CrossRef]
- Guo, B.; Pan, X.; Liu, Y.; Nie, L.; Zhao, H.; Liu, Y.; Jing, J.; Zhang, X. A reversible water-soluble naphthalimide-based chemosensor for imaging of cellular copper(II) ion and cysteine. Sens. Actuators B Chem. 2018, 256, 632–638. [Google Scholar] [CrossRef]
- Singh, S.; Coulomb, B.; Boudenne, J.-L.; Bonne, D.; Dumur, F.; Simon, B.; Robert-Peillard, F. Sub-ppb mercury detection in real environmental samples with an improved rhodamine-based detection system. Talanta 2021, 224, 121909. [Google Scholar] [CrossRef]
- Bhalla, V.; Tejpal, R.; Kumar, M. Rhodamine appended terphenyl: A reversible “off–on” fluorescent chemosensor for mercury ions. Sens. Actuators B Chem. 2010, 151, 180–185. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, H.; Zhu, Z.; Fan, C.; Tu, Y.; Liu, G.; Pu, S. Selective rhodamine–based probe for detecting Hg2+ and its application as test strips and cell staining. J. Photochem. Photobiol. A Chem. 2020, 390, 112302. [Google Scholar] [CrossRef]
- Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu, W. Tuning the Selectivity of Two Chemosensors to Fe(III) and Cr(III). Org. Lett. 2007, 9, 4567–4570. [Google Scholar] [CrossRef]
- Bag, B.; Pal, A. Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(ii) ion. Org. Biomol. Chem. 2011, 9, 4467–4480. [Google Scholar] [CrossRef]
- Macron, J.; Bresson, B.; Tran, Y.; Hourdet, D.; Creton, C. Equilibrium and Out-of-Equilibrium Adherence of Hydrogels against Polymer Brushes. Macromolecules 2018, 51, 7556–7566. [Google Scholar] [CrossRef]
- Ninciuleanu, C.M.; Ianchiş, R.; Alexandrescu, E.; Mihăescu, C.I.; Scomoroşcenco, C.; Nistor, C.L.; Preda, S.; Petcu, C.; Teodorescu, M. The effects of monomer, crosslinking agent, and filler concentrations on the viscoelastic and swelling properties of poly (methacrylic acid) hydrogels: A comparison. Materials 2021, 14, 2305. [Google Scholar] [CrossRef]
- Toader, G.; Ginghina, R.E.; Diacon, A.; Rusen, E.; Bratu, A.E.; Podaru, A.; Rotariu, T. Design and Application of Photocrosslinkable Hydrogel Films for Fast and Efficient Decontamination of Chemical Warfare Agents. ACS Appl. Polym. Mater. 2023, 5, 877–891. [Google Scholar] [CrossRef]
Molecule | Solvent System | Type | Target | LOD | Ref. |
---|---|---|---|---|---|
HEPES: MeOH 7:3 | Fluorimetric | Hg2+ | 0.11 μM | [56] | |
DMF | Fluorimetric | Hg2+ | 0.87 μM | [57] | |
CH3CN: HEPES 1:99 | Fluorimetric | Hg2+ | 0.14 μM | [58] | |
Acetic acid 50 mM pH 5.25 | Fluorimetric | Hg2+ | 0.001 nM (0.27μg L−1) | [59] | |
THF | Colorimetric | Hg2+ | 0.1 μM | [60] | |
EtOH: HEPES 1:1 | Colorimetric | Hg2 | 0.13 μM | ||
CH3CN: H2O 7:3 | Fluorimetric | Hg2+ | 0.38 μM | [61] | |
EtOH: H2O 1:1 pH 5 | Colorimetric | Hg2+ | 2.75 nM (0.55 ppm) | This work |
Sample Code | Chelating Agent (g) | RTTA (g) | PVA Solution, 5 wt.%, (g) | AMPSA (g) | NVP (g) | MBA (g) | Photoinitiator, (g) |
---|---|---|---|---|---|---|---|
Bk | - | 0.005 | 10 | 1.725 | 3.33 | 0.1 | 0.028 g |
Phytic acid | 0.30 | 0.005 | 10 | 1.725 | 3.33 | 0.1 | 0.028 g |
HEXA | 0.20 | 0.005 | 10 | 1.725 | 3.33 | 0.1 | 0.028 g |
TETRA | 0.13 | 0.005 | 10 | 1.725 | 3.33 | 0.1 | 0.028 g |
EDTA | 0.15 | 0.005 | 10 | 1.725 | 3.33 | 0.1 | 0.028 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diacon, A.; Albota, F.; Mocanu, A.; Brincoveanu, O.; Podaru, A.I.; Rotariu, T.; Ahmad, A.A.; Rusen, E.; Toader, G. Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater. Gels 2024, 10, 113. https://doi.org/10.3390/gels10020113
Diacon A, Albota F, Mocanu A, Brincoveanu O, Podaru AI, Rotariu T, Ahmad AA, Rusen E, Toader G. Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater. Gels. 2024; 10(2):113. https://doi.org/10.3390/gels10020113
Chicago/Turabian StyleDiacon, Aurel, Florin Albota, Alexandra Mocanu, Oana Brincoveanu, Alice Ionela Podaru, Traian Rotariu, Ahmad A. Ahmad, Edina Rusen, and Gabriela Toader. 2024. "Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater" Gels 10, no. 2: 113. https://doi.org/10.3390/gels10020113
APA StyleDiacon, A., Albota, F., Mocanu, A., Brincoveanu, O., Podaru, A. I., Rotariu, T., Ahmad, A. A., Rusen, E., & Toader, G. (2024). Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater. Gels, 10(2), 113. https://doi.org/10.3390/gels10020113