Applying Resistant Starch to Improve the Gel and Water Retention of Reduced-Fat Pork Batter
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition and Energy Analysis
2.2. Emulsion Stability
2.3. Cooking Yield
2.4. Color
2.5. Texture Properties
2.6. Dynamic Rheological
2.7. Low-Filed NMR
3. Conclusions
4. Materials and Methods
4.1. Raw Materials
4.2. Preparation of Pork Batters
4.3. Proximate Composition and Energy
4.4. Emulsion Stability
4.5. Cooking Yield
4.6. Color
4.7. Texture Profile Analysis
4.8. Dynamic Rheology
4.9. Low-Field NMR
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paglarini, C.; Vidal, V.; Martini, S.; Cunha, R.L.; Pollonio, M. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.L.S.; da Costa, G.F.; Alves, R.D.; de Araújo, C.D.L.; da Silva, G.F.G.; Ribeiro, N.L.; de Figueiredo, C.F.V.; de Andrade, R.O. Vegetable oils in emulsified meat products: A new strategy to replace animal fat. Food Sci. Technol. 2023, 42, e103621. [Google Scholar] [CrossRef]
- Virtanen, H.; Sari, V.; Koskinen, T.T.; Jaakko, M.; Petra, K.; Ylilauri, M.; Tomi-Pekka, T.; Jukka, T.S.; Jyrki, K.V. Dietary proteins and protein sources and risk of death: The kuopio ischaemic heart disease risk factor study. Am. J. Clin. Nutr. 2019, 109, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.J. From puzzle pieces to picture: Genetic data helps refine our understanding of the link between liver fat and heart disease risk. Atherosclerosis 2024, 388, 117410. [Google Scholar] [CrossRef] [PubMed]
- Skeaff, C.M.; Miller, J. Dietary fat and coronary heart disease: Summary of evidence from prospective cohort and randomised controlled trials. Ann. Nutr. Metab. 2009, 55, 173–201. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F. Healthier lipid formulation approaches in meat-based functional foods. technological options for replacement of meat fats by non-meat fats. Trends Food Sci. Technol. 2007, 18, 567–578. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, C.; Wang, P.; Zhang, Y. The effect of different meat types on the in vitro digestibility of starch and protein in meat noodles. J. Agric. Food Res. 2023, 14, 100755. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, R.; Li, X.; Wang, X.; Zeng, L.; Wen, X.; Huang, Q. Effect of oil-modified crosslinked starch as a new fat replacer on gel properties, water distribution, and microstructures of pork meat batter. Food Chem. 2023, 409, 13533. [Google Scholar] [CrossRef]
- Dobson, S.; Laredo, T.; Marangoni, G.A. Particle filled protein-starch composites as the basis for plant-based meat analogues. Curr. Res. Food Sci. 2022, 5, 892–903. [Google Scholar]
- Bojarczuk, A.; Khaneghah, A.M.; MarszaLek, K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- DeMartino, P.; Cockburn, D.W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotechnol. 2020, 61, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Dhital, S.; Warren, F.J.; Butterworth, P.J.; Ellis, P.R.; Gidley, M.J. Mechanisms of starch digestion by α-amylase-structural basis for kinetic properties. Crit. Rev. Food Sci. Nutr. 2015, 57, 875–892. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Boye, J.I. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1059–1083. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Zhou, Y.; Ma, F.; Li, P.; Chen, C. Effect of resistant corn starch on the thermal gelling properties of chicken breast myosin. Food Hydrocoll. 2019, 96, 681–687. [Google Scholar] [CrossRef]
- Sarteshnizi, R.A.; Hosseini, H.; Bondarianzadeh, D.; Colmenero, F.J.; Khaksar, R. Optimization of prebiotic sausage formulation: Effect of using β-glucan and resistant starch by D-optimal mixture design approach. LWT-Food Sci. Technol. 2015, 62, 704–710. [Google Scholar] [CrossRef]
- Jiang, H.; Feng, Y.; Jane, J.; Yang, Y. Progress in understanding resistant-starch formation in hydroxypropyl starch: A minireview. Food Hydrocoll. 2024, 149, 109628. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Xu, Q.; Kong, Q.; Li, F.; Lu, L.; Xu, Y.; Wei, Y. Synthesis and Functions of Resistant Starch. Adv. Nutr. 2023, 14, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Huang, Q.; Zhong, S.; Li, X.; Xiong, S.; Xie, J.; Yin, T.; Zhang, B.; Zhao, S. Gel properties of myofibrillar protein as affected by gelatinization and retrogradation behaviors of modified starches with different crosslinking and acetylation degrees. Food Hydrocoll. 2019, 96, 604–616. [Google Scholar] [CrossRef]
- Yao, J.; Zhou, Y.; Chen, X.; Ma, F.; Li, P.; Chen, C. Effect of sodium alginate with three molecular weight forms on the water holding capacity of chicken breast myosin gel. Food Chem. 2018, 239, 1134–1142. [Google Scholar] [CrossRef]
- Kang, Z.; Chen, F.; Ma, H. Effect of pre-emulsified soy oil with soy protein isolate in frankfurters: A physical-chemical and Raman spectroscopy study. LWT-Food Sci. Technol. 2016, 74, 465–471. [Google Scholar] [CrossRef]
- Kang, Z.L.; Wang, P.; Xu, X.L.; Zhu, C.Z.; Li, K.; Zhou, G.H. Effect of beating processing, as a means of reducing salt content in frankfurters: A physico-chemical and raman spectroscopic study. Meat Sci. 2014, 98, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.B.; Jiang, X.P.; Han, M.Y.; Kang, Z.L.; Zhao, L.; Xu, X.L.; Zhou, G.H. Influence of sugarcane dietary fiber on water states and microstructure of myofibrillar protein gels. Food Hydrocoll. 2016, 57, 253–261. [Google Scholar] [CrossRef]
- Shao, G.; Zhang, H.; Xu, D.; Wu, F.; Jin, Y.; Yang, N.; Yu, K.; Xu, X. Insights into starch-based gels: Selection, fabrication, and application. Int. J. Biol. Macromol. 2024, 258, 128864. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Zhang, G.; Wang, Z.; Sun, F.; Cheng, T.; Wang, D.; Yang, H.; Wang, Z.; Guo, Z. Potentially texture-modified food for dysphagia: Gelling, rheological, and water fixation properties of rice starch–soybean protein composite gels in various ratios. Food Hydrocoll. 2024, 153, 110025. [Google Scholar] [CrossRef]
- Kim, W.; Shin, M. Effects of organic acids and starch water ratios on the properties of retrograded maize starches. Food Sci. Biotechnol. 2011, 20, 1013–1019. [Google Scholar] [CrossRef]
- Freire, M.; Bou, R.; Cofrades, S.; Solas, M.T.; Jiménez-Colmenero, F. Double emulsions to improve frankfurter lipid content: Impact of perilla oil and pork back fat. J. Sci. Food Agric. 2016, 96, 900–908. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Brekke, C.J. Thermal transitions of salt-soluble proteins from pre- and postrigor chicken muscles. J. Food Sci. 1990, 55, 1540–1543. [Google Scholar] [CrossRef]
- Kang, Z.L.; Xie, J.J.; Li, Y.P.; Song, W.J.; Ma, H.J. Effects of pre-emulsified safflower oil with magnetic field modified soy 11S globulin on the gel, rheological, and sensory properties of reduced-animal fat pork batter. Meat Sci. 2023, 198, 109087. [Google Scholar] [CrossRef]
- Wu, Z.; Shang, X.; Hou, Q.; Xu, J.; Kang, Z.; Ma, H. Using ultrasonic-assisted sodium bicarbonate treatment to improve the gel and rheological properties of reduced-salt pork myofibrillar protein. Meat Sci. 2024, 212, 109465. [Google Scholar] [CrossRef]
- Li, C. Recent progress in understanding starch gelatinization—An important property determining food quality. Carbohydr. Polym. 2022, 293, 119735. [Google Scholar] [CrossRef]
- Donmez, D.; Pinho, L.; Patel, B.; Desam, P.; Campanella, O.H. Characterization of starch–water interactions and their effects on two key functional properties: Starch gelatinization and retrogradation. Curr. Opin. Food Sci. 2021, 39, 103–109. [Google Scholar] [CrossRef]
- Kang, Z.L.; Zou, X.; Meng, L.; Li, Y.P. Effects of NaCl and soy protein isolate on the physicochemical, water distribution, and mobility in frankfurters. Int. J. Food Sci. Technol. 2021, 56, 6572–6579. [Google Scholar] [CrossRef]
- Cao, C.; Xu, J.; Li, X.; Kong, B.; Wang, M.; He, J.; Liu, Q. A new enzymatic method for measuring the degree of gelatinized starch in meat products. J. Food Compos. Anal. 2022, 108, 104451. [Google Scholar] [CrossRef]
- Li, K.; Fu, L.; Zhao, Y.Y.; Xue, S.W.; Wang, P.; Xu, X.L.; Zhou, G. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocoll. 2020, 98, 105275. [Google Scholar] [CrossRef]
- Han, M.; Zhang, Y.; Fei, Y.; Xu, X.; Zhou, G. Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel. Eur. Food Res. Technol. 2009, 228, 665–670. [Google Scholar] [CrossRef]
- Srland, G.H.; Larsen, P.M.; Lundby, F.; Rudi, A.P.; Guiheneuf, T. Determination of total fat and moisture content in meat using low field NMR. Meat Sci. 2004, 66, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Kang, Z.L.; Zou, Y.F.; Xu, X.L.; Zhou, G.H. Effect of ultrasound treatment on functional properties of reduced-salt chicken breast meat batter. J. Food Sci. Technol. 2015, 52, 2622–2633. [Google Scholar] [CrossRef]
- Bertram, H.C.; Ppurslow, P.P.; Andersen, H.J. Relationship between meat structure, water mobility, and distribution: A ow-field nuclear magnetic resonance study. J. Agric. Food Chem. 2002, 50, 824–829. [Google Scholar] [CrossRef]
- Sánchez-Alonso, I.; Martinez, I.; Sánchez-Valencia, J.; Careche, M. Estimation of freezing storage time and quality changes in hake (Merluccius merluccius, L.) by low field NMR. Food Chem. 2012, 135, 1626–1634. [Google Scholar] [CrossRef]
- Li, Y.P.; Kang, Z.L.; Sukmanov, V.; Ma, H.J. Effects of soy protein isolate on gel properties and water holding capacity of low-salt pork myofibrillar protein under high pressure processing. Meat Sci. 2021, 176, 108471. [Google Scholar] [CrossRef]
- Fan, J.; Liu, G.; Wang, K.; Xie, C.; Kang, Z. Effects of potassium bicarbonate on gel, antioxidant and water distribution of reduced-phosphate silver carp surimi batter at cold storage. Gels 2023, 9, 836. [Google Scholar] [CrossRef] [PubMed]
- Southgate, D.A.T.; Durnin, J.V.G.A. Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. Br. J. Nutr. 1970, 24, 517–535. [Google Scholar] [CrossRef] [PubMed]
- Fernandz-Martín, F.; Lopez-Lopez, I.; Cofrades, S.; Colmenero, F.J. Influence of adding sea spaghetti seaweed and replacing the animal fat with olive oil or a konjac gel on pork meat batter gelation. Potential protein/alginate association. Meat Sci. 2009, 83, 209–217. [Google Scholar] [CrossRef] [PubMed]
Sample | Moisture (%) | Protein (%) | Total Lipid (%) | Ash (%) | Starch (%) | Energy (kJ/100 g) |
---|---|---|---|---|---|---|
T1 | 65.21 ± 0.53 c | 16.03 ± 0.36 a | 15.48 ± 1.25 a | 3.27 ± 0.23 a | 0 ± 0.00 d | 845.39 ± 17.43 a |
T2 | 68.3 ± 0.66 b | 15.47 ± 0.42 a | 11.47 ± 1.36 b | 3.29 ± 0.14 a | 1.61 ± 0.30 c | 710.86 ± 22.66 b |
T3 | 70.24 ± 0.62 a | 15.22 ± 0.29 ab | 8.19 ± 1.01 c | 3.28 ± 0.17 a | 3.06 ± 0.26 b | 610.98 ± 24.45 c |
T4 | 71.23 ± 0.55 a | 14.91 ± 0.44 b | 5.69 ± 1.20 d | 3.22 ± 0.25 a | 5.16 ± 0.32 a | 540.4 ± 20.71 d |
Sample | TR (%) | WR (%) | FR (%) |
---|---|---|---|
T1 | 10.75 ± 0.62 a | 7.13 ± 0.35 a | 3.88 ± 0.21 a |
T2 | 8.28 ± 0.49 b | 5.06 ± 0.44 b | 3.46 ± 0.19 a |
T3 | 6.12 ± 0.55 c | 3.62 ± 0.28 c | 2.25 ± 0.17 b |
T4 | 7.81 ± 0.58 b | 6.48 ± 0.41 b | 1.37 ± 0.24 c |
Sample | L* Value | a* Value | b* Value |
---|---|---|---|
T1 | 77.52 ± 0.76 c | 1.65 ± 0.25 a | 7.35 ± 0.31 a |
T2 | 80.18 ± 0.64 b | 1.78 ± 0.19 a | 8.47 ± 0.27 b |
T3 | 82.61 ± 0.71 a | 1.82 ± 0.21 a | 8.63 ± 0.29 b |
T4 | 79.71 ± 0.58 b | 1.95 ± 0.28 a | 8.80 ± 0.38 b |
Sample | Hardness (N) | Springiness | Cohesiveness | Chewiness (N.mm) |
---|---|---|---|---|
T1 | 53.39 ± 0.82 c | 0.802 ± 0.005 c | 0.453 ± 0.009 c | 19.44 ± 0.39 d |
T2 | 56.07 ± 0.75 b | 0.831 ± 0.007 b | 0.491 ± 0.008 b | 22.78 ± 0.47 c |
T3 | 58.73 ± 0.66 a | 0.866 ± 0.007 a | 0.534 ± 0.012 a | 27.16 ± 0.41 a |
T4 | 56.63 ± 0.79 b | 0.845 ± 0.006 b | 0.503 ± 0.010 b | 24.14 ± 0.32 b |
Sample | Initial Relaxation Time (ms) | Peak Ratio (%) | ||||
---|---|---|---|---|---|---|
T2b | T21 | T22 | P2b | P21 | P22 | |
T1 | 2.53 ± 0.19 a | 63.57 ± 2.46 a | 560.72 ± 19.77 a | 1.26 ± 0.21 a | 84.62 ± 1.16 c | 14.41 ± 0.51 a |
T2 | 1.68 ± 0.16 b | 55.62 ± 2.37 b | 446.25 ± 23.63 b | 1.05 ± 0.16 a | 89.75 ± 0.95 b | 9.92 ± 0.43 b |
T3 | 1.57 ± 0.22 b | 42.90 ± 2.88 c | 332.61 ± 25.08 c | 1.20 ± 0.09 a | 94.03 ± 0.92 a | 4.35 ± 0.59 c |
T4 | 1.61 ± 0.19 b | 53.81 ± 1.91 b | 469.08 ± 22.37 b | 1.32 ± 0.15 a | 90.26 ± 1.08 b | 8.67 ± 0.37 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Liu, G.-H.; Liang, M.-H.; Li, S.-H.; Kang, Z.-L. Applying Resistant Starch to Improve the Gel and Water Retention of Reduced-Fat Pork Batter. Gels 2024, 10, 347. https://doi.org/10.3390/gels10050347
Xie C, Liu G-H, Liang M-H, Li S-H, Kang Z-L. Applying Resistant Starch to Improve the Gel and Water Retention of Reduced-Fat Pork Batter. Gels. 2024; 10(5):347. https://doi.org/10.3390/gels10050347
Chicago/Turabian StyleXie, Chun, Guang-Hui Liu, Ming-Hui Liang, Si-Han Li, and Zhuang-Li Kang. 2024. "Applying Resistant Starch to Improve the Gel and Water Retention of Reduced-Fat Pork Batter" Gels 10, no. 5: 347. https://doi.org/10.3390/gels10050347
APA StyleXie, C., Liu, G.-H., Liang, M.-H., Li, S.-H., & Kang, Z.-L. (2024). Applying Resistant Starch to Improve the Gel and Water Retention of Reduced-Fat Pork Batter. Gels, 10(5), 347. https://doi.org/10.3390/gels10050347