Binary Pea Protein–Psyllium Hydrogel: Insights into the Influence of pH and Ionic Strength on the Physical Stability and Mechanical Characteristics
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Hydrogel Induction
4.3. Methods
4.3.1. Volumetric Gelling Index (VGI)
4.3.2. Color Parameters
4.3.3. Physical Stability and Destabilization Behavior
4.3.4. Textural Properties
4.3.5. Microrheological Properties
4.3.6. Rheological Properties
4.3.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Mezzenga, R. Design Principles of Food Gels. Nat. Food 2020, 1, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Saqib, M.N.; Khaled, B.M.; Liu, F.; Zhong, F. Hydrogel Beads for Designing Future Foods: Structures, Mechanisms, Applications, and Challenges. Food Hydrocoll. Health 2022, 2, 100073. [Google Scholar] [CrossRef]
- Manzoor, A.; Dar, A.H.; Pandey, V.K.; Shams, R.; Khan, S.; Panesar, P.S.; Kennedy, J.F.; Fayaz, U.; Khan, S.A. Recent Insights into Polysaccharide-Based Hydrogels and Their Potential Applications in Food Sector: A Review. Int. J. Biol. Macromol. 2022, 213, 987–1006. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, J.; Bandral, J.D.; Gani, A.; Shams, R. Food Hydrocolloids: Functional, Nutraceutical and Novel Applications for Delivery of Bioactive Compounds. Int. J. Biol. Macromol. 2020, 165, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Tanger, C.; Müller, M.; Andlinger, D.; Kulozik, U. Influence of PH and Ionic Strength on the Thermal Gelation Behaviour of Pea Protein. Food Hydrocoll. 2022, 123, 106903. [Google Scholar] [CrossRef]
- Farahnaky, A.; Askari, H.; Majzoobi, M.; Mesbahi, G. The Impact of Concentration, Temperature and PH on Dynamic Rheology of Psyllium Gels. J. Food Eng. 2010, 100, 294–301. [Google Scholar] [CrossRef]
- Cortez-Trejo, M.C.; Figueroa-Cárdenas, J.D.; Quintanar-Guerrero, D.; Baigts-Allende, D.K.; Manríquez, J.; Mendoza, S. Effect of PH and Protein-Polysaccharide Ratio on the Intermolecular Interactions between Amaranth Proteins and Xanthan Gum to Produce Electrostatic Hydrogels. Food Hydrocoll. 2022, 129, 107648. [Google Scholar] [CrossRef]
- Hilal, A.; Florowska, A.; Wroniak, M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery—A Bibliometric Review. Gels 2023, 9, 68. [Google Scholar] [CrossRef]
- Zhang, Z.; Hao, G.; Liu, C.; Fu, J.; Hu, D.; Rong, J.; Yang, X. Recent Progress in the Preparation, Chemical Interactions and Applications of Biocompatible Polysaccharide-Protein Nanogel Carriers. Food Res. Int. 2021, 147, 110564. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Alvi, T.; Biswas, A.; Shityakov, S.; Gusinskaia, T.; Lavrentev, F.; Dutta, K.; Khan, M.K.I.; Stephen, J.; Radhakrishnan, M. Food Gels: Principles, Interaction Mechanisms and Its Microstructure. Crit. Rev. Food Sci. Nutr. 2022, 63, 12530–12551. [Google Scholar] [CrossRef]
- Florowska, A.; Florowski, T.; Sokołowska, B.; Adamczak, L.; Szymańska, I. Effects of Pressure Level and Time Treatment of High Hydrostatic Pressure (HHP) on Inulin Gelation and Properties of Obtained Hydrogels. Foods 2021, 10, 2514. [Google Scholar] [CrossRef] [PubMed]
- Peyrano, F.; de Lamballerie, M.; Avanza, M.V.; Speroni, F. Gelation of Cowpea Proteins Induced by High Hydrostatic Pressure. Food Hydrocoll. 2021, 111, 106191. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, R.; Hu, J.; Luan, Y.; Liu, R.; Ge, Q.; Yu, H.; Wu, M. Moderate Pulsed Electric Field-Induced Structural Unfolding Ameliorated the Gelling Properties of Porcine Muscle Myofibrillar Protein. Innov. Food Sci. Emerg. Technol. 2022, 81, 103145. [Google Scholar] [CrossRef]
- Zha, F.; Rao, J.; Chen, B. Plant-Based Food Hydrogels: Constitutive Characteristics, Formation, and Modulation. Curr. Opin. Colloid. Interface Sci. 2021, 56, 101505. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, M.; Niepceron, F.; Nicolai, T.; Chassenieux, C. The Effect of the PH on Thermal Aggregation and Gelation of Soy Proteins. Food Hydrocoll. 2017, 66, 27–36. [Google Scholar] [CrossRef]
- Zhu, P.; Huang, W.; Guo, X.; Chen, L. Strong and Elastic Pea Protein Hydrogels Formed through PH-Shifting Method. Food Hydrocoll. 2021, 117, 106705. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Liu, X.; Liu, W.; Liu, Q.; Huang, J.; Zhang, L.; Hu, H. Effect of Salt Ions on Mixed Gels of Wheat Gluten Protein and Potato Isolate Protein. LWT 2022, 154, 112564. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, H. Effects of Calcium Ion on Gel Properties and Gelation of Tilapia (Oreochromis Niloticus) Protein Isolates Processed with PH Shift Method. Food Chem. 2019, 277, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Noguerol, A.T.; Marta Igual, M.; Pagán, M.J. Developing Psyllium Fibre Gel-Based Foods: Physicochemical, Nutritional, Optical and Mechanical Properties. Food Hydrocoll. 2022, 122, 107108. [Google Scholar] [CrossRef]
- Zhou, Y.; Dai, H.; Ma, L.; Yu, Y.; Zhu, H.; Wang, H.; Zhang, Y. Effect and Mechanism of Psyllium Husk (Plantago Ovata) on Myofibrillar Protein Gelation. LWT 2021, 138, 110651. [Google Scholar] [CrossRef]
- Niu, Y.; Xia, Q.; Jung, W.; Yu, L. Polysaccharides-Protein Interaction of Psyllium and Whey Protein with Their Texture and Bile Acid Binding Activity. Int. J. Biol. Macromol. 2019, 126, 215–220. [Google Scholar] [CrossRef]
- Klost, M.; Drusch, S. Structure Formation and Rheological Properties of Pea Protein-Based Gels. Food Hydrocoll. 2019, 94, 622–630. [Google Scholar] [CrossRef]
- Klost, M.; Brzeski, C.; Drusch, S. Effect of Protein Aggregation on Rheological Properties of Pea Protein Gels. Food Hydrocoll. 2020, 108, 106036. [Google Scholar] [CrossRef]
- De Berardinis, L.; Plazzotta, S.; Manzocco, L. Optimising Soy and Pea Protein Gelation to Obtain Hydrogels Intended as Precursors of Food-Grade Dried Porous Materials. Gels 2023, 9, 62. [Google Scholar] [CrossRef]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–Polyphenol Conjugates: Antioxidant Property, Functionalities and Their Applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Yun Wang, J.Z.; Zhang, L. Anthocyanin-Dietary Proteins Interaction and Its Current Applications in Food Industry. Food Rev. Int. 2023, 39, 3301–3313. [Google Scholar] [CrossRef]
- Jia, Z.; Dumont, M.J.; Orsat, V. Encapsulation of Phenolic Compounds Present in Plants Using Protein Matrices. Food Biosci. 2016, 15, 87–104. [Google Scholar] [CrossRef]
- Belorio, M.; Gómez, M. Psyllium: A Useful Functional Ingredient in Food Systems. Crit. Rev. Food Sci. Nutr. 2021, 62, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Franco, E.A.N.; Sanches-Silva, A.; Ribeiro-Santos, R.; de Melo, N.R. Psyllium (Plantago Ovata Forsk): From Evidence of Health Benefits to Its Food Application. Trends Food Sci. Technol. 2020, 96, 166–175. [Google Scholar] [CrossRef]
- Agrawal, R. Psyllium: A Source of Dietary Fiber. In Dietary Fibers; Waisundara, V.Y., Ed.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Cornet, S.H.V.; Edwards, D.; van der Goot, A.J.; van der Sman, R.G.M. Water Release Kinetics from Soy Protein Gels and Meat Analogues as Studied with Confined Compression. Innov. Food Sci. Emerg. Technol. 2020, 66, 102528. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Z.; McClements, D.J. Preparation of Plant-Based Meat Analogs Using Emulsion Gels: Lipid-Filled RuBisCo Protein Hydrogels. Food Res. Int. 2023, 167, 112708. [Google Scholar] [CrossRef] [PubMed]
- Moll, P.; Salminen, H.; Schmitt, C.; Weiss, J. Pea Protein–Sugar Beet Pectin Binders Can Provide Cohesiveness in Burger Type Meat Analogues. Eur. Food Res. Technol. 2023, 249, 1089–1096. [Google Scholar] [CrossRef]
- Saavedra Isusi, G.I.; Marburger, J.; Lohner, N.; van der Schaaf, U.S. Texturing of Soy Yoghurt Alternatives: Pectin Microgel Particles Serve as Inactive Fillers and Weaken the Soy Protein Gel Structure. Gels 2023, 9, 473. [Google Scholar] [CrossRef] [PubMed]
- Bordbar-Khiabani, A.; Gasik, M. Smart Hydrogels for Advanced Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 3665. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, T.; Hu, Y.; Wu, J.; Van der Meeren, P. Designing Delivery Systems for Functional Ingredients by Protein/Polysaccharide Interactions. Trends Food Sci. Technol. 2022, 119, 272–287. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef] [PubMed]
- Abaee, A.; Mohammadian, M.; Jafari, S.M. Whey and Soy Protein-Based Hydrogels and Nano-Hydrogels as Bioactive Delivery Systems. Trends Food Sci. Technol. 2017, 70, 69–81. [Google Scholar] [CrossRef]
- Yang, X.; Li, A.; Li, D.; Guo, Y.; Sun, L. Applications of Mixed Polysaccharide-Protein Systems in Fabricating Multi-Structures of Binary Food Gels—A Review. Trends Food Sci. Technol. 2021, 109, 197–210. [Google Scholar] [CrossRef]
- O’Flynn, T.D.; Hogan, S.A.; Daly, D.F.M.; O’Mahony, J.A.; McCarthy, N.A. Rheological and Solubility Properties of Soy Protein Isolate. Molecules 2021, 26, 3015. [Google Scholar] [CrossRef]
- Li, R.; Xiong, Y.L. Sensitivity of Oat Protein Solubility to Changing Ionic Strength and PH. J. Food Sci. 2021, 86, 78–85. [Google Scholar] [CrossRef]
- Dahal, Y.R.; Schmit, J.D. Ion Specificity and Nonmonotonic Protein Solubility from Salt Entropy. Biophys. J. 2018, 114, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Sobol, Z.; Jakubowski, T.; Nawara, P. Application of the CIE L*a*b* Method for the Evaluation of the Color of Fried Products from Potato Tubers Exposed to C Band Ultraviolet Light. Sustainability 2020, 12, 3487. [Google Scholar] [CrossRef]
- Lei, Y.; Ouyang, H.; Peng, W.; Yu, X.; Jin, L.; Li, S. Effect of NaCl on the Rheological, Structural, and Gelling Properties of Walnut Protein Isolate-κ-Carrageenan Composite Gels. Gels 2022, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhao, M.; Chassenieux, C.; Nicolai, T. The Effect of Adding NaCl on Thermal Aggregation and Gelation of Soy Protein Isolate. Food Hydrocoll. 2017, 70, 88–95. [Google Scholar] [CrossRef]
- Schuldt, S.; Raak, N.; Jaros, D.; Rohm, H. Acid-Induced Formation of Soy Protein Gels in the Presence of NaCl. LWT 2014, 57, 634–639. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, L.; Fu, L.; Chen, Q.; He, Z.; Zeng, M.; Qin, F.; Chen, J. Effect of Ionic Strength on Heat-Induced Gelation Behavior of Soy Protein Isolates with Ultrasound Treatment. Molecules 2022, 27, 8221. [Google Scholar] [CrossRef] [PubMed]
- Langton, M.; Ehsanzamir, S.; Karkehabadi, S.; Feng, X.; Johansson, M.; Johansson, D.P. Gelation of Faba Bean Proteins—Effect of Extraction Method, PH and NaCl. Food Hydrocoll. 2020, 103, 105622. [Google Scholar] [CrossRef]
- Gagliardi, A.; Froiio, F.; Salvatici, M.C.; Paolino, D.; Fresta, M.; Cosco, D. Characterization and Refinement of Zein-Based Gels. Food Hydrocoll. 2020, 101, 105555. [Google Scholar] [CrossRef]
- Hilal, A.; Florowska, A.; Florowski, T.; Wroniak, M. A Comparative Evaluation of the Structural and Biomechanical Properties of Food-Grade Biopolymers as Potential Hydrogel Building Blocks. Biomedicines 2022, 10, 2106. [Google Scholar] [CrossRef]
- Florowska, A.; Hilal, A.; Florowski, T.; Mrozek, P.; Wroniak, M. Sodium Alginate and Chitosan as Components Modifying the Properties of Inulin Hydrogels. Gels 2022, 8, 63. [Google Scholar] [CrossRef]
- Moelants, K.R.N.; Cardinaels, R.; Van Buggenhout, S.; Van Loey, A.M.; Moldenaers, P.; Hendrickx, M.E. A Review on the Relationships between Processing, Food Structure, and Rheological Properties of Plant-Tissue-Based Food Suspensions. Compr. Rev. Food Sci. Food Saf. 2014, 13, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Wang, L.L.; Chung, J.J.; Kim, Y.H.; Atluri, P.; Burdick, J.A. Methods to Assess Shear-Thinning Hydrogels for Application As Injectable Biomaterials. ACS Biomater. Sci. Eng. 2017, 3, 3146–3160. [Google Scholar] [CrossRef] [PubMed]
- Cichońska, P.; Domian, E.; Ziarno, M. Application of Optical and Rheological Techniques in Quality and Storage Assessment of the Newly Developed Colloidal-Suspension Products: Yogurt-Type Bean-Based Beverages. Sensors 2022, 22, 8348. [Google Scholar] [CrossRef] [PubMed]
- Yiu, C.C.Y.; Liang, S.W.; Mukhtar, K.; Kim, W.; Wang, Y.; Selomulya, C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels 2023, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- Kasapis, S.; Bannikova, A. Rheology and Food Microstructure. In Advances in Food Rheology and Its Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 7–46. ISBN 9780081004326. [Google Scholar]
- Liu, Z.; Liu, C.; Sun, X.; Zhang, S.; Yuan, Y.; Wang, D.; Xu, Y. Fabrication and Characterization of Cold-Gelation Whey Protein-Chitosan Complex Hydrogels for the Controlled Release of Curcumin. Food Hydrocoll. 2020, 103, 105619. [Google Scholar] [CrossRef]
- Cortez-Trejo, M.C.; Figueroa-Cárdenas, J.D.; Mendoza, S. Electrostatic Hydrogels Based on Amaranth Proteins and Xanthan Gum: Water-Binding, Microstructural, Rheological and Textural Properties. J. Polym. Environ. 2023, 31, 3937–3950. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, G.; Liang, Q.; Cai, W.; Zhang, Q. Rheological and Microstructural Properties of Gelatin B/Tara Gum Hydrogels: Effect of Protein/Polysaccharide Ratio, PH and Salt Addition. LWT 2019, 103, 108–115. [Google Scholar] [CrossRef]
- Uranga, J.; Carranza, T.; Peñalba, M.; de la Caba, K.; Guerrero, P. Valorization of Agar Production Residue as a Filler in Soy Protein Hydrogels for 3D Printing. Int. J. Bioprint. 2023, 9, 731. [Google Scholar] [CrossRef] [PubMed]
- Panahi, R.; Baghban-Salehi, M. Protein-Based Hydrogels. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.d.I.H., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–40. ISBN 978-3-319-76573-0. [Google Scholar]
- Wang, Z.; Deng, Y.; Zhang, Y.; Wei, Z.; Wan, Z.; Li, C.; Tang, X.; Zhao, Z.; Zhou, P.; Li, P.; et al. Impacts of Citric Acid Concentration and PH Value on Mechanism and Rheological Properties of Cold-Set Whey Protein Fibrils Hydrogels. LWT 2023, 183, 114872. [Google Scholar] [CrossRef]
- Fan, Z.; Cheng, P.; Zhang, P.; Zhang, G.; Han, J. Rheological Insight of Polysaccharide/Protein Based Hydrogels in Recent Food and Biomedical Fields: A Review. Int. J. Biol. Macromol. 2022, 222, 1642–1664. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, W.; Zou, Y.; Xing, L.; Zheng, H.; Xu, X.; Zhou, G. Influence of RosA-Protein Adducts Formation on Myofibrillar Protein Gelation Properties under Oxidative Stress. Food Hydrocoll. 2017, 67, 197–205. [Google Scholar] [CrossRef]
- Florowska, A.; Hilal, A.; Florowski, T.; Wroniak, M. Addition of Selected Plant-Derived Proteins as Modifiers of Inulin Hydrogels Properties. Foods 2020, 9, 845. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, M.C.; Froiio, F.; Mancuso, A.; De Gaetano, F.; Ventura, C.A.; Fresta, M.; Paolino, D. The Rheolaser MasterTM and Kinexus Rotational Rheometer® to Evaluate the Influence of Topical Drug Delivery Systems on Rheological Features of Topical Poloxamer Gel. Molecules 2020, 25, 1979. [Google Scholar] [CrossRef] [PubMed]
Samples | Color Parameters | ||||
---|---|---|---|---|---|
L* | a* | b* | WI | YI | |
pH3S0.0 | 73.85 e ± 0.07 | 4.50 cd ± 0.07 | 17.12 a ± 0.05 | 68.42 d ± 0.04 | 33.12 a ± 0.06 |
pH3S0.15 | 67.70 a ± 0.11 | 5.60 e ± 0.03 | 21.40 c ± 0.02 | 60.86 ab ± 0.08 | 45.15 c ± 0.04 |
pH3S0.3 | 68.07 b ± 0.12 | 5.28 de ± 0.05 | 22.28 cd ± 0.24 | 60.71 ab ± 0.23 | 46.76 cd ± 0.57 |
pH4.5S0.0 | 75.40 f ± 0.06 | 3.41 ab ± 0.07 | 19.37 b ± 0.15 | 68.51 d ± 0.06 | 36.70 b ± 0.25 |
pH4.5S0.15 | 69.11 c ± 0.13 | 5.35 de ± 0.04 | 22.41 cd ± 0.05 | 61.47 b ± 0.13 | 46.32 cd ± 0.18 |
pH4.5S0.3 | 68.12 b ± 0.03 | 5.16 de ± 0.01 | 22.80 d ± 0.02 | 60.47 a ± 0.01 | 47.82 d ± 0.02 |
pH7S0.0 | 72.02 d ± 0.02 | 2.49 a ± 0.03 | 19.19 b ± 0.04 | 65.98 c ± 0.03 | 38,06 b ± 0.08 |
pH7S0.15 | 68.03 b ± 0.08 | 3.44 ab ± 0.04 | 21.50 c ± 0.05 | 61.32 ab ± 0.09 | 45.16 c ± 0.15 |
pH7S0.3 | 68.04 b ± 0.24 | 3.86 bc ± 1.06 | 21.66 cd ± 1.22 | 61.18 ab ± 0.88 | 45.49 cd ± 2.61 |
Statistic ANOVA, η2 [-] | |||||
pH | 0.979 | 0.881 | 0.696 | 0.548 | 0.542 |
NaCl | 0.999 | 0.820 | 0.958 | 0.994 | 0.977 |
pHNaCl | 0.977 | ns | 0.653 | 0.871 | 0.692 |
Samples | pH3S0.0 | pH3S0.15 | pH3S0.3 | pH4.5S0.0 | pH4.5S0.15 | pH4.5S0.3 | pH7S0.0 | pH7S0.15 | pH7S0.3 |
---|---|---|---|---|---|---|---|---|---|
pH7S0.3 | 7.40 | 1.79 | 1.55 | 7.72 | 1.98 | 1.73 | 4.88 | 0.45 | - |
pH7S0.15 | 7.37 | 2.18 | 1.99 | 7.68 | 2.37 | 2.15 | 4.71 | - | |
pH7S0.0 | 3.42 | 5.76 | 5.74 | 3.51 | 5.20 | 5.95 | - | ||
pH4.5S0.3 | 8.10 | 1.53 | 0.54 | 8.24 | 1.09 | - | |||
pH4.5S0.15 | 7.15 | 1.75 | 1.05 | 7.25 | - | ||||
pH4.5S0.0 | 2.94 | 8.26 | 8.11 | - | |||||
pH3S0.3 | 7.79 | 1.01 | - | ||||||
pH3S0.15 | 7.57 | - | |||||||
pH3S0.0 | - |
Samples | Instability Index | Textural Properties | Microrheological Properties | |||
---|---|---|---|---|---|---|
Strength (N) | Adhesion * (N) | Spreadability [Ns] | SLB | EI × 10−3 (nm−2) | ||
pH3S0.0 | 0.45 d ± 0.02 | 0.11 b ± 0.01 | 0.04 d ± 0.01 | 13.3 c ± 1.3 | 0.54 b ± 0.04 | 6.1 b ± 0.1 |
pH3S0.15 | 0.49 e ± 0.01 | 0.15 c ± 0.00 | 0.02 b ± 0.00 | 26.2 ef ± 0.8 | 0.53 b ± 0.04 | 7.9 bc ± 0.6 |
pH3S0.3 | 0.35 b ± 0.02 | 0.24 e ± 0.02 | 0.04 d ± 0.00 | 24.3 e ± 1.8 | 0.35 a ± 0.01 | 17.0 d ± 1.3 |
pH4.5S0.0 | 0.55 f ± 0.01 | 0.07 a ± 0.00 | 0.01 a ± 0.00 | 13.3 c ± 0.7 | 0.45 ab ± 0.04 | 9.8 c ± 1.7 |
pH4.5S0.15 | 0.45 d ± 0.01 | 0.15 c ± 0.00 | 0.03 bc ± 0.00 | 28.6 f ± 2.1 | 0.73 c ± 0.04 | 2.4 a ± 0.5 |
pH4.5S0.3 | 0.33 b ± 0.00 | 0.14 c ± 0.00 | 0.04 d ± 0.00 | 19.1 d ± 1.8 | 0.54 b ± 0.01 | 7.3 b ± 0.9 |
pH7S0.0 | 0.20 a ± 0.00 | 0.08 a ± 0.00 | 0.05 e ± 0.00 | 8.0 ± 0.6 | 0.50 b ± 0.04 | 1.3 a ± 0.1 |
pH7S0.15 | 0.48 e ± 0.01 | 0.18 d ± 0.00 | 0.06 e ± 0.00 | 3.5 a ± 0.2 | 0.49 b ± 0.06 | 1.5 a ± 0.2 |
pH7S0.3 | 0.40 c ± 0.01 | 0.15 c ± 0.01 | 0.04 d ± 0.00 | 5.7 ab ± 0.2 | 0.36 a ± 0.03 | 3.6 a ± 0.7 |
Statistic ANOVA, η2 [-] | ||||||
pH | 0.952 | 0.912 | 0.942 | 0.980 | 0.771 | 0.959 |
NaCl | 0.970 | 0.974 | ns | 0.909 | 0.838 | 0.912 |
pHNaCl | 0.989 | 0.930 | 0.906 | 0.933 | 0.804 | 0.927 |
Samples | LVR | Frequency Sweep. Values at 1 Hz | ||||
---|---|---|---|---|---|---|
G’ Plateau [kPa] | γ [%] | G’ (kPa) | G” (kPa) | tan(δ) (-) | |η*| (Pa·s) | |
pH3S0.0 | 0.37 a ± 0.05 | 2.18 ab ± 0.17 | 0.14 a ± 0.03 | 0.04 a ± 0.01 | 0.26 bf ± 0.01 | 23 a ± 4 |
pH3S0.15 | 15.7 b ± 1.6 | 2.70 bc ± 0.26 | 12.7 c ± 1.0 | 3.65 c ± 0.26 | 0.29 f ± 0.00 | 2100 c ± 160 |
pH3S0.3 | 36.8 d ± 6.8 | 3.13 cd ± 0.37 | 24.9 d ± 1.0 | 6.97 d ± 0.29 | 0.28 cde ± 0.00 | 4110 d ± 160 |
pH4.5S0.0 | 0.80 a ± 0.02 | 1.39 a ± 0.04 | 0.17 a ± 0.03 | 0.05 a ± 0.01 | 0.27 cf ± 0.00 | 29 a ± 0 |
pH4.5S0.15 | 10.7 b ± 2.6 | 1.68 a ± 0.33 | 13.4 c ± 1.7 | 3.79 c ± 0.50 | 0.28 de ± 0.00 | 2210 c ± 280 |
pH4.5S0.3 | 23.5 c ± 1.6 | 2.56 bc ± 0.05 | 10.1 b ± 0.9 | 2.76 b ± 0.23 | 0.27 cd ± 0.00 | 1660 b ± 140 |
pH7S0.0 | 0.14 a ± 0.04 | 3.71 de ± 0.59 | 0.12 a ± 0.05 | 0.03 a ± 0.01 | 0.25 ab ± 0.00 | 19 a ± 1 |
pH7S0.15 | 1.2 a ± 0.2 | 4.06 ef ± 0.34 | 1.42 a ± 0.18 | 0.35 a ± 0.04 | 0.25 ab ± 0.00 | 233 a ± 29 |
pH7S0.3 | 1.4 a ± 0.3 | 4.82 f ± 0.04 | 1.28 a ± 0.32 | 0.31 a ± 0.09 | 0.24 a ± 0.01 | 210 a ± 54 |
Statistic ANOVA, η2 [-] | ||||||
pH | 0.917 | 0.939 | 0.982 | 0.982 | 0.936 | 0.982 |
NaCl | 0.940 | 0.768 | 0.984 | 0.983 | 0.712 | 0.984 |
pHNaCl | 0.891 | ns | 0.978 | 0.978 | 0.718 | 0.978 |
Samples Code | pH | NaCl Addition (M) |
---|---|---|
pH3S0.0 | 3 | 0.0 |
pH3S0.15 | 3 | 0.15 |
pH3S0.3 | 3 | 0.3 |
pH4.5S0.0 | 4.5 | 0.0 |
pH4.5S0.15 | 4.5 | 0.15 |
pH4.5S0.3 | 4.5 | 0.3 |
pH7S0.0 | 7 | 0.0 |
pH7S0.15 | 7 | 0.15 |
pH7S0.3 | 7 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilal, A.; Florowska, A.; Domian, E.; Wroniak, M. Binary Pea Protein–Psyllium Hydrogel: Insights into the Influence of pH and Ionic Strength on the Physical Stability and Mechanical Characteristics. Gels 2024, 10, 401. https://doi.org/10.3390/gels10060401
Hilal A, Florowska A, Domian E, Wroniak M. Binary Pea Protein–Psyllium Hydrogel: Insights into the Influence of pH and Ionic Strength on the Physical Stability and Mechanical Characteristics. Gels. 2024; 10(6):401. https://doi.org/10.3390/gels10060401
Chicago/Turabian StyleHilal, Adonis, Anna Florowska, Ewa Domian, and Małgorzata Wroniak. 2024. "Binary Pea Protein–Psyllium Hydrogel: Insights into the Influence of pH and Ionic Strength on the Physical Stability and Mechanical Characteristics" Gels 10, no. 6: 401. https://doi.org/10.3390/gels10060401
APA StyleHilal, A., Florowska, A., Domian, E., & Wroniak, M. (2024). Binary Pea Protein–Psyllium Hydrogel: Insights into the Influence of pH and Ionic Strength on the Physical Stability and Mechanical Characteristics. Gels, 10(6), 401. https://doi.org/10.3390/gels10060401