A Comprehensive Review of Honey-Containing Hydrogel for Wound Healing Applications
Abstract
:1. Introduction
2. Data Extraction Management
3. Biological Properties of Honey in Wound Healing
3.1. Antibacterial Effects
3.2. Anti-Inflammatory Effects
3.3. Debridement and Anti-Eschar Action
4. Incorporation of Honey into Hydrogels
4.1. Hydrogels
4.2. Fabrication Approach of Hydrogel
4.2.1. Injectable Hydrogel
4.2.2. Three-Dimensional Bioprinting Hydrogel
4.3. Honey and Hydrogel: Physicochemical and Mechanical Properties
4.3.1. Swelling Ratio Index
4.3.2. Tensile Strength and Elongation at Break
4.3.3. Water Vapour Transmission Rate (WVTR)
4.3.4. In Vitro Biodegradation Test
4.3.5. Contact Angle and Viscosity
4.3.6. Porosity
4.3.7. Fourier Transform Infrared Spectroscopy (FTIR)
4.3.8. Scanning Electron Microscopy (SEM)
4.3.9. X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC)
4.3.10. Honey-Incorporated Hydrogels Using 3D Bioprinting
5. Therapeutic Applications of Honey: In Vitro and In Vivo Studies
5.1. In Vitro Studies
5.2. In Vivo Studies
6. Challenges and Limitations
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WVTR | Water Vapour Transmission Rate |
FTIR | Fourier Transform Infrared Spectroscopy |
SEM | Scanning Electron Microscopy |
ROS | Reactive Oxygen Species |
3D | Three-Dimensional |
2D | Two-Dimensional |
H2O2 | Hydrogen Peroxide |
GOx | Glucose Oxidase |
NASAIDs | Non-steroidal anti-inflammatory medications |
IL-6 | Interleukin 6 |
TNF-α | Tumour Necrosis Factor-alpha |
NO | Nitric Oxide |
COX-2 | Cyclooxygenase-2 |
COX-1 | Cyclooxygenase-1 |
PGE2 | Prostaglandin E2 |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
IκBα | Inhibitor of Nuclear Factor kappa B alpha |
PAI | Plasminogen activator inhibitor |
NH2 | Amino group |
COOH | Carboxylic acid group |
OH | Hydroxyl group |
CONH2 | Amide group |
CONH | Secondary amide group |
SO3H | Sulfonic acid group |
UV | Ultraviolet |
N-H | Nitrogen–Hydrogen Bond |
F-H | Fluorine–Hydrogen Bond |
DPBS | Dulbecco’s Phosphate-Buffered Saline |
PBS | Phosphate-Buffered Saline |
C-H | Carbon–Hydrogen Bond |
C=O | Carbonyl Group |
C-O | Carbon–Oxygen Bond |
HaCaT | Human Adult Low Calcium High Temperature Keratinocytes |
References
- Cañedo-Dorantes, L.; Cañedo-Ayala, M. Skin Acute Wound Healing: A Comprehensive Review. Int. J. Inflamm. 2019, 2019, 3706315. [Google Scholar] [CrossRef] [PubMed]
- Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 2020, 12, 735. [Google Scholar] [CrossRef]
- Yousef, H.; Alhajj, M.; Fakoya, A.O.; Sharma, S. Anatomy, Skin (Integument), Epidermis; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef]
- Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024, 10, 43. [Google Scholar] [CrossRef]
- Norahan, M.H.; Pedroza-González, S.C.; Sánchez-Salazar, M.G.; Álvarez, M.M.; Trujillo de Santiago, G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 2023, 24, 197–235. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, Y.; Zhang, H.; Zhu, T.; Chen, S.; Li, J.; Du, J.; Yan, X. A multifunctional chitosan composite aerogel based on high density amidation for chronic wound healing. Carbohydr. Polym. 2023, 321, 121248. [Google Scholar] [CrossRef]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef] [PubMed]
- Masri, S.; Fauzi, M.B. Current Insight of Printability Quality Improvement Strategies in Natural-Based Bioinks for Skin Regeneration and Wound Healing. Polymers 2021, 13, 1011. [Google Scholar] [CrossRef]
- Singh, S.; Young, A.; McNaught, C.-E. The physiology of wound healing. Surgery 2017, 35, 473–477. [Google Scholar] [CrossRef]
- Krzyszczyk, P.; Schloss, R.; Palmer, A.; Berthiaume, F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front. Physiol. 2018, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Firlar, I.; Altunbek, M.; McCarthy, C.; Ramalingam, M.; Camci-Unal, G. Functional Hydrogels for Treatment of Chronic Wounds. Gels 2022, 8, 127. [Google Scholar] [CrossRef]
- Maaz Arif, M.; Khan, S.M.; Gull, N.; Tabish, T.A.; Zia, S.; Ullah Khan, R.; Awais, S.M.; Arif Butt, M. Polymer-based biomaterials for chronic wound management: Promises and challenges. Int. J. Pharm. 2021, 598, 120270. [Google Scholar] [CrossRef] [PubMed]
- Koehler, J.; Brandl, F.P.; Goepferich, A.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 2018, 100, 1–11. [Google Scholar] [CrossRef]
- Zhao, M.; Shi, J.; Cai, W.; Liu, K.; Shen, K.; Li, Z.; Wang, Y.; Hu, D. Advances on Graphene-Based Nanomaterials and Mesenchymal Stem Cell-Derived Exosomes Applied in Cutaneous Wound Healing. Int. J. Nanomed. 2021, 16, 2647–2665. [Google Scholar] [CrossRef] [PubMed]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]
- Sen, C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care 2019, 8, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Fadilah, N.I.M.; Phang, S.J.; Kamaruzaman, N.; Salleh, A.; Zawani, M.; Sanyal, A.; Maarof, M.; Fauzi, M.B. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants 2023, 12, 787. [Google Scholar] [CrossRef]
- Deng, X.; Gould, M.; Ali, M.A. A review of current advancements for wound healing: Biomaterial applications and medical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 2542–2573. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.; Khalili, S.; Nouri Khorasani, S.; Esmaeely Neisiany, R.; Ramakrishna, S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019, 136, 47738. [Google Scholar] [CrossRef]
- Fadilah, N.I.M.; Maarof, M.; Motta, A.; Tabata, Y.; Fauzi, M.B. The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials. Biomedicines 2022, 10, 2226. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Goh, C.; Shrestha, A. Biomaterial Properties Modulating Bone Regeneration. Macromol. Biosci. 2021, 21, 2000365. [Google Scholar] [CrossRef] [PubMed]
- Morhardt, D.R.; Mauney, J.R.; Estrada, C.R. Role of Biomaterials in Surgery. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Md Fadilah, N.I.; Khairul Nizam, N.A.A.; Fauzi, M.B. Antibacterial compounds-incorporated functional biomaterials for chronic wound healing application via 3D bioprinting: The mechanism of action. Int. J. Bioprinting 2024, 10, 3372. [Google Scholar] [CrossRef]
- Sallehuddin, N.; Md Fadilah, N.I.; Hwei, N.M.; Wen, A.P.Y.; Yusop, S.M.; Rajab, N.F.; Hiraoka, Y.; Tabata, Y.; Fauzi, M.B. Characterization and Cytocompatibility of Collagen–Gelatin–Elastin (CollaGee) Acellular Skin Substitute towards Human Dermal Fibroblasts: In Vitro Assessment. Biomedicines 2022, 10, 1327. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, H. Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for improved antibacterial effects. Int. J. Biol. Macromol. 2020, 145, 950–964. [Google Scholar] [CrossRef] [PubMed]
- Yupanqui Mieles, J.; Vyas, C.; Aslan, E.; Humphreys, G.; Diver, C.; Bartolo, P. Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022, 14, 1663. [Google Scholar] [CrossRef]
- Talha, M.; Imran, M.; Haseeb Ahmad, M.; Shabir Ahmad, R.; Kamran Khan, M.; Abdul Rahim, M.; Faizan Afzal, M. Honey Composition, Therapeutic Potential and Authentication through Novel Technologies: An Overview. In Honey—Composition and Properties; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Mohd Kamal, D.A.; Ibrahim, S.F.; Kamal, H.; Kashim, M.I.A.M.; Mokhtar, M.H. Physicochemical and Medicinal Properties of Tualang, Gelam and Kelulut Honeys: A Comprehensive Review. Nutrients 2021, 13, 197. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the Antimicrobial Composition of Honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef]
- Tomczyk, M.; Tarapatskyy, M.; Dżugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef]
- Al-Kafaween, M.A.; Alwahsh, M.; Mohd Hilmi, A.B.; Abulebdah, D.H. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics 2023, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Anis, A.; Sharshar, A.; Hanbally, S.; El Sadek, Y. A Novel Organic Composite Accelerates Wound Healing: Experimental and Clinical Study in Equine. J. Equine. Vet. Sci. 2021, 99, 103406. [Google Scholar] [CrossRef]
- Rossi, M.; Marrazzo, P. The Potential of Honeybee Products for Biomaterial Applications. Biomimetics 2021, 6, 6. [Google Scholar] [CrossRef]
- Noori, S.; Kokabi, M.; Hassan, Z.M. Poly(vinyl alcohol)/chitosan/honey/clay responsive nanocomposite hydrogel wound dressing. J. Appl. Polym. Sci. 2018, 135, 46311. [Google Scholar] [CrossRef]
- Gopal, R.; Lo, A.Z.K.; Masrol, M.; Lai, C.-H.; Muhamad Zain, N.; Saidin, S. Susceptibility of Stingless Bee, Giant Bee and Asian Bee Honeys Incorporated Cellulose Hydrogels in Treating Wound Infection. Malays. J. Fundam. Appl. Sci. 2021, 17, 242–252. [Google Scholar] [CrossRef]
- Bonsignore, G.; Patrone, M.; Martinotti, S.; Ranzato, E. “Green” Biomaterials: The Promising Role of Honey. J. Funct. Biomater. 2021, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J. Tissue Viability 2016, 25, 98–118. [Google Scholar] [CrossRef]
- Brudzynski, K.; Abubaker, K.; Laurent, M.; Castle, A. Re-Examining the Role of Hydrogen Peroxide in Bacteriostatic and Bactericidal Activities of Honey. Front. Microbiol. 2011, 2, 213. [Google Scholar] [CrossRef]
- Brudzynski, K. A current perspective on hydrogen peroxide production in honey. A review. Food Chem. 2020, 332, 127229. [Google Scholar] [CrossRef]
- Strelec, I.; Crevar, B.; Kovac, T.; Bilic Rajs, B.; Primorac, L.; Flanjak, I. Glucose oxidase activity and hydrogen peroxide accumulation in Croatian honeys. Croat. J. Food Sci. Technol. 2018, 10, 33–41. [Google Scholar] [CrossRef]
- Luca, L.; Pauliuc, D.; Oroian, M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey—A review. Food Chem. X 2024, 23, 101524. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Yasin, S.N.N.; Said, Z.; Halib, N.; Rahman, Z.A.; Mokhzani, N.I. Polymer-Based Hydrogel Loaded with Honey in Drug Delivery System for Wound Healing Applications. Polymers 2023, 15, 3085. [Google Scholar] [CrossRef]
- Esa, N.E.F.; Ansari, M.N.M.; Razak, S.I.A.; Ismail, N.I.; Jusoh, N.; Zawawi, N.A.; Jamaludin, M.I.; Sagadevan, S.; Nayan, N.H.M. A Review on Recent Progress of Stingless Bee Honey and Its Hydrogel-Based Compound for Wound Care Management. Molecules 2022, 27, 3080. [Google Scholar] [CrossRef]
- Poulsen-Silva, E.; Gordillo-Fuenzalida, F.; Velásquez, P.; Llancalahuen, F.M.; Carvajal, R.; Cabaña-Brunod, M.; Otero, M.C. Antimicrobial, Antioxidant, and Anti-Inflammatory Properties of Monofloral Honeys from Chile. Antioxidants 2023, 12, 1785. [Google Scholar] [CrossRef]
- Silva, B.; Biluca, F.C.; Gonzaga, L.V.; Fett, R.; Dalmarco, E.M.; Caon, T.; Costa, A.C.O. In vitro anti-inflammatory properties of honey flavonoids: A review. Food Res. Int. 2021, 141, 110086. [Google Scholar] [CrossRef] [PubMed]
- Russell, F.D.; Visagie, J.C.; Noll, J.L. Secretion of IL-6 by fibroblasts exposed to Australian honeys involves lipopolysaccharide and is independent of floral source. Sci. Rep. 2022, 12, 16628. [Google Scholar] [CrossRef]
- Gasparrini, M.; Afrin, S.; Forbes-Hernández, T.Y.; Cianciosi, D.; Reboredo-Rodriguez, P.; Amici, A.; Battino, M.; Giampieri, F. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 2: Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation. Food Chem. Toxicol. 2018, 120, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Biluca, F.C.; da Silva, B.; Caon, T.; Mohr, E.T.B.; Vieira, G.N.; Gonzaga, L.V.; Vitali, L.; Micke, G.; Fett, R.; Dalmarco, E.M.; et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res. Int. 2020, 129, 108756. [Google Scholar] [CrossRef]
- Scepankova, H.; Combarros-Fuertes, P.; Fresno, J.M.; Tornadijo, M.E.; Dias, M.S.; Pinto, C.A.; Saraiva, J.A.; Estevinho, L.M. Role of Honey in Advanced Wound Care. Molecules 2021, 26, 4784. [Google Scholar] [CrossRef]
- Rock, K.L.; Kono, H. The Inflammatory Response to Cell Death. Annu. Rev. Pathol. Mech. Dis. 2008, 3, 99–126. [Google Scholar] [CrossRef] [PubMed]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Abu Bakar, M.F. Honey and its nutritional and anti-inflammatory value. BMC Complement Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Verma, S.; Keshri, G.K.; Gupta, A. Combination of medicinal honey and 904 nm superpulsed laser-mediated photobiomodulation promotes healing and impedes inflammation, pain in full-thickness burn. J. Photochem. Photobiol. B 2018, 186, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.C.; Tsu, C.L.; Nain, R.A.; Arsat, N.; Fun, S.S.; Sahid Nik Lah, N.A. The role of debridement in wound bed preparation in chronic wound: A narrative review. Annals Med. Surg. 2021, 71, 102876. [Google Scholar] [CrossRef] [PubMed]
- Tashkandi, H. Honey in wound healing: An updated review. Open Life Sci. 2021, 16, 1091–1100. [Google Scholar] [CrossRef]
- Yilmaz, A.C.; Aygin, D. Honey Dressing in Wound Treatment: A Systematic Review. Complement Ther. Med. 2020, 51, 102388. [Google Scholar] [CrossRef]
- Krishnakumar, G.S.; Mahendiran, B.; Gopalakrishnan, S.; Muthusamy, S.; Malarkodi Elangovan, S. Honey based treatment strategies for infected wounds and burns: A systematic review of recent pre-clinical research. Wound Med. 2020, 30, 100188. [Google Scholar] [CrossRef]
- Shukla, V.K.; Srivastava, V. Honey Debridement. In Skin Necrosis; Springer Nature: Cham, Switzerland, 2024; pp. 399–404. [Google Scholar]
- Biglari, B.; vd Linden, P.H.; Simon, A.; Aytac, S.; Gerner, H.J.; Moghaddam, A. Use of Medihoney as a non-surgical therapy for chronic pressure ulcers in patients with spinal cord injury. Spinal Cord 2012, 50, 165–169. [Google Scholar] [CrossRef]
- Rop, K.; Mbui, D.; Njomo, N.; Karuku, G.N.; Michira, I.; Ajayi, R.F. Biodegradable water hyacinth cellulose-graft-poly(ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application. Heliyon 2019, 5, e01416. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Battistoni, C.M.; Liu, J.C. Redox-Responsive Hydrogels with Decoupled Initial Stiffness and Degradation. Biomacromolecules 2021, 22, 5270–5280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front. Chem. 2021, 8, 615665. [Google Scholar] [CrossRef]
- Sikarwar, U.; Khasherao, B.Y.; Sandhu, D. A review on hydrogel: Classification, preparation techniques and applications. Pharma. Innov. 2022, 11, 1172–1179. [Google Scholar] [CrossRef]
- Zöller, K.; To, D.; Bernkop-Schnürch, A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025, 312, 122718. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.T.; Tran, H.A.; Doan, V.K.; Maitz, J.; Li, Z.; Wise, S.G.; Lim, K.S.; Rnjak-Kovacina, J. Natural Polymer-Based Materials for Wound Healing Applications. Adv. Nanobiomed. Res. 2024, 4, 2300131. [Google Scholar] [CrossRef]
- Dienes, J.; Browne, S.; Farjun, B.; Amaral Passipieri, J.; Mintz, E.L.; Killian, G.; Healy, K.E.; Christ, G.J. Semisynthetic Hyaluronic Acid-Based Hydrogel Promotes Recovery of the Injured Tibialis Anterior Skeletal Muscle Form and Function. ACS Biomater. Sci. Eng. 2021, 7, 1587–1599. [Google Scholar] [CrossRef] [PubMed]
- Rumon, M.H.; Rahman, S.; Akib, A.A.; Sohag, S.; Alam Rakib, R.; Khan, A.R.; Yesmin, F.; Shakil, S.; Khan, M.M.R. Progress in hydrogel toughening: Addressing structural and crosslinking challenges for biomedical applications. Discov. Mater. 2025, 5, 5. [Google Scholar] [CrossRef]
- Acciaretti, F.; Vesentini, S.; Cipolla, L. Fabrication Strategies Towards Hydrogels for Biomedical Application: Chemical and Mechanical Insights. Chem. Asian J. 2022, 17, 2300131. [Google Scholar] [CrossRef]
- de Siqueira, E.C.; de França, J.A.A.; de Souza, R.F.M.; Leoterio, D.M.d.S.; Cordeiro, J.N.; Doboszewski, B. Mecanisms of the chemical crosslinking to obtain the hydrogels: Synthesis, conditions of crosslinking and biopharmaceutical applications. Res. Soc. Dev. 2023, 12, e18312943072. [Google Scholar] [CrossRef]
- Meleties, M.; Katyal, P.; Lin, B.; Britton, D.; Montclare, J.K. Self-assembly of stimuli-responsive coiled-coil fibrous hydrogels. Soft Matter. 2021, 17, 6470–6476. [Google Scholar] [CrossRef] [PubMed]
- Madduma-Bandarage, U.S.K.; Madihally, S.V. Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci. 2021, 138, 50376. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Z.; Feng, C.; Xianyu, Y.; Chen, Y. Direct Transverse Relaxation Time Biosensing Strategy for Detecting Foodborne Pathogens through Enzyme-Mediated Sol–Gel Transition of Hydrogels. Anal. Chem. 2021, 93, 6613–6619. [Google Scholar] [CrossRef]
- Masri, S.; Maarof, M.; Mohd, N.F.; Hiraoka, Y.; Tabata, Y.; Fauzi, M.B. Injectable Crosslinked Genipin Hybrid Gelatin–PVA Hydrogels for Future Use as Bioinks in Expediting Cutaneous Healing Capacity: Physicochemical Characterisation and Cytotoxicity Evaluation. Biomedicines 2022, 10, 2651. [Google Scholar] [CrossRef] [PubMed]
- Uman, S.; Dhand, A.; Burdick, J.A. Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J. Appl. Polym. Sci. 2020, 137, 48668. [Google Scholar] [CrossRef]
- Kang, J.I.; Park, K.M. Advances in gelatin-based hydrogels for wound management. J. Mater. Chem. B 2021, 9, 1503–1520. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, F.; Kehr, N.S. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv. Healthc. Mater. 2021, 10, e2001341. [Google Scholar] [CrossRef]
- Zhu, T.; Mao, J.; Cheng, Y.; Liu, H.; Lv, L.; Ge, M.; Li, S.; Huang, J.; Chen, Z.; Li, H.; et al. Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces 2019, 6, 1900761. [Google Scholar] [CrossRef]
- Masri, S.; Fadilah, N.I.M.; Hao, L.Q.; Maarof, M.; Tabata, Y.; Hiraoka, Y.; Fauzi, M.B. Multifunctionalised skin substitute of hybrid gelatin-polyvinyl alcohol bioinks for chronic wound: Injectable vs. 3D bioprinting. Drug Deliv. Transl. Res. 2024, 14, 1005–1027. [Google Scholar] [CrossRef]
- Alonso, J.M.; Andrade del Olmo, J.; Perez Gonzalez, R.; Saez-Martinez, V. Injectable Hydrogels: From Laboratory to Industrialization. Polymers 2021, 13, 650. [Google Scholar] [CrossRef]
- Le, T.M.D.; Jung, B.-K.; Li, Y.; Duong, H.T.T.; Nguyen, T.L.; Hong, J.W.; Yun, C.-O.; Lee, D.S. Physically crosslinked injectable hydrogels for long-term delivery of oncolytic adenoviruses for cancer treatment. Biomater. Sci. 2019, 7, 4195–4207. [Google Scholar] [CrossRef]
- Almawash, S.; Osman, S.K.; Mustafa, G.; El Hamd, M.A. Current and Future Prospective of Injectable Hydrogels—Design Challenges and Limitations. Pharmaceuticals 2022, 15, 371. [Google Scholar] [CrossRef]
- Xing, F.; Xiang, Z.; Rommens, P.M.; Ritz, U. 3D Bioprinting for Vascularized Tissue-Engineered Bone Fabrication. Materials 2020, 13, 2278. [Google Scholar] [CrossRef] [PubMed]
- Masri, S.; Maarof, M.; Aziz, I.A.; Idrus, R.; Fauzi, M.B. Performance of hybrid gelatin-PVA bioinks integrated with genipin through extrusionbased 3D bioprinting: An in vitro evaluation using human dermal fibroblasts. Int. J. Bioprint. 2023, 9, 677. [Google Scholar] [CrossRef] [PubMed]
- Aimar, A.; Palermo, A.; Innocenti, B. The Role of 3D Printing in Medical Applications: A State of the Art. J. Healthc. Eng. 2019, 2019, 5340616. [Google Scholar] [CrossRef]
- Zhang, Y.; Kumar, P.; Lv, S.; Xiong, D.; Zhao, H.; Cai, Z.; Zhao, X. Recent advances in 3D bioprinting of vascularized tissues. Mater. Des. 2021, 199, 109398. [Google Scholar] [CrossRef]
- Tsai, Y.-L.; Theato, P.; Huang, C.-F.; Hsu, S. A 3D-printable, glucose-sensitive and thermoresponsive hydrogel as sacrificial materials for constructs with vascular-like channels. Appl. Mater. Today. 2020, 20, 100778. [Google Scholar] [CrossRef]
- Das, S.; Basu, B. An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues. J. Indian Inst. Sci. 2019, 99, 405–428. [Google Scholar] [CrossRef]
- Maina, R.M.; Barahona, M.J.; Geibel, P.; Lysyy, T.; Finotti, M.; Isaji, T.; Wengerter, B.; Mentone, S.; Dardik, A.; Geibel, J.P. Hydrogel-based 3D bioprints repair rat small intestine injuries and integrate into native intestinal tissue. J. Tissue Eng. Regen. Med. 2021, 15, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Morgan, F.L.C.; Moroni, L.; Baker, M.B. Dynamic Bioinks to Advance Bioprinting. Adv. Healthc. Mater. 2020, 9, e1901798. [Google Scholar] [CrossRef]
- Hu, T.; Cui, X.; Zhu, M.; Wu, M.; Tian, Y.; Yao, B.; Song, W.; Niu, Z.; Huang, S.; Fu, X. 3D-printable supramolecular hydrogels with shear-thinning property: Fabricating strength tunable bioink via dual crosslinking. Bioact. Mater. 2020, 5, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Luo, C.; Zhai, C.; Li, Z.; Zhang, Y.; Yuan, T.; Dong, S.; Zhang, J.; Fan, W. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater. Sci. Eng. C 2021, 118, 111388. [Google Scholar] [CrossRef] [PubMed]
- Şalva, E.; Akdağ, A.E.; Alan, S.; Arısoy, S.; Akbuğa, F.J. Evaluation of the Effect of Honey-Containing Chitosan/Hyaluronic Acid Hydrogels on Wound Healing. Gels 2023, 9, 856. [Google Scholar] [CrossRef]
- El-Kased, R.F.; Amer, R.I.; Attia, D.; Elmazar, M.M. Honey-based hydrogel: In vitro and comparative In vivo evaluation for burn wound healing. Sci. Rep. 2017, 7, 9692. [Google Scholar] [CrossRef]
- Abraham, S.A.; Yashavanth, G.; Deveswaran, R.; Bharath, S.; Azamathulla, M.; Shanmuganathan, S. Honey based hydrogel as delivery system for wound healing. Mater. Today Proc. 2022, 49, 1709–1718. [Google Scholar] [CrossRef]
- Shamloo, A.; Aghababaie, Z.; Afjoul, H.; Jami, M.; Bidgoli, M.R.; Vossoughi, M.; Ramazani, A.; Kamyabhesari, K. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. Int. J. Pharm. 2021, 592, 120068. [Google Scholar] [CrossRef] [PubMed]
- Koosha, M.; Aalipour, H.; Sarraf Shirazi, M.J.; Jebali, A.; Chi, H.; Hamedi, S.; Wang, N.; Li, T.; Moravvej, H. Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study. J. Funct. Biomater. 2021, 12, 61. [Google Scholar] [CrossRef]
- Pinthong, T.; Yooyod, M.; Daengmankhong, J.; Tuancharoensri, N.; Mahasaranon, S.; Viyoch, J.; Jongjitwimol, J.; Ross, S.; Ross, G.M. Development of Natural Active Agent-Containing Porous Hydrogel Sheets with High Water Content for Wound Dressings. Gels 2023, 9, 459. [Google Scholar] [CrossRef] [PubMed]
- Aswathy, S.H.; NarendraKumar, U.; Manjubala, I. Physicochemical Properties of Cellulose-Based Hydrogel for Biomedical Applications. Polymers 2022, 14, 4669. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Rajput, M.; Barui, A.; Chatterjee, S.S.; Pal, N.K.; Chatterjee, J.; Mukherjee, R. Dual cross-linked honey coupled 3D antimicrobial alginate hydrogels for cutaneous wound healing. Mater. Sci. Eng. C 2020, 116, 111218. [Google Scholar] [CrossRef] [PubMed]
- Andriotis, E.G.; Eleftheriadis, G.K.; Karavasili, C.; Fatouros, D.G. Development of Bio-Active Patches Based on Pectin for the Treatment of Ulcers and Wounds Using 3D-Bioprinting Technology. Pharmaceutics 2020, 12, 56. [Google Scholar] [CrossRef]
- Hazirah, N.; Wan, B.C.; Nafchi, A.M.; Huda, N. Tensile Strength, Elongation at Breaking Point and Surface Color of a Biodegradable Film Based on a Duck Feet Gelatin and Polyvinyl Alcohol Blend. Asia Pac. J. Sustain. Agric. Food Energy 2018, 6, 16–21. [Google Scholar]
- Chopra, H.; Bibi, S.; Kumar, S.; Khan, M.S.; Kumar, P.; Singh, I. Preparation and Evaluation of Chitosan/PVA Based Hydrogel Films Loaded with Honey for Wound Healing Application. Gels 2022, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Fan, D.; Cao, W.; Zhu, C.; Duan, Z.; Fu, R.; Li, X.; Ma, X. Preparation and Characterization of Breathable Hemostatic Hydrogel Dressings and Determination of Their Effects on Full-Thickness Defects. Polymers 2017, 9, 727. [Google Scholar] [CrossRef] [PubMed]
- Saberian, M.; Seyedjafari, E.; Zargar, S.J.; Mahdavi, F.S.; Sanaei-rad, P. Fabrication and characterization of alginate/chitosan hydrogel combined with honey and aloe vera for wound dressing applications. J. Appl. Polym. Sci. 2021, 138, 51398. [Google Scholar] [CrossRef]
- Reay, S.L.; Jackson, E.L.; Ferreira, A.M.; Hilkens, C.M.U.; Novakovic, K. In vitro evaluation of the biodegradability of chitosan–genipin hydrogels. Mater. Adv. 2022, 3, 7946–7959. [Google Scholar] [CrossRef]
- Chin, S.W.; Azman, A.; Tan, J.W. Incorporation of natural and synthetic polymers into honey hydrogel for wound healing: A review. Health Sci. Rep. 2024, 7, e2251. [Google Scholar] [CrossRef]
- Hu, S.; Liu, Y.; Yin, Z.; Chen, H.; Jin, Y.; Zhang, A.; Zhang, M.; Hua, L.; Du, J.; Li, G. 3D printed polyvinylpyrrolidone–honey-gel with adhesive and degradable ability applied as bio-tape. APL Mater. 2024, 12, 041117. [Google Scholar] [CrossRef]
- Kudłacik-Kramarczyk, S.; Głąb, M.; Drabczyk, A.; Kordyka, A.; Godzierz, M.; Wróbel, P.S.; Krzan, M.; Uthayakumar, M.; Kędzierska, M.; Tyliszczak, B. Physicochemical Characteristics of Chitosan-Based Hydrogels Containing Albumin Particles and Aloe vera Juice as Transdermal Systems Functionalized in the Viewpoint of Potential Biomedical Applications. Materials 2021, 14, 5832. [Google Scholar] [CrossRef] [PubMed]
- Hemmat Esfe, M.; Esfandeh, S.; Kamyab, M.H. History and introduction. In Hybrid Nanofluids for Convection Heat Transfer; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–48. [Google Scholar]
- Jayawardena, I.; Wilson, K.; Plebanski, M.; Grøndahl, L.; Corrie, S. Morphology and Composition of Immunodiffusion Precipitin Complexes Evaluated via Microscopy and Proteomics. J. Proteome. Res. 2021, 20, 2618–2627. [Google Scholar] [CrossRef] [PubMed]
- Merryweather, D.J.; Weston, N.; Roe, J.; Parmenter, C.; Lewis, M.P.; Roach, P. Exploring the microstructure of hydrated collagen hydrogels under scanning electron microscopy. J. Microsc. 2023, 290, 40–52. [Google Scholar] [CrossRef]
- Scalzone, A.; Cerqueni, G.; Bonifacio, M.A.; Pistillo, M.; Cometa, S.; Belmonte, M.M.; Wang, X.N.; Dalgarno, K.; Ferreira, A.M.; De Giglio, E.; et al. Valuable effect of Manuka Honey in increasing the printability and chondrogenic potential of a naturally derived bioink. Mater. Today Bio. 2022, 14, 100287. [Google Scholar] [CrossRef] [PubMed]
- Denzer, B.R.; Kulchar, R.J.; Huang, R.B.; Patterson, J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021, 7, 158. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wu, J.; Wang, Z.; Song, F.; Gao, W.; Liu, S. Synthesis and properties of a temperature-sensitive hydrogel based on physical crosslinking via stereocomplexation of PLLA-PDLA. RSC Adv. 2020, 10, 19759–19769. [Google Scholar] [CrossRef] [PubMed]
- Dell, A.C.; Wagner, G.; Own, J.; Geibel, J.P. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics 2022, 14, 2596. [Google Scholar] [CrossRef]
- Scalzone, A.; Tonda-Turo, C.; Ferreira, A.M.; Gentile, P. 3D-printed Soft Hydrogels for Cell Encapsulation. In Soft Matter for Biomedical Applications; The Royal Society of Chemistry: London, UK, 2021; pp. 594–625. [Google Scholar]
- Brites, A.; Ferreira, M.; Bom, S.; Grenho, L.; Claudio, R.; Gomes, P.S.; Fernandes, M.H.; Marto, J.; Santos, C. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int. J. Pharm. 2023, 632, 122541. [Google Scholar] [CrossRef] [PubMed]
- Nezhad-Mokhtari, P.; Javanbakht, S.; Asadi, N.; Ghorbani, M.; Milani, M.; Hanifehpour, Y.; Gholizadeh, P.; Akbarzadeh, A. Recent advances in honey-based hydrogels for wound healing applications: Towards natural therapeutics. J. Drug. Deliv. Sci. Technol. 2021, 66, 102789. [Google Scholar] [CrossRef]
- Lo, A.Z.K.; Lukman, S.K.; Lai, C.-H.; Zain, N.M.; Saidin, S. “Stingless Bee Honey Incorporated Cellulose Hydrogel/Poly(Lactic-Co-Glycolic Acid) Patch as an Alternative Treatment for Aphthous Stomatitis. Cellul. Chem. Technol. 2021, 55, 539–603. [Google Scholar] [CrossRef]
- Abou Zekry, S.S.; Abdellatif, A.; Azzazy, H.M.E. Fabrication of pomegranate/honey nanofibers for use as antibacterial wound dressings. Wound Med. 2020, 28, 100181. [Google Scholar] [CrossRef]
- Samraj, S.M.D.; Kirupha, S.D.; Elango, S.; Vadodaria, K. Fabrication of nanofibrous membrane using stingless bee honey and curcumin for wound healing applications. J. Drug Deliv. Sci. Technol. 2021, 63, 102271. [Google Scholar] [CrossRef]
- Bonifacio, M.A.; Cochis, A.; Cometa, S.; Scalzone, A.; Gentile, P.; Procino, G.; Milano, S.; Scalia, A.C.; Rimondini, L.; De Giglio, E. Advances in cartilage repair: The influence of inorganic clays to improve mechanical and healing properties of antibacterial Gellan gum-Manuka honey hydrogels. Mater. Sci. Eng. C 2020, 108, 110444. [Google Scholar] [CrossRef]
- Schuhladen, K.; Raghu, S.N.V.; Liverani, L.; Neščáková, Z.; Boccaccini, A.R. Production of a novel poly(ɛ-caprolactone)-methylcellulose electrospun wound dressing by incorporating bioactive glass and Manuka honey. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 180–192. [Google Scholar] [CrossRef]
- Gaydhane, M.K.; Kanuganti, J.S.; Sharma, C.S. Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing. J. Mater. Res. 2020, 35, 600–609. [Google Scholar] [CrossRef]
- Hixon, K.R.; Bogner, S.J.; Ronning-Arnesen, G.; Janowiak, B.E.; Sell, S.A. Investigating Manuka Honey Antibacterial Properties When Incorporated into Cryogel, Hydrogel, and Electrospun Tissue Engineering Scaffolds. Gels 2019, 5, 21. [Google Scholar] [CrossRef]
- Iryani, W.; Ismail, W.; Izwan, S.; Razak, A.; Razali, M.H.; Anuar, K.; Amin, M.; Muktar, M.Z.; Ismail, W.I.W.; Razak, S.I.A.; et al. Accelerated Wound Healing of Physically Cross Linked Gellan Gum-Virgin Coconut Oil Hydrogel Containing Manuka Honey Article in ASM. ASM Sci. J. 2018, 11, 166–182. [Google Scholar]
- Rafati, Z.; Sirousazar, M.; Hassan, Z.M.; Kheiri, F. Honey-Loaded Egg White/Poly(vinyl alcohol)/Clay Bionanocomposite Hydrogel Wound Dressings: In Vitro and In Vivo Evaluations. J. Polym. Environ. 2020, 28, 32–46. [Google Scholar] [CrossRef]
Honey Types | Fabrication Approach | Physicochemical Properties | Chemical Properties | References |
---|---|---|---|---|
Raw honey (Punjab, India) | Hydrogel films (solvent-casting method) | WVTR ranged from 1650.50 ± 35.86 to 2698.65 ± 76.29 g/m2/day Tensile strength ranged from 4.74 ± 0.83 to 38.36 ± 5.39 N Elongation at break ranged from 30.58 ± 3.64 to 33.51 ± 2.47 mm | FTIR peaks at 2850 cm−1, 3700 cm−1, and 3000 cm−1 DSC thermograms (thermal behaviour) revealed 3 endothermic peaks at 103.06 °C, 27.94 °C, and 143.86 °C | Chopra et al. (2022) [106] |
Chicory honey | Hydrogel (freeze–thaw method) | Tensile strength ranged between 1.51 ± 0.16, 1.30 ± 0.10, and 1.10 ± 0.12 for 5%, 10%, and 20% v/v honey, respectively Elongation at break was observed at 46.8 ± 6.2% and 44.9 ± 4.8% for 10% and 20% v/v honey–chitosan hydrogels, respectively | SEM revealed average pore size of 38 ± 7 µm, 40 ± 9 µm, and 45 ± 10 µm for hydrogel with 5%, 10%, and 20% v/v of honey, respectively | Shamloo et al. (2021) [99] |
Raw honey (Mumbai, India) | Dual crosslinked 3D hydrogel | Weight loss ranged between 87.36%, 95.93%, 98.36%, 98.41%, and 99.29% for 4%, 0%, 2%, 6%, and 10% wt.% honey, respectively Contact angle ranged from 39.73 ± 0.7° to 46.39 ± 0.5° for 2% and 4% wt. honey, respectively | FTIR peaks at 778 cm−1, 818 cm−1, 1076 cm−1, 1261 cm−1, 1417 cm−1, and 1634 cm−1 XRD shows 2θ = 17.71°, 30.26°, and 33.78° with honey incorporation (4%, 6%, and 10%, respectively) | Mukhopadhyay et al. (2020) [103] |
Malabar honey | Hydrogel (cold mechanical method) | Swelling index ranged from 65 to 70% after 3 h for Carbopol–Malabar honey and chitosan–Malabar honey-based hydrogel, respectively | FTIR peaks at 3369.41 cm−1, 1056.92 cm−1, 1423.18 cm−1, 2873.74 cm, 3618.21 cm−1, 1058.90 cm−1, and 3498.63 cm−1 | Abraham et al. (2022) [98] |
Raw honey (Balparmak, Turkey) | Hydrogel (without any chemicals or crosslinking agents) | Viscosity ranged from 49,709 to 10,219 cP | FTIR peaks at 2910 cm−1, 1650 cm−1, 1054 cm−1, and 3300 cm−1 | Salva et al. (2023) [96] |
Common type of honey (Yazd, Iran) | Hydrogel film (freeze–thaw method) | Swelling ratio ranged from 324 ± 18% to 421 ± 11% Weight loss ranged from 52.5 ± 4.8% to 57.7 ± 8.8% Tensile strength ranged from 16.7 ± 0.3 to 19.8 ± 4.8 Mpa Elongation break varied from 241.0 ± 64.5% to 421.6 ± 45.8% | DSC thermograms (thermal behaviour) revealed 3 endothermic peaks at 168 °C, 232 °C, and 258 °C | Koosha et al. (2021) [100] |
Manuka honey | Gas-blown porous hydrogel sheets (redox-initiated free radical) | Swelling percentage of the hydrogels ranged from 1100% to 2000% and from 3100% to 4100% for 1% and 10% Manuka honey-containing hydrogel, respectively Porosity was of 21.73 ± 15.5% and 42.22 ± 11.1 for 1% and 10% Manuka honey-containing hydrogel, respectively | SEM revealed that the average pore sizes were 50.5 ± 11.2 µm and 51.5 ± 24.2 µm | Pinthong et al. (2023) [101] |
Manuka honey | 3D bioprinting hydrogel | The water uptake ability reached 500 ± 60% 3D bioprinting spreading ratio was 3.5 ± 0.1 mm, ranging from 0.5 mm as it exited the nozzle to 1.0 mm at the bottom The extrusion of longer fibres (13 mm) than bioink without honey, which formed a shorter, droplet-shaped filament (7 mm) | SEM revealed that the average pore sizes were 87.2 ± 9.5 µm | Scalzone et al. (2022) [116] |
Manuka honey | 3D bioprinting hydrogel | Swelling ratio of 3D bioprinting hydrogel was ranged from 400 to 480% for Manuka honey/pectin ratios below 0.025 (w/w) and above 0.1 (w/w) Minimal shape deviation from the theoretical dimensions of the patches when pectin concentrations ranged from 0.125 to 0.18% (w/v) in the ink and the Manuka honey/pectin ratio was above 0.05 (w/w) | Not stated | Andriotis et al. (2020) [104] |
Natural honey | 3D bioprinting hydrogel | The weight loss ranged from 15 to 20% | FTIR peaks at 3372 and 3264 cm−1 | Hu et al. (2024) [111] |
Raw honey (Layezangan, Fars, Iran) | Hydrogel (inter-polyelectrolyte complex method) | WVTR at 380.4 ± 21.5004 g/m2/day Contact angle at θ = 87.3° Porosity was 53.28% and 60.29% | Not stated | Saberian et al. (2021) [108] |
Types of Honey | Scaffold Type | Biomaterials | Antibacterial Effects | Biocompatibility and Cell Proliferation | Animal Model and Healing Effects | References |
---|---|---|---|---|---|---|
Manuka Honey | Hydrogel | Chitosan, polyvinyl alcohol (PVA), honey | Antibacterial effects against S. aureus and E. coli | Not stated | Not stated | Chopra et al. (2022) [106] |
Stingless Bee Honey, Giant Bee Honey, and Asian Bee Honey | Hydrogel | Sodium carboxymethyl cellulose (SCMC), hydroxypropyl methyl cellulose (HPMC), polyethylene glycol (PEG), honey | Antibacterial effects against S. aureus and E. coli | Human skin fibroblast cells: MTT assay and cell scratch assay | Not stated | Gopal et al. (2021) [37] |
Stingless Bee Honey | Hydrogel | Sodium carboxymethyl cellulose (SCMC), hydroxypropyl methyl cellulose (HPMC), polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), honey | Antibacterial effects against S. aureus and E. coli | Human skin fibroblast cells: MTT assay and cell scratch assay | Not stated | Lo et al. (2021) [123] |
Manuka Honey | Electrospun Nanofibers | Polyvinyl alcohol (PVA), pomegranate peel extract, bee venom, honey | Antibacterial effects against S. aureus and E. coli | L929 mouse fibroblast cells: MTT assay | Adult female Sprague Dawley rats with excisional wounds of 45 mm2 and healing duration of 10 days for all honey-containing hydrogels | Zekry et al. (2020) [124] |
Stingless Bee Honey | Electrospun Nanofibers | Gelatin, curcumin, honey | Antibacterial effects against S. aureus, E. coli, K. pneumonia, MRSA, P. aeruginosa, and A. baumannii | L929 mouse fibroblast cells: wound scratch assay | Male Wistar albino rats with excisional wounds of 314 mm2 and healing duration of 17 days for the honey-containing nanofibrous membrane | Samraj et al. (2020) [125] |
Manuka Honey | Hydrogel | Gellan gum, inorganic clay, honey | Antibacterial effects against S. epidermidis and S. aureus | Human mesenchymal stem cell (hMSC): trypan blue exclusion test, PrestoBlue™ assay and DAPI staining and fluorescence microscopy | Adult wild-type mice (C57BL/6JOlaHsd) with excisional wounds of 16 mm2 started to show immune responses and antibacterial effects after 1 week | Bonifacio et al. (2020) [126] |
Dabur Honey | Hydrogel | Sodium alginate, honey | Antibacterial effects against MRSA and E. coli | Human dermal fibroblast and human epidermal keratinocytes: MTT assay | Pathogen-free male Wistar rats with excisional wounds of 1 cm in diameter showing rapid healing on day 8 and fully closed by day 12 for 4% honey concentration | Mukhopadhyay et al. (2020) [103] |
Manuka Honey | Electrospun Fibrous Mat | Poly(ϵ-caprolactone) (PCL), methylcellulose (MC), honey | No antibacterial effects against S. aureus and E. coli | Human dermal fibroblasts (hDFs) and HaCaT cells: WST-8-assay and cell scratch assay | Not stated | Schuhladen et al. (2020) [127] |
Raw and unprocessed honey | Electrospun Nanofibrous Mat | Polyvinyl alcohol (PVA), cellulose acetate (CA), curcumin, honey | Antibacterial effects against E. coli | Not stated | Not stated | Gaydhane et al. (2020) [128] |
Manuka Honey | Hydrogel | Gellan gum (GG), virgin coconut oil (VCO), honey | Not stated | Not stated | Six-week-old female Sprague Dawley rats with excisional wound diameters of 8 mm showing clear epidermal regeneration after 14 days for 20% honey concentration | Iryani et al. [130] |
Natural Honey | Hydrogel | Polyvinyl alcohol (PVA), chitosan, clay, honey | Antibacterial effects against S. aureus | Peripheral blood mononuclear cells: MTT assay | Female Syrian mice with excisional wounds of 100 mm2 showing complete healing for honey-containing hydrogel at day 12 | Noori et al. (2018) [36] |
Manuka Honey | Hydrogel | Chitosan, Carbopol 934, honey | Antibacterial effects against P. aeruginosa, S. aureus, K. pneumonia, and S. pyogenes | Not stated | Eight-week-old albino mice with excisional wounds of 10 mm in diameter showing near-complete healing at day 9 for 75% honey concentration | El-Kased et al. (2017) [97] |
Natural Honey | Hydrogel | Polyvinyl alcohol (PVA), egg white, clay nanoparticles, honey | Not stated | Human peripheral blood mononuclear cells (PBMCs): flow cytometry assay | Eight-week-old female BALB/c mice with excisional wounds in the deep fascia showing near-complete healing at day 10 for bionanocomposite hydrogel group | Rafati et al. (2019) [131] |
Raw Honey | Hydrogel | Polyvinyl alcohol (PVA), chitosan, gelatin, honey | Antibacterial effects against P. aeruginosa and S. aureus | Human skin fibroblast cells: MTT assay | Male Wistar rats with excisional wounds of 4 cm2 showing a higher number of fibroblast cells in the epidermal layer on day 20 for the group with 20% honey concentration | Shamloo et al. (2021) [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainuddin, A.N.Z.; Mustakim, N.N.; Rosemanzailani, F.A.; Fadilah, N.I.M.; Maarof, M.; Fauzi, M.B. A Comprehensive Review of Honey-Containing Hydrogel for Wound Healing Applications. Gels 2025, 11, 194. https://doi.org/10.3390/gels11030194
Zainuddin ANZ, Mustakim NN, Rosemanzailani FA, Fadilah NIM, Maarof M, Fauzi MB. A Comprehensive Review of Honey-Containing Hydrogel for Wound Healing Applications. Gels. 2025; 11(3):194. https://doi.org/10.3390/gels11030194
Chicago/Turabian StyleZainuddin, Andik Nisa Zahra, Nurul Nadhirah Mustakim, Farah Alea Rosemanzailani, Nur Izzah Md Fadilah, Manira Maarof, and Mh Busra Fauzi. 2025. "A Comprehensive Review of Honey-Containing Hydrogel for Wound Healing Applications" Gels 11, no. 3: 194. https://doi.org/10.3390/gels11030194
APA StyleZainuddin, A. N. Z., Mustakim, N. N., Rosemanzailani, F. A., Fadilah, N. I. M., Maarof, M., & Fauzi, M. B. (2025). A Comprehensive Review of Honey-Containing Hydrogel for Wound Healing Applications. Gels, 11(3), 194. https://doi.org/10.3390/gels11030194