Multifunctional Hydrogel Microneedles (HMNs) in Drug Delivery and Diagnostics
Abstract
:1. Introduction
2. Key Materials for HMNs
2.1. Crosslinked and Hydrophilic Polymers: The Backbone of HMNs
2.1.1. Synthetic Polymers for Structural Integrity and Drug Delivery
2.1.2. Natural and Hybrid Polymers for Biocompatibility
2.2. Functionalized Nanoparticles and Crosslinking Agents for Enhanced Performance
2.2.1. Crosslinking Agents for Structural Reinforcement
2.2.2. Functionalized Nanoparticles for Targeted Therapy
2.3. Smart and Responsive Polymers for Controlled Drug Release and Biosensing
2.3.1. Temperature- and pH-Responsive Polymers
2.3.2. Electrically and Light-Responsive Hydrogels
2.4. Hybrid Hydrogels for Sustained Drug Release
2.4.1. Crosslinked Hybrid Polymers
2.4.2. Drug Reservoirs and Inclusion Complexes
3. Fabrication Techniques for HMNs
3.1. Polymerization and Crosslinking Techniques
3.2. 3D Printing and Micromolding Techniques
3.2.1. Micromolding for Standardized Microneedle Arrays
3.2.2. 3D Printing for High-Resolution Microneedle Fabrication
3.3. Smart and Enzyme-Mediated Microneedle Fabrication
3.3.1. Enzyme-Crosslinked Hydrogels for Tunable Properties
3.3.2. Functional Nanomaterial Integration for Enhanced Performance
3.4. Hybrid and Specialized Fabrication Techniques
4. Functional Properties of HMNs
4.1. Drug Permeation and Release Kinetics
4.1.1. Enhanced Skin Permeation and Transdermal Drug Absorption
4.1.2. Sustained and Controlled Drug Release
4.2. Mechanical Strength and Swelling Behavior
4.2.1. Structural Integrity and Skin Penetration Efficiency
4.2.2. Hydrogel Swelling and Drug Diffusion
4.3. Biosensing Sensitivity and Selectivity
4.3.1. Glucose and Lactate Monitoring for Diabetes Management
4.3.2. Non-Invasive Biomarker and Disease Monitoring
4.4. Biocompatibility, Targeted Therapy, and Safety
4.4.1. Minimal Invasiveness and High Patient Compliance
4.4.2. Tissue Regeneration and Targeted Therapy
5. Applications of HMNs in Drug Delivery and Diagnostics
5.1. HMNs for Drug Delivery
5.1.1. Treatment of Infectious Diseases
5.1.2. Chronic Disease Management
5.1.3. Wound Healing and Dermatological Applications
5.1.4. Cancer Therapy and Precision Drug Targeting
5.2. HMNs for Diagnostic and Biosensing Applications
5.2.1. Real-Time Disease Monitoring and Biomarker Detection
5.2.2. Continuous Glucose Monitoring and Diabetes Management
5.2.3. Early Disease Detection and Viral Diagnostics
6. Testing Framework for HMNs
6.1. Physicochemical and Mechanical Characterization
6.2. Drug Delivery Efficiency and Permeation Studies
6.3. Disease-Specific Therapeutic Applications
6.4. Wound Healing and Infection Treatment
6.5. Optical Studies
7. In Vivo and Clinal Trial Studies
7.1. In Vivo Studies (Animal Models)
7.2. Clinical Studies in Humans
8. Advances and Achievements in HMN Technology
8.1. Enhancing Transdermal Drug Delivery and Bioavailability
8.2. Biosensing and Smart Diagnostics: Revolutionizing Disease Monitoring
8.3. Regenerative Medicine and Wound Healing Innovations
8.4. Material Engineering and Fabrication Innovations
9. Challenges Limiting Clinical and Commercial Adoption
9.1. Challenges in Drug Release Precision and Control
9.2. Mechanical Strength, Structural Integrity, and Skin Penetration Issues
9.3. Stability and Scalability Challenges
9.4. Biosensing Accuracy and Clinical Validation Barriers
9.5. Regulatory, Clinical Translation, and Commercialization Barriers
9.5.1. Regulatory Hurdles
9.5.2. Cost Analysis and Manufacturing Scalability
9.5.3. Market Readiness and Commercial Adoption
10. Future Directions in Hydrogel Microneedle Research
10.1. Hybrid and Multifunctional Microneedle Systems
10.2. Integration of Nanotechnology for Enhanced Drug Delivery and Stability
10.3. Smart and Wearable Microneedle Patches for Real-Time Health Monitoring
10.4. Optimization of Mechanical Performance and Material Properties
10.5. Large-Scale Clinical Trials and Regulatory Pathways
10.6. Personalized and Precision Medicine Approaches
10.7. Development of Sustainable and Cost-Effective MN Fabrication Techniques
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Badry, A.S.; Al-Mayahy, M.H.; Scurr, D.J. Enhanced Transdermal Delivery of Acyclovir via Hydrogel Microneedle Arrays. J. Pharm. Sci. 2023, 112, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Anjani, Q.K.; Permana, A.D.; Carcamo-Martinez, A.; Dominguez-Robles, J.; Tekko, I.A.; Larraneta, E.; Vora, L.K.; Ramadon, D.; Donnelly, R.F. Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. Eur. J. Pharm. Biopharm. 2021, 158, 294–312. [Google Scholar] [CrossRef]
- Miao, M.Y.; Wu, Q.L.; Zhou, X.W.; Wang, L.L.; Chen, L.; Zhu, J.X. Interfacing hydrogel microneedle patch for diagnosis. Surf. Interfaces 2024, 55, 105474. [Google Scholar] [CrossRef]
- Chi, Y.; Zheng, Y.; Pan, X.; Huang, Y.; Kang, Y.; Zhong, W.; Xu, K. Enzyme-mediated fabrication of nanocomposite hydrogel microneedles for tunable mechanical strength and controllable transdermal efficiency. Acta Biomater. 2024, 174, 127–140. [Google Scholar] [CrossRef]
- Dai, Y.; Nolan, J.; Madsen, E.; Fratus, M.; Lee, J.; Zhang, J.; Lim, J.; Hong, S.; Alam, M.A.; Linnes, J.C.; et al. Wearable Sensor Patch with Hydrogel Microneedles for In Situ Analysis of Interstitial Fluid. ACS Appl. Mater. Interfaces 2023, 15, 56760–56773. [Google Scholar] [CrossRef] [PubMed]
- Dawud, H.; Edelstein-Pardo, N.; Mulamukkil, K.; Amir, R.J.; Abu Ammar, A. Hydrogel Microneedles with Programmed Mesophase Transitions for Controlled Drug Delivery. ACS Appl. Bio Mater. 2024, 7, 1682–1693. [Google Scholar] [CrossRef]
- Huang, S.; Liu, H.; Huang, S.; Fu, T.; Xue, W.; Guo, R. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohydr. Polym. 2020, 246, 116650. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; Li, S.; Zhao, P.; Wang, X.; Lu, S.; Shi, Y.; Chang, H. Separable nanocomposite hydrogel microneedles for intradermal and sustained delivery of antigens to enhance adaptive immune responses. Acta Biomater. 2024, 185, 203–214. [Google Scholar] [CrossRef]
- Aldawood, F.K.; Andar, A.; Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers 2021, 13, 2815. [Google Scholar] [CrossRef]
- Chandran, R.; Mohd Tohit, E.R.; Stanslas, J.; Salim, N.; Tuan Mahmood, T.M. Investigation and Optimization of Hydrogel Microneedles for Transdermal Delivery of Caffeine. Tissue Eng. Part C Methods 2022, 28, 545–556. [Google Scholar] [CrossRef]
- Demir, Y.K.; Metin, A.U.; Satiroglu, B.; Solmaz, M.E.; Kayser, V.; Mader, K. Poly (methyl vinyl ether-co-maleic acid)—Pectin based hydrogel-forming systems: Gel, film, and microneedles. Eur. J. Pharm. Biopharm. 2017, 117, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, M.; Gao, S.; Lei, D.; Su, Z.; Liang, F.; Tang, S.; Yang, H.; Huang, Y.Y.; Xie, W.; et al. Microneedles Constructed by Swellable Hydrogels Loaded with Celastrol for Efficient Treatment of Skin Infections Induced by Drug-Resistant Bacterial Strains. Langmuir 2024, 40, 26125–26136. [Google Scholar] [CrossRef]
- Di, S.; Yu, H.J.; Li, W.; Chen, X.; Feng, J.Y.; Li, C.J.; Xiong, W.; Zhang, Q. Glucose-responsive hydrogel-based microneedles containing phenylborate ester bonds and N-isopropylacrylamide moieties and their transdermal drug delivery properties. Eur. Polym. J. 2021, 148, 110348. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Morrow, D.I.; McCrudden, M.T.; Alkilani, A.Z.; Vicente-Perez, E.M.; O’Mahony, C.; Gonzalez-Vazquez, P.; McCarron, P.A.; Woolfson, A.D. Hydrogel-forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors. Photochem. Photobiol. 2014, 90, 641–647. [Google Scholar] [CrossRef] [PubMed]
- GhavamiNejad, P.; GhavamiNejad, A.; Zheng, H.; Dhingra, K.; Samarikhalaj, M.; Poudineh, M. A Conductive Hydrogel Microneedle-Based Assay Integrating PEDOT:PSS and Ag-Pt Nanoparticles for Real-Time, Enzyme-Less, and Electrochemical Sensing of Glucose. Adv. Healthc. Mater. 2023, 12, e2202362. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Xu, Z.; Zhao, H.; Deng, S.; Qu, Z.; Dou, R.; Liu, W. A minimally invasive sensing system based on hydrogel microneedle patches and Au/Cu2O nanospheres modified screen-printed carbon electrode for glucose monitoring in interstitial skin fluid. Microchem. J. 2024, 205, 111367. [Google Scholar] [CrossRef]
- Keyvani, F.; Zheng, H.; Kaysir, M.R.; Mantaila, D.F.; Ghavami Nejad, P.; Rahman, F.A.; Quadrilatero, J.; Ban, D.; Poudineh, M. A Hydrogel Microneedle Assay Combined with Nucleic Acid Probes for On-Site Detection of Small Molecules and Proteins. Angew. Chem. Int. Ed. Engl. 2023, 62, e202301624. [Google Scholar] [CrossRef]
- Avcil, M.; Celik, A. Microneedles in Drug Delivery: Progress and Challenges. Micromachines 2021, 12, 1321. [Google Scholar] [CrossRef]
- Baykara, D.; Bedir, T.; Ilhan, E.; Mutlu, M.E.; Gunduz, O.; Narayan, R.; Ustundag, C.B. Fabrication and optimization of 3D printed gelatin methacryloyl microneedle arrays based on vat photopolymerization. Front. Bioeng. Biotechnol. 2023, 11, 1157541. [Google Scholar] [CrossRef]
- Chen, D.Y.; Zhang, Y.; Chen, X.K.; He, Q.Y.; Wu, T.W.; Cao, X.P.; Liu, J.; You, X.Q. Hydrogel-Crosslinked Microneedles Based on Microwave-Assisted Drying Method. Adv. Polym. Technol. 2022, 2022, 12. [Google Scholar] [CrossRef]
- Darmau, B.; Sacchi, M.; Texier, I.; Gross, A.J. Self-Extracting Dextran-Based Hydrogel Microneedle Arrays with an Interpenetrating Bioelectroenzymatic Sensor for Transdermal Monitoring with Matrix Protection. Adv. Healthc. Mater. 2025, 14, e2403209. [Google Scholar] [CrossRef]
- Kim, M.; Jung, B.; Park, J.H. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 2012, 33, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Sen, O.; Poddar, P.; Sarkar, P.; Das, S.; Manna, S. Current advancements in microneedle technology for therapeutic and biomedical applications. Sens. Int. 2025, 6, 100325. [Google Scholar] [CrossRef]
- Chen, Y.J.; Cheng, H.W.; Yen, W.Y.; Tsai, J.H.; Yeh, C.Y.; Chen, C.J.; Liu, J.T.; Chen, S.Y.; Chang, S.J. The Treatment of Keloid Scars via Modulating Heterogeneous Gelatin-Structured Composite Microneedles to Control Transdermal Dual-Drug Release. Polymers 2022, 14, 4436. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Mei, J.; Zhang, L.; Wang, S.; Yuan, Y.; Li, J.; Liu, H.; Zhu, W.; Xu, D. Multifunctional Hydrogel Microneedle Patches Modulating Oxi-inflamm-aging for Diabetic Wound Healing. Small 2024, 20, e2407340. [Google Scholar] [CrossRef]
- Ausri, I.R.; Sadeghzadeh, S.; Biswas, S.; Zheng, H.; GhavamiNejad, P.; Huynh, M.D.T.; Keyvani, F.; Shirzadi, E.; Rahman, F.A.; Quadrilatero, J.; et al. Multifunctional Dopamine-Based Hydrogel Microneedle Electrode for Continuous Ketone Sensing. Adv. Mater. 2024, 36, e2402009. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, R.; Han, S.; Yu, Z.; Xu, B.; Xu, T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications-A Comprehensive Review. Polymers 2024, 16, 2568. [Google Scholar] [CrossRef]
- Barnum, L.; Quint, J.; Derakhshandeh, H.; Samandari, M.; Aghabaglou, F.; Farzin, A.; Abbasi, L.; Bencherif, S.; Memic, A.; Mostafalu, P.; et al. 3D-Printed Hydrogel-Filled Microneedle Arrays. Adv. Healthc. Mater. 2021, 10, e2001922. [Google Scholar] [CrossRef]
- Maimaiti, A.; Zhu, K.; Yan, B. Intelligent luminescent microneedle and hydrogel patches for visual monitoring of lactic acid and dopamine. Chem. Eng. J. 2024, 498, 155715. [Google Scholar] [CrossRef]
- Odinotski, S.; Dhingra, K.; GhavamiNejad, A.; Zheng, H.; GhavamiNejad, P.; Gaouda, H.; Mohammadrezaei, D.; Poudineh, M. A Conductive Hydrogel-Based Microneedle Platform for Real-Time pH Measurement in Live Animals. Small 2022, 18, e2200201. [Google Scholar] [CrossRef]
- Wang, P.; Pu, Y.; Ren, Y.; Kong, W.; Xu, L.; Zhang, W.; Shi, T.; Ma, J.; Li, S.; Tan, X.; et al. Enzyme-regulated NO programmed to release from hydrogel-forming microneedles with endogenous/photodynamic synergistic antibacterial for diabetic wound healing. Int. J. Biol. Macromol. 2023, 226, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Yang, G.; Liu, H.; Zhou, Z.; Zhang, S.; Gao, Y. Industrializable approach for preparing hydrogel microneedles and their application in melanoma treatment. Int. J. Pharm. 2024, 653, 123883. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Li, X.; Wang, M.; Ling, G.; Zhang, P. Glucose detection: In-situ colorimetric analysis with double-layer hydrogel microneedle patch based on polyvinyl alcohol and carboxymethyl chitosan. Int. J. Biol. Macromol. 2024, 277, 134408. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Mooney, K.; McCrudden, M.T.; Vicente-Perez, E.M.; Belaid, L.; Gonzalez-Vazquez, P.; McElnay, J.C.; Woolfson, A.D. Hydrogel-forming microneedles increase in volume during swelling in skin, but skin barrier function recovery is unaffected. J. Pharm. Sci. 2014, 103, 1478–1486. [Google Scholar] [CrossRef]
- Aung, N.N.; Ngawhirunpat, T.; Rojanarata, T.; Patrojanasophon, P.; Pamornpathomkul, B.; Opanasopit, P. Fabrication, characterization and comparison of alpha-arbutin loaded dissolving and hydrogel forming microneedles. Int. J. Pharm. 2020, 586, 119508. [Google Scholar] [CrossRef] [PubMed]
- An, X.B.; Qi, P.; Zeng, Y.; Zhang, D.; Wang, P. Detection of cytochrome c in biofilm-material interfacial microenvironment with hydrogel microneedle array. Sens. Actuator B-Chem. 2025, 426, 137087. [Google Scholar] [CrossRef]
- Chong, S.; Wei, C.; Feng, L.; Guo, R. Silk Fibroin-Based Hydrogel Microneedles Deliver alpha-MSH to Promote Melanosome Delivery for Vitiligo Treatment. ACS Biomater. Sci. Eng. 2023, 9, 3368–3378. [Google Scholar] [CrossRef]
- Dai, P.; Ge, X.; Sun, C.; Jiang, H.; Zuo, W.; Wu, P.; Liu, C.; Deng, S.; Yang, J.; Dai, J.; et al. A Novel Methacryloyl Chitosan Hydrogel Microneedles Patch with Sustainable Drug Release Property for Effective Treatment of Psoriasis. Macromol. Biosci. 2023, 23, e2300194. [Google Scholar] [CrossRef]
- Donnelly, R.F.; McCrudden, M.T.; Zaid Alkilani, A.; Larraneta, E.; McAlister, E.; Courtenay, A.J.; Kearney, M.C.; Singh, T.R.; McCarthy, H.O.; Kett, V.L.; et al. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS ONE 2014, 9, e111547. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Yu, H.J.; Wang, L.; Shen, D.; Liu, J. Preparation of phenylboronic acid-based glucose-responsive hydrogels and microneedles for regulated delivery of insulin. Eur. Polym. J. 2023, 192, 112061. [Google Scholar] [CrossRef]
- Mahfufah, U.; Fitri Sultan, N.A.; Nurul Fitri, A.M.; Elim, D.; Sya’ban Mahfud, M.A.; Wafiah, N.; Ardita Friandini, R.; Chabib, L.; Aliyah; Permana, A.D. Application of multipolymers system in the development of hydrogel-forming microneedle integrated with polyethylene glycol reservoir for transdermal delivery of albendazole. Eur. Polym. J. 2023, 183, 111762. [Google Scholar] [CrossRef]
- Nurul Fitri, A.M.; Elim, D.; Sya’ban Mahfud, M.A.; Fitri Sultan, N.A.; Saputra, M.D.; Afika, N.; Friandini, R.A.; Natsir Djide, N.J.; Permana, A.D. Polymeric hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from direct-compressed tablet reservoir for potential improvement of pulmonary hypertension therapy. Int. J. Pharm. 2023, 631, 122549. [Google Scholar] [CrossRef]
- Tekko, I.A.; Chen, G.; Dominguez-Robles, J.; Thakur, R.R.S.; Hamdan, I.M.N.; Vora, L.; Larraneta, E.; McElnay, J.C.; McCarthy, H.O.; Rooney, M.; et al. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int. J. Pharm. 2020, 586, 119580. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, X.; Liu, X.; Sun, B.; Li, L.; Zhao, Y. Responsive Hydrogel Microcarrier-Integrated Microneedles for Versatile and Controllable Drug Delivery. Adv. Healthc. Mater. 2021, 10, e2002249. [Google Scholar] [CrossRef]
- Li, J.Y.; Feng, Y.H.; He, Y.T.; Hu, L.F.; Liang, L.; Zhao, Z.Q.; Chen, B.Z.; Guo, X.D. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery. Acta Biomater. 2022, 153, 308–319. [Google Scholar] [CrossRef]
- Zhu, W.B.; Liu, Q.; Zhang, Z.H.; Wang, Y.J.; Mei, J.W.; Xu, D.D.; Zhou, J.; Su, Z.; Zhang, X.Z.; Zhu, C.; et al. Photothermal Microneedle Hydrogel Patch for Refractory Soft Tissue Injuries through Thermosensitized Anti-Inflammaging Modulation. Small Struct. 2024, 5, 18. [Google Scholar] [CrossRef]
- Guo, Q.; Su, W.; Wen, F.; Cai, J.; Huo, L.; Zhong, H.; Li, P. alpha-Amylase and polydopamine@polypyrrole-based hydrogel microneedles promote wound healing by eliminating bacterial infection. Int. J. Biol. Macromol. 2024, 281, 136604. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Vora, L.K.; Dominguez-Robles, J.; Naser, Y.A.; Li, M.; Larraneta, E.; Donnelly, R.F. Hydrogel-forming microneedles for rapid and efficient skin deposition of controlled release tip-implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 127, 112226. [Google Scholar] [CrossRef]
- Enggi, C.K.; Sulistiawati, S.; Himawan, A.; Raihan, M.; Iskandar, I.W.; Saputra, R.R.; Rahman, L.; Yulianty, R.; Manggau, M.A.; Donelly, R.F.; et al. Application of Biomaterials in the Development of Hydrogel-Forming Microneedles Integrated with a Cyclodextrin Drug Reservoir for Improved Pharmacokinetic Profiles of Telmisartan. ACS Biomater. Sci. Eng. 2024, 10, 1554–1576. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, Z.; Baidya, A.; Kim, H.J.; Wang, C.; Jiang, X.; Qu, M.; Zhu, J.; Ren, L.; Vajhadin, F.; et al. Biodegradable beta-Cyclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Water-Insoluble Drug. Adv. Healthc. Mater. 2020, 9, e2000527. [Google Scholar] [CrossRef]
- Saraswathy, K.; Agarwal, G.; Srivastava, A. Hyaluronic acid microneedles-laden collagen cryogel plugs for ocular drug delivery. J. Appl. Polym. Sci. 2020, 137, 49285. [Google Scholar] [CrossRef]
- Elim, D.; Fitri, A.M.N.; Mahfud, M.A.S.; Afika, N.; Sultan, N.A.F.; Hijrah; Asri, R.M.; Permana, A.D. Hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from polyethylene glycol reservoir: An ex vivo proof of concept study. Colloids Surf. B Biointerfaces 2023, 222, 113018. [Google Scholar] [CrossRef]
- Aziz, A.Y.R.; Hasir, N.A.; Imran, N.B.P.; Hamdan, M.F.; Mahfufah, U.; Wafiah, N.; Arjuna, A.; Utami, R.N.; Permana, A.D. Development of hydrogel-forming microneedles for transdermal delivery of albendazole from liquid reservoir. J. Biomater. Sci. Polym. Ed. 2023, 34, 1101–1120. [Google Scholar] [CrossRef]
- Feng, M.; Li, Y.; Sun, Y.; Liu, T.; Yunusov, K.E.; Jiang, G. Integration of metformin-loaded MIL-100(Fe) into hydrogel microneedles for prolonged regulation of blood glucose levels. Biomed. Phys. Eng. Express 2024, 10, 045004. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Niu, Y.; Li, Z.; Li, A.; Yang, H.; Xu, F.; Li, F. A Hydrogel Microneedle Patch for Point-of-Care Testing Based on Skin Interstitial Fluid. Adv. Healthc. Mater. 2020, 9, e1901201. [Google Scholar] [CrossRef]
- Mahfud, M.A.S.; Fitri, A.M.N.; Elim, D.; Sultan, N.A.F.; Saputra, M.D.; Afika, N.; Friandini, R.A.; Himawan, A.; Rahman, L.; Permana, A.D. Combination of synthetic and natural polymers on the characteristics and evaluation of transdermal hydrogel-forming microneedles preparations integrated with direct compressed tablets reservoir sildenafil citrate. J. Drug Deliv. Sci. Technol. 2023, 85, 104611. [Google Scholar] [CrossRef]
- Ghanma, R.; Anjani, Q.K.; Naser, Y.A.; Sabri, A.H.B.; Hutton, A.R.J.; Vora, L.K.; Himawan, A.; Greer, B.; McCarthy, H.O.; Donnelly, R.F. Risperidone-cyclodextrin complex reservoir combined with hydrogel-forming microneedle array patches for enhanced transdermal delivery. Eur. J. Pharm. Biopharm. 2024, 202, 114415. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-O.; Lim, Y.-M.; Lee, J.Y.; Park, J.-S. Polyvinylpyrrolidone based graphene oxide hydrogels by radiation crosslinking for conductive microneedle patches. Eur. Polym. J. 2023, 184, 111726. [Google Scholar] [CrossRef]
- Ramadon, D.; Muliawardani, F.; Nisrina, N.A.; Hamda, O.T.; Iswandana, R.; Wahyuni, T.; Kurniawan, A.; Hartrianti, P. Transdermal delivery of captopril using poly(vinyl pyrrolidone)/poly(vinyl alcohol)-based dissolving and hydrogel-forming microneedles: A proof of concept. Eur. Polym. J. 2024, 208, 112860. [Google Scholar] [CrossRef]
- Migdadi, E.M.; Courtenay, A.J.; Tekko, I.A.; McCrudden, M.T.C.; Kearney, M.C.; McAlister, E.; McCarthy, H.O.; Donnelly, R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release 2018, 285, 142–151. [Google Scholar] [CrossRef]
- Sabri, A.H.B.; Anjani, Q.K.; Utomo, E.; Ripolin, A.; Donnelly, R.F. Development and characterization of a dry reservoir-hydrogel-forming microneedles composite for minimally invasive delivery of cefazolin. Int. J. Pharm. 2022, 617, 121593. [Google Scholar] [CrossRef] [PubMed]
- Sabri, A.H.B.; Anjani, Q.K.; Donnelly, R.F. Synthesis and characterization of sorbitol laced hydrogel-forming microneedles for therapeutic drug monitoring. Int. J. Pharm. 2021, 607, 121049. [Google Scholar] [CrossRef] [PubMed]
- Tuncel, E.; Tort, S.; Han, S.; Yucel, C.; Tirnaksiz, F. Development and optimization of hydrogel-forming microneedles fabricated with 3d-printed molds for enhanced dermal diclofenac sodium delivery: A comprehensive in vitro, ex vivo, and in vivo study. Drug Deliv. Transl. Res. 2024, 1–30. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Liu, T.; Wu, C.; Li, J.; Cheng, J.; Wei, W.; Yang, F.; Zhou, L.; Zhang, Y.; et al. Microneedle Array Encapsulated with Programmed DNA Hydrogels for Rapidly Sampling and Sensitively Sensing of Specific MicroRNA in Dermal Interstitial Fluid. ACS Nano 2022, 16, 18366–18375. [Google Scholar] [CrossRef]
- Erkus, H.; Bedir, T.; Kaya, E.; Tinaz, G.B.; Gunduz, O.; Chifiriuc, M.C.; Ustundag, C.B. Innovative transdermal drug delivery system based on amoxicillin-loaded gelatin methacryloyl microneedles obtained by 3D printing. Materialia 2023, 27, 101700. [Google Scholar] [CrossRef]
- Fonseca, D.F.S.; Costa, P.C.; Almeida, I.F.; Dias-Pereira, P.; Correia-Sa, I.; Bastos, V.; Oliveira, H.; Vilela, C.; Silvestre, A.J.D.; Freire, C.S.R. Swellable Gelatin Methacryloyl Microneedles for Extraction of Interstitial Skin Fluid toward Minimally Invasive Monitoring of Urea. Macromol. Biosci. 2020, 20, e2000195. [Google Scholar] [CrossRef]
- Lin, W.; Lin, S.; Zhou, X.; Yang, F.; Lin, Z.; Li, S.; Zhang, H.; Ouyang, Y.; Zhu, J.; Sun, W.; et al. Biodegradable double-network GelMA-ACNM hydrogel microneedles for transdermal drug delivery. Front. Bioeng. Biotechnol. 2023, 11, 1110604. [Google Scholar] [CrossRef]
- Luo, Z.; Sun, W.; Fang, J.; Lee, K.; Li, S.; Gu, Z.; Dokmeci, M.R.; Khademhosseini, A. Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Adv. Healthc. Mater. 2019, 8, e1801054. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, K.; Jiang, T.; Li, S.; Chen, J.; Wu, Z.; Li, W.; Tan, R.; Wei, W.; Yang, X.; et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J. Nanobiotechnol. 2022, 20, 147. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, T.; Li, Y.; Fan, Y.; Shang, H.; Zhao, H.; Sun, H.; Yu, Z.; Han, M.; Wan, C. Gelatin methacryloyl microneedle loaded with 3D-MSC-Exosomes for the protection of ischemia-reperfusion. Int. J. Biol. Macromol. 2024, 275, 133336. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, T.; Shi, Y.; Li, Z.; Lu, S.; Jia, F.; Chang, H. Intradermal implantation of methotrexate-loaded puerarin-gelatin hydrogel via bubble-generating microneedles for psoriasis treatment. Int. J. Biol. Macromol. 2025, 284, 138201. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.J.; Liu, S.; Tong, Z.X.; Chen, T.T.; Yang, M.; Guo, Y.D.; Sun, H.X.; Wu, Y.; Chu, Y.Y.; Fan, L.H. Hydrogel-based microneedles of chitosan derivatives for drug delivery. React. Funct. Polym. 2022, 172, 105200. [Google Scholar] [CrossRef]
- Zheng, G.; Xie, J.; Yao, Y.; Shen, S.; Weng, J.; Yang, Q.; Yan, Q. MgO@polydopamine Nanoparticle-Loaded Photothermal Microneedle Patches Combined with Chitosan Gel Dressings for the Treatment of Infectious Wounds. ACS Appl. Mater. Interfaces 2024, 16, 12202–12216. [Google Scholar] [CrossRef] [PubMed]
- Al Sulaiman, D.; Chang, J.Y.H.; Bennett, N.R.; Topouzi, H.; Higgins, C.A.; Irvine, D.J.; Ladame, S. Hydrogel-Coated Microneedle Arrays for Minimally Invasive Sampling and Sensing of Specific Circulating Nucleic Acids from Skin Interstitial Fluid. ACS Nano 2019, 13, 9620–9628. [Google Scholar] [CrossRef]
- Yang, P.J.; Song, Q.H.; Zhang, L.J.; Liu, Z.Q. Dual cross-linking mechanism of sodium alginate composite hydrogel for adhesive microneedle patch preparation. Colloids Surf. A-Physicochem. Eng. Asp. 2024, 700, 134777. [Google Scholar] [CrossRef]
- Zhao, J.; Lv, J.; Ling, G.; Zhang, P. A swellable hydrogel microneedle based on cerium-metal organic frame composite nanozyme for detection of biomarkers. Int. J. Biol. Macromol. 2024, 254, 127745. [Google Scholar] [CrossRef]
- Behnam, V.; McManamen, A.M.; Ballard, H.G.; Aldana, B.; Tamimi, M.; Milosavic, N.; Stojanovic, M.N.; Rubin, M.R.; Sia, S.K. mPatch: A Wearable Hydrogel Microneedle Patch for In Vivo Optical Sensing of Calcium. Angew. Chem. Int. Ed. Engl. 2025, 64, e202414871. [Google Scholar] [CrossRef]
- Hu, Y.; Pan, Z.; De Bock, M.; Tan, T.X.; Wang, Y.; Shi, Y.; Yan, N.; Yetisen, A.K. A wearable microneedle patch incorporating reversible FRET-based hydrogel sensors for continuous glucose monitoring. Biosens. Bioelectron. 2024, 262, 116542. [Google Scholar] [CrossRef]
- Liang, J.; Yu, Y.; Li, C.; Li, Q.; Chen, P.; Li, W.; Liu, W.; Li, Z.; Liu, Y.; Zhang, S.; et al. Tofacitinib combined with melanocyte protector alpha-MSH to treat vitiligo through dextran based hydrogel microneedles. Carbohydr. Polym. 2023, 305, 120549. [Google Scholar] [CrossRef]
- Shirzadi, E.; Huynh, M.; GhavamiNejad, P.; Zheng, H.J.; Saini, A.; Bakhshandeh, F.; Keyvani, F.; Mantaila, D.; Rahman, F.A.; Quadrilatero, J.; et al. A PEDOT:PSS-Based Composite Hydrogel as a Versatile Electrode for Wearable Microneedle Sensing Platforms. Adv. Sens. Res. 2024, 3, 2300122. [Google Scholar] [CrossRef]
- Pi, M.L.; Liu, W.J.; Huang, B.B.; Wu, T.X.; Zhang, T.; Wang, W. Development of glucose/pH responsive smart hydrogel of carbopol and application in microneedles. J. Polym. Res. 2024, 31, 162. [Google Scholar] [CrossRef]
- Pearton, M.; Allender, C.; Brain, K.; Anstey, A.; Gateley, C.; Wilke, N.; Morrissey, A.; Birchall, J. Gene delivery to the epidermal cells of human skin explants using microfabricated microneedles and hydrogel formulations. Pharm. Res. 2008, 25, 407–416. [Google Scholar] [CrossRef]
- Fu, X.; Xian, H.; Xia, C.; Liu, Y.; Du, S.; Wang, B.; Xue, P.; Wang, B.; Kang, Y. Polymer homologue-mediated formation of hydrogel microneedles for controllable transdermal drug delivery. Int. J. Pharm. 2024, 666, 124768. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.M.; Yu, Z.T.; Tian, Y.; Zeng, M.Z.; Su, B.R.; Ding, J.; Wu, C.H.; Wei, D.; Sun, J.; Fan, H.S. Bi-layered hydrogel conduit integrating microneedles for enhanced neural recording and stimulation therapy in peripheral nerve injury repair. Sens. Actuator B-Chem. 2024, 413, 135917. [Google Scholar] [CrossRef]
- Nirmayanti, N.; Alhidayah, A.; Usman, J.T.; Nur, J.F.; Amir, M.N.; Permana, A.D. Combinatorial Approach of Thermosensitive Hydrogels and Solid Microneedles to Improve Transdermal Delivery of Valsartan: An In Vivo Proof of Concept Study. AAPS PharmSciTech 2022, 24, 5. [Google Scholar] [CrossRef]
- Sivaraman, A.; Banga, A.K. Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Deliv. Transl. Res. 2017, 7, 16–26. [Google Scholar] [CrossRef]
- Tobin, K.V.; Brogden, N.K. Thermosensitive biomaterial gels with chemical permeation enhancers for enhanced microneedle delivery of naltrexone for managing opioid and alcohol dependency. Biomater. Sci. 2023, 11, 5846–5858. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.W.; Li, Y.; Zhang, Z.W.; Dao, J.W.; Wei, D.X. Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanoparticles for mini-invasive androgenetic alopecia treatment. Bioact. Mater. 2024, 38, 95–108. [Google Scholar] [CrossRef]
- Yao, W.; Li, D.; Zhao, Y.; Zhan, Z.; Jin, G.; Liang, H.; Yang, R. 3D Printed Multi-Functional Hydrogel Microneedles Based on High-Precision Digital Light Processing. Micromachines 2019, 11, 17. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, H.; Yu, Z.; Yu, H.; Meng, D.; Zhu, L.; Li, H. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery. J. Colloid Interface Sci. 2024, 670, 1–11. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.; Alkilani, A.Z.; McCrudden, M.T.; O’Neill, S.; O’Mahony, C.; Armstrong, K.; McLoone, N.; Kole, P.; Woolfson, A.D. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: Potential for enhanced patient safety. Int. J. Pharm. 2013, 451, 76–91. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, L.; Du, L.; Zhou, Y.; Xu, K.; Chen, J.; He, Y.; Qu, Q.; Miao, Y.; Xing, M.; et al. Duo-role Platelet-rich Plasma: Temperature-induced fibrin gel and growth factors’ reservoir for microneedles to promote hair regrowth. J. Adv. Res. 2024, 55, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Wang, Z.; Chang, H.; Wang, L.; Chew, S.W.T.; Lio, D.C.S.; Cui, M.; Liu, L.; Tee, B.C.K.; Xu, C. Osmosis-Powered Hydrogel Microneedles for Microliters of Skin Interstitial Fluid Extraction within Minutes. Adv. Healthc. Mater. 2020, 9, e1901683. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.M.; Anjani, Q.K.; Adhami, M.; Hutton, A.R.J.; Larraneta, E.; Donnelly, R.F. Novel SmartReservoirs for hydrogel-forming microneedles to improve the transdermal delivery of rifampicin. J. Mater. Chem. B 2024, 12, 4375–4388. [Google Scholar] [CrossRef]
- Caffarel-Salvador, E.; Tuan-Mahmood, T.M.; McElnay, J.C.; McCarthy, H.O.; Mooney, K.; Woolfson, A.D.; Donnelly, R.F. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int. J. Pharm. 2015, 489, 158–169. [Google Scholar] [CrossRef]
- Park, W.; Maeng, S.W.; Mok, J.W.; Choi, M.; Cha, H.J.; Joo, C.K.; Hahn, S.K. Hydrogel Microneedles Extracting Exosomes for Early Detection of Colorectal Cancer. Biomacromolecules 2023, 24, 1445–1452. [Google Scholar] [CrossRef]
- Fitri, A.M.N.; Mahfufah, U.; Aziz, S.B.A.; Sultan, N.A.F.; Mahfud, M.A.S.; Saputra, M.D.; Elim, D.; Bakri, N.F.; Arjuna, A.; Sari, Y.W.; et al. Enhancement of skin localization of beta-carotene from red fruit (Pandanus conoideus Lam.) using solid dispersion-thermoresponsive gel delivered via polymeric solid microneedles. Int. J. Pharm. 2024, 660, 124307. [Google Scholar] [CrossRef]
- Yang, L.; Gao, Y.; Liu, Q.; Li, W.; Li, Z.; Zhang, D.; Xie, R.; Zheng, Y.; Chen, H.; Zeng, X. A Bacterial Responsive Microneedle Dressing with Hydrogel Backing Layer for Chronic Wound Treatment. Small 2024, 20, e2307104. [Google Scholar] [CrossRef]
- Wei, C.X.; You, C.A.; Zhou, L.M.; Liu, H.L.; Zhou, S.H.; Wang, X.A.; Guo, R. Antimicrobial hydrogel microneedle loading verteporfin promotes skin regeneration by blocking mechanotransduction signaling. Chem. Eng. J. 2023, 472, 144866. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Moffatt, K.; Alkilani, A.Z.; Vicente-Perez, E.M.; Barry, J.; McCrudden, M.T.; Woolfson, A.D. Hydrogel-forming microneedle arrays can be effectively inserted in skin by self-application: A pilot study centred on pharmacist intervention and a patient information leaflet. Pharm. Res. 2014, 31, 1989–1999. [Google Scholar] [CrossRef]
- Leanpolchareanchai, J.; Nuchtavorn, N. Response Surface Methodology for Optimization of Hydrogel-Forming Microneedles as Rapid and Efficient Transdermal Microsampling Tools. Gels 2023, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, S.I.; Nguyen, L.Q.; Bogh, K.L.; Keller, S.S. Dermal tissue penetration of in-plane silicon microneedles evaluated in skin-simulating hydrogel, rat skin and porcine skin. Biomater. Adv. 2023, 155, 213659. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.J.; Cheng, T.F.; Wang, J.Y. Hydroxyethyl methacrylate hydrogel microneedles with high mechanical strength and skin penetration by template method. J. Polym. Res. 2024, 31, 350. [Google Scholar] [CrossRef]
- Vicente-Perez, E.M.; Quinn, H.L.; McAlister, E.; O’Neill, S.; Hanna, L.A.; Barry, J.G.; Donnelly, R.F. The Use of a Pressure-Indicating Sensor Film to Provide Feedback upon Hydrogel-Forming Microneedle Array Self-Application In Vivo. Pharm. Res. 2016, 33, 3072–3080. [Google Scholar] [CrossRef]
- Li, L.P.H.; Li, A.W.; Chen, W.Y.; Cheng, C.H.; Chen, Y.B.; Liu, C.Y. Biocompatible and Implantable Hydrogel Optical Waveguide with Lens-Microneedles for Enhancing Light Delivery in Photodynamic Therapy. Adv. Photonics Res. 2024, 5, 2400031. [Google Scholar] [CrossRef]
- Sharma, M.B.; Kap, O.; Abdelmohsen, H.A.M.; Ashton, M.D.; Harper, G.R.; Firlak, M.; Aaltonen, J.E.; Bolland, K.A.; Bragg, R.; Deeley, S.; et al. Poly(2-Hydroxyethyl Methacrylate) Hydrogel-Based Microneedles for Metformin Release. Glob. Chall. 2023, 7, 2300002. [Google Scholar] [CrossRef]
- Ranjan Yadav, P.; Iqbal Nasiri, M.; Vora, L.K.; Larraneta, E.; Donnelly, R.F.; Pattanayek, S.K.; Bhusan Das, D. Super-swelling hydrogel-forming microneedle based transdermal drug delivery: Mathematical modelling, simulation and experimental validation. Int. J. Pharm. 2022, 622, 121835. [Google Scholar] [CrossRef] [PubMed]
- Luan, Q.; Qiao, R.; Wu, X.; Shan, J.; Song, C.; Zhao, X.; Zhao, Y. Plant-Derived Chinese Herbal Hydrogel Microneedle Patches for Wound Healing. Small 2024, 20, e2404850. [Google Scholar] [CrossRef]
- Ma, C.J.; He, Y.; Jin, X.; Zhang, Y.; Zhang, X.; Li, Y.; Xu, M.; Liu, K.; Yao, Y.; Lu, F. Light-regulated nitric oxide release from hydrogel-forming microneedles integrated with graphene oxide for biofilm-infected-wound healing. Biomater. Adv. 2022, 134, 112555. [Google Scholar] [CrossRef]
- Turner, J.G.; Laabei, M.; Li, S.; Estrela, P.; Leese, H.S. Antimicrobial releasing hydrogel forming microneedles. Biomater. Adv. 2023, 151, 213467. [Google Scholar] [CrossRef]
- Lu, S.J.; Li, Z.M.; Shi, Y.A.; Wang, X.; Chang, H. Efficient extraction of interstitial fluid using an ultrasonic-powered replaceable hexagram-shaped hydrogel microneedle patch for monitoring of dermal pharmacokinetics and psoriatic biomarkers. Chem. Eng. J. 2024, 500, 157293. [Google Scholar] [CrossRef]
- Al-Kasasbeh, R.; Brady, A.J.; Courtenay, A.J.; Larraneta, E.; McCrudden, M.T.C.; O’Kane, D.; Liggett, S.; Donnelly, R.F. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv. Transl. Res. 2020, 10, 690–705. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Chen, Y.; Zhang, G.; Wang, Q.; Li, Y. Integrated Microneedles and Hydrogel Biosensor Platform: Toward a Diagnostic Device for Collection and Dual-Mode Sensing of Monkeypox Virus A29 Protein. Anal. Chem. 2025, 97, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; GhavamiNejad, A.; GhavamiNejad, P.; Samarikhalaj, M.; Giacca, A.; Poudineh, M. Hydrogel Microneedle-Assisted Assay Integrating Aptamer Probes and Fluorescence Detection for Reagentless Biomarker Quantification. ACS Sens. 2022, 7, 2387–2399. [Google Scholar] [CrossRef]
- Suriyaamporn, P.; Dechsri, K.; Charoenying, T.; Ngawhirunpat, T.; Rojanarata, T.; Patrojanasophon, P.; Opanasopit, P.; Pamornpathomkul, B. Multiple strategies approach: A novel crosslinked hydrogel forming chitosan-based microneedles chemowrap patch loaded with 5-fluorouracil liposomes for chronic wound cancer treatment. Int. J. Biol. Macromol. 2024, 279, 134973. [Google Scholar] [CrossRef]
- Zhang, Q.; Na, J.; Liu, X.; He, J. Exploration of the Delivery of Oncolytic Newcastle Disease Virus by Gelatin Methacryloyl Microneedles. Int. J. Mol. Sci. 2024, 25, 2353. [Google Scholar] [CrossRef]
- Yue, W.; Guo, Y.J.; Wu, J.K.; Ganbold, E.; Kaushik, N.K.; Jaiswal, A.; Yu, N.N.; Wang, Y.; Lei, Y.F.; Oh, B.; et al. A wireless, battery-free microneedle patch with light-cured swellable hydrogel for minimally-invasive glucose detection. Nano Energy 2024, 131, 110194. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Lu, M.H.; Cao, X.Y.; Xia, M.; Zhao, M.Q.; Zhao, Y.J. Biomimetic Triplet Messenger RNA Formulation in MXene Hydrogel Microneedles for Wound Healing. Aggregate 2024, 6, e700. [Google Scholar] [CrossRef]
- Wang, J.; Ye, Y.; Yu, J.; Kahkoska, A.R.; Zhang, X.; Wang, C.; Sun, W.; Corder, R.D.; Chen, Z.; Khan, S.A.; et al. Core-Shell Microneedle Gel for Self-Regulated Insulin Delivery. ACS Nano 2018, 12, 2466–2473. [Google Scholar] [CrossRef]
- Enggi, C.K.; Satria, M.T.; Nirmayanti, N.; Usman, J.T.; Nur, J.F.; Asri, R.M.; Djide, N.J.N.; Permana, A.D. Improved transdermal delivery of valsartan using combinatorial approach of polymeric transdermal hydrogels and solid microneedles: An ex vivo proof of concept investigation. J. Biomater. Sci. Polym. Ed. 2023, 34, 334–350. [Google Scholar] [CrossRef]
- Sulistiawati, S.; Kristina Enggi, C.; Wiyulanda Iskandar, I.; Rachmad Saputra, R.; Sartini, S.; Rifai, Y.; Rahman, L.; Aswad, M.; Dian Permana, A. Bioavailability enhancement of sildenafil citrate via hydrogel-forming microneedle strategy in combination with cyclodextrin complexation. Int. J. Pharm. 2024, 655, 124053. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Das, D.B.; Vladisavljevic, G.T. Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel. Pharm. Res. 2014, 31, 1170–1184. [Google Scholar] [CrossRef]
- Nayak, A.; Babla, H.; Han, T.; Das, D.B. Lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel delivery by combined microneedle and ultrasound. Drug Deliv. 2016, 23, 658–669. [Google Scholar] [CrossRef] [PubMed]
- Eltayib, E.; Brady, A.J.; Caffarel-Salvador, E.; Gonzalez-Vazquez, P.; Zaid Alkilani, A.; McCarthy, H.O.; McElnay, J.C.; Donnelly, R.F. Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring. Eur. J. Pharm. Biopharm. 2016, 102, 123–131. [Google Scholar] [CrossRef]
- Sharma, M.B.; Abdelmohsen, H.A.M.; Kap, O.; Kilic, V.; Horzum, N.; Cheneler, D.; Hardy, J.G. Poly(2-Hydroxyethyl Methacrylate) Hydrogel-Based Microneedles for Bioactive Release. Bioengineering 2024, 11, 649. [Google Scholar] [CrossRef]
- Fu, W.; Li, Q.; Sheng, J.; Wu, H.; Ma, M.; Zhang, Y. Whole-Cell Vaccine Preparation Through Prussian Blue Nanoparticles-Elicited Immunogenic Cell Death and Loading in Gel Microneedles Patches. Gels 2024, 10, 838. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Mei, R.; Lv, B.; Zhao, X.; Bi, L.; Xu, H.; Chen, L. Hydrogel-Coated SERS Microneedles for Drug Monitoring in Dermal Interstitial Fluid. ACS Sens. 2024, 9, 2567–2574. [Google Scholar] [CrossRef]
- Pan, X.; Li, Y.; Pang, W.; Xue, Y.; Wang, Z.; Jiang, C.; Shen, C.; Liu, Q.; Liu, L. Preparation, characterisation and comparison of glabridin-loaded hydrogel-forming microneedles by chemical and physical cross-linking. Int. J. Pharm. 2022, 617, 121612. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, X.; Kim, H.J.; Qu, M.; Jiang, X.; Lee, K.; Ren, L.; Wu, Q.; Wang, C.; Zhu, X.; et al. Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid. Small 2020, 16, e1905910. [Google Scholar] [CrossRef]
- Olatunji, O.; Denloye, A. Production of Hydrogel Microneedles from Fish Scale Biopolymer. J. Polym. Environ. 2019, 27, 1252–1258. [Google Scholar] [CrossRef]
- Moghadas, H.; Kashaninejad, N. Drug Diffusion Inside a Non-Degradable Hydrogel Microneedle. Iran. J. Chem. Chem. Eng.-Int. Engl. Ed. 2024, 43, 3378–3386. [Google Scholar]
- Yu, W.; Jiang, G.; Liu, D.; Li, L.; Chen, H.; Liu, Y.; Huang, Q.; Tong, Z.; Yao, J.; Kong, X. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hao, B.; Ju, D.; Liu, M.; Zhao, H.; Du, Z.; Xia, J. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm. Sin. B 2015, 5, 569–576. [Google Scholar] [CrossRef]
- Zhou, L.; Zeng, Z.; Liu, J.; Zhang, F.; Bian, X.; Luo, Z.; Du, H.; Zhang, P.; Wen, Y. Double Bionic Deformable DNA Hydrogel Microneedles Loaded with Extracellular Vesicles to Guide Tissue Regeneration of Diabetes Ulcer Wound. Adv. Funct. Mater. 2023, 34, 2312499. [Google Scholar] [CrossRef]
- Sadeqi, A.; Kiaee, G.; Zeng, W.; Rezaei Nejad, H.; Sonkusale, S. Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery. Sci. Rep. 2022, 12, 1853. [Google Scholar] [CrossRef]
- Ruan, H.; Zhong, Y.; Ding, H.; He, Z.; Li, J.; Long, M.; Wang, Z.; Xia, Q.; Guo, T.; Zhu, C.; et al. Dual-continuous microneedle patch integrating transdermal delivery of pH-sensitive licorzinc MOFs and Zn2+ hydrogel sensors for treating alopecia areata. Chem. Eng. J. 2024, 499, 155961. [Google Scholar] [CrossRef]
- Hutton, A.R.J.; McCrudden, M.T.C.; Larraneta, E.; Donnelly, R.F. Influence of molecular weight on transdermal delivery of model macromolecules using hydrogel-forming microneedles: Potential to enhance the administration of novel low molecular weight biotherapeutics. J. Mater. Chem. B 2020, 8, 4202–4209. [Google Scholar] [CrossRef]
- Lin, F.; Zhuang, Y.P.; Xiang, L.; Ye, T.J.; Wang, Z.; Wu, L.X.; Liu, Y.P.; Deng, L.F.; Cui, W.G. Localization of Lesion Cells and Targeted Mitochondria Via Embedded Hydrogel Microsphere using Heat Transfer Microneedles. Adv. Funct. Mater. 2023, 33, 2212730. [Google Scholar] [CrossRef]
Key Materials and Additives | Notable Features | Reference |
---|---|---|
Polyvinyl alcohol (PVA) | Excellent swelling, biocompatibility, mechanical strength | [32,33,41,42,43,52,53,54,55,56] |
Polyvinylpyrrolidone (PVP) | Strong hydrogel formation, rapid dissolution properties | [42,49,52,57,58,59] |
Poly(ethylene glycol) (PEG) (various MWs) | Enhances microneedle flexibility and permeability | [1,2,6,39,60,61] |
Gantrez S-97 (Poly(methylvinylether-co-maleic acid)) | Super-swelling polymer, good mechanical properties | [34,39,61,62,63] |
Methacrylated hyaluronic acid (MeHA) | Crosslinked for strong gel matrix, biosensor compatibility | [8,16,36,46,64] |
Gelatin methacryloyl | Biodegradable, tunable crosslinking, mechanical robustness | [19,65,66,67,68,69,70,71] |
Chitosan (CS) | Biocompatibility, antimicrobial, wound healing properties | [38,54,55,72,73] |
Alginate (sodium alginate) | Hydrophilic, bioadhesive, tunable gel strength | [74,75,76] |
Polyacrylamide (PAM) | Crosslinking enhances durability | [77,78] |
Dextran methacrylate (DexMA) | Strong crosslinking, bioadhesive | [7,21,79] |
Dopamine | Conductivity, redox properties, bioadhesion | [15,26,30] |
Graphene oxide (GO) | Conductive, improves transdermal penetration | [17,58,80] |
Phenylboronic acid (PBA) | pH-sensitive, reversible binding | [13,40,81] |
Carbopol | Swelling property, enhances release, glucose/pH-responsive | [61,81,82] |
Silver Nanoparticles (AuNPs, AgNPs) | Strong antibacterial effect, enhanced wound healing, electrocatalyst | [15,16] |
Poly(ethylene glycol) diacrylate (PEGDA) | Tunable crosslinking density for sustained release | [69,77,83] |
Poly(N-isopropylacrylamide) (PNIPAAm) | Smart polymer, thermo-responsive swelling | [45,84] |
Poloxamer-based Hydrogels (P407, P188, PLGA-PEG-PLGA) | Temperature-responsive, enhanced skin permeability | [82,85,86,87] |
Hyaluronic acid (HA) | Strong water retention, bioavailability enhancement | [51,88] |
Fabrication Method | Advantages | Limitations | Cost | Biocompatibility | Ref # |
---|---|---|---|---|---|
Photopolymerization (UV or Visible Light Crosslinking) |
|
| Moderate to high (requires photoinitiators and precision equipment) | Requires assessment of photoinitiator safety for biocompatibility | [7,19,69,71] |
Enzyme-Mediated Crosslinking (HRP/H2O2, Transglutaminase, etc.) |
|
| High (requires cold storage and purification) | Excellent (highly biocompatible due to mild reaction conditions) | [4,31] |
3D Printing (SLA, DLP, Extrusion-Based, Vat Photopolymerization) |
|
| High (requires expensive 3D printers, specialized resins, and post-processing) | Requires careful polymer selection to ensure biocompatibility | [19,44,65,89] |
Micromolding (Solvent Casting, Freeze-Drying, Embossing, etc.) |
|
| Low (mold fabrication is a one-time cost; subsequent production is inexpensive) | Excellent (widely used in biomedical applications with established biocompatible materials) | [21,45,68,92] |
Chemical Crosslinking (Glutaraldehyde, PEG, Citric Acid, Carbodiimide, etc.) |
|
| Moderate (varies by crosslinking agent; some are expensive) | Requires careful purification to remove residual crosslinkers for biocompatibility | [11,52,59,60] |
Thermosensitive Hydrogel Formation (PNIPAAm, Poloxamer-Based Gels, etc.) |
|
| Low to moderate (raw materials are relatively inexpensive) | Requires polymer selection to ensure optimal biocompatibility | [45,86,87] |
Microwave-Assisted Crosslinking |
|
| Low to moderate (energy-efficient but requires specialized microwave equipment) | Requires careful control to prevent overheating | [20] |
Freeze-Thaw Cycling (Physical Crosslinking) |
|
| Low (no need for chemical additives, making it highly cost-effective) | Excellent (highly biocompatible as no chemical crosslinkers are used) | [47] |
Effervescent or Bubble-Generating Mechanisms (NaHCO3/Citric Acid, etc.) |
|
| Low (inexpensive raw materials and simple fabrication process) | Good (safe materials, but gas formation may cause localized irritation) | [71] |
Hybrid MNs (Rigid Outer Shell + Hydrogel Core) |
|
| High (requires multiple fabrication steps and specialized materials) | Excellent (well-controlled drug release with biocompatible hydrogel materials) | [28,48] |
Conductive Hydrogel Integration (PEDOT:PSS, Graphene Oxide, Metallic Nanoparticles, etc.) |
|
| High (conductive polymers and nanoparticles are expensive) | Moderate (some conductive materials have cytotoxicity concerns) | [15,16,80] |
Osmosis-Powered MNs (Maltose, Sorbitol, etc.) |
|
| Low (simple, affordable materials widely available) | Excellent (biocompatible non-toxic materials used) | [93] |
Functional Property | Key Observations and Technical Data | Reference |
---|---|---|
Swelling Capacity | Most HMNs exhibit swelling ratios between 150 and 4000%, allowing for increased drug loading and controlled release. PVA-, PVP-, and HA-based MNs show high swelling (>1000%), while PEG and Dex-MA MNs offer moderate swelling (300–800%). | [3,39,53,61,62,91,100,101] |
Skin Penetration Depth | From 100 to 900 µm, depending on MN composition and geometry; 3D-printed MNs typically reach 300–500 µm, while dissolving MNs exhibit lower penetration (~250 µm) due to degradation. | [19,51,66,102,103,104] |
Mechanical Strength (Force per Needle) | MN mechanical strength varies from 0.1 to 1.5 N/needle, with crosslinked GelMA, PVA, and PEGDA MNs exhibiting higher strengths (>0.5 N/needle), ensuring penetration without fracture. | [28,38,52,56,66,89,105,106] |
Drug-Loading Capacity | Varies widely based on polymer type and MN structure: low-molecular-weight drugs (e.g., caffeine, lidocaine): 5–50 µg/mg polymer; high-molecular-weight drugs (e.g., proteins, mAbs): 0.1–10 mg/mg polymer. | [2,21,32,39,41,42,83,107] |
Drug Release Kinetics | Fast-release MNs (HA, PEGDA, alginate) deliver 50–80% in first 2–6 h; sustained-release MNs (GelMA, Dex-MA, PNIPAAm) provide controlled release over 24 h to several days. | [6,7,13,42,45,49,54,86] |
Bioadhesiveness and Skin Retention | MNs with carbomer, gelatin, and chitosan enhance skin adhesion, ensuring prolonged contact and stable drug delivery. Retention time ranges from 30 min to 24 h, depending on formulation. | [11,62,75,108] |
Permeation Enhancement (Compared to Conventional Patches/Gels) | HMNs increase transdermal drug permeation by 3–50×, with caffeine, diclofenac, and valsartan showing >6-fold improvement. | [6,59,85,94,95] |
Photosensitivity (for Light-Activated Systems) | Photodynamic therapy (PDT)-based MNs (TMPyP, PPIX, verteporfin) exhibit peak drug activation under 405–650 nm wavelengths, ensuring deep tissue penetration for melanoma and skin cancer treatment. | [4,14,105] |
Glucose Monitoring Sensitivity | Detection range: 0.02–6 mM, with accuracy comparable to commercial glucometers. Conductive MNs (GO, PEDOT:PSS) enhance electrochemical response, enabling rapid glucose detection. | [15,21,33,58,78,80] |
Antibacterial and Antioxidant Properties | MNs containing silver nanoparticles, nitric oxide, and graphene oxide demonstrated >99% bacterial reduction, along with enhanced wound healing. | [47,73,109,110] |
Interstitial Fluid (ISF) Extraction Efficiency | Extraction volumes range from 5 to 15 µL in 1–5 min, with HA-based MNs showing fastest extraction. | [17,64,74,93,111] |
Wearable and Biosensor Compatibility | HMNs successfully integrated with electrochemical, fluorescence, and colorimetric sensors, enabling real-time biomarker monitoring for glucose, pH, and dopamine. | [5,15,30,80,112,113,114] |
Application Area | Primary Target (Drugs, Therapeutics, Biomarkers, etc.) | Notable Features | Reference |
---|---|---|---|
Antibiotic Delivery | Amoxicillin, Cefazolin, Vancomycin, Rifampicin | Targeting bacterial infections, increased permeation via MNs | [2,61,65,94,110] |
Antiviral Delivery | Acyclovir | Improved skin penetration for viral infection treatments | [1] |
Anti-Inflammatory Agents | Dexamethasone, Diclofenac, Ibuprofen Sodium | Localized, controlled release, reduced systemic effects | [6,39,63,107] |
Wound Healing and Regenerative Medicine | Growth Factors, Platelet-Rich Plasma (PRP), Taurine, Exosomes | Targeted delivery, enhanced healing, anti-inflammatory effects | [25,69,73,88,92,118] |
Cancer Therapy (Chemotherapy, PDT, Immunotherapy) | Doxorubicin, Tazarotene, Methotrexate, Oncolytic Viruses | Controlled release, targeting tumor microenvironments | [7,36,38,68,116] |
Psoriasis Treatment | Methotrexate, Nicotinamide, Puerarin | Sustained release, local effect, minimizing systemic toxicity | [38,71] |
Diabetes Management | Insulin, Metformin, Glucose-Responsive Hydrogels | Pain-free self-administration, glucose-responsive drug release | [13,40,44,45,54,81,119] |
Hypertension Therapy | Valsartan, Telmisartan, Captopril | Transdermal delivery to avoid first-pass metabolism | [49,59,120] |
Erectile Dysfunction Treatment | Sildenafil Citrate | Increased bioavailability, patient-friendly application | [42,52,56,121] |
Tuberculosis Therapy | Rifampicin, Isoniazid, Pyrazinamide | MN-assisted transdermal therapy for improved compliance | [2] |
Pain Management (Analgesics, Anesthesia) | Lidocaine, Caffeine | Rapid drug action, enhanced skin permeability | [10,122,123] |
Ophthalmic Drug Delivery | Antibacterial Formulations | Ocular-specific MNs, sustained drug release | [51] |
Photodynamic Therapy (PDT) | Photosensitizers (TMPyP, PPIX) | Light-activated therapy, enhanced transdermal absorption | [4,14,105] |
Melanoma Treatment and Skin Disorders | Asiatic Acid, Alpha-MSH, Azelaic Acid | Targeted skin treatment, enhanced drug penetration | [32,37] |
Metabolic Disease Management | Lithium, Ketone Monitoring | Non-invasive patient monitoring | [26,124] |
Neurodegenerative Disease Therapy | Caffeine, Dopamine-Based MNs | Targeting Alzheimer’s and Parkinson’s via transdermal delivery | [10,29] |
Hormonal Therapy | Estradiol, Melatonin | Sustained hormone release for long-term management | [125] |
Anti-Scarring and Skin Regeneration | Gallic Acid, Quercetin, Berberine | Dual-drug release, tissue regeneration | [24,108] |
Gene Delivery and Vaccination | Plasmid DNA, Lymphoma Vaccine, mRNA | Gene expression, immunotherapy applications | [118,126] |
Continuous Glucose Monitoring | Enzyme-Based Glucose Biosensors | Non-invasive, real-time glucose monitoring | [16,21,30,33,78,80,81] |
Blood Biomarker Monitoring | Glucose, Lactate, Dopamine, CRP, IL-1β, TNF-α | Continuous health tracking, wearable biosensors | [5,15,29,55,93,96,114] |
Real-Time Electrochemical Biosensors | Graphene-Based Sensors | High-sensitivity biomarker detection | [80] |
Drug Monitoring and Personalized Medicine | Real-Time Detection of Methotrexate, Theophylline, Isoniazid | Targeted drug release, improved adherence | [62,127] |
Testing and Evaluation | Key Observations and Technical Data | Reference |
---|---|---|
Mechanical Strength Testing | Compression force: 0.1–1.5 N/needle. Breakage resistance: most MNs withstand > 0.5 N for safe application. Insertion force range: 0.1–5 N. | [6,14,19,28,38,52,56,83,89,103,105,106] |
Swelling and Absorption Tests | Swelling ratios: 150–4000%. Hydrophilic polymers (PVA, PVP, HA, Dex-MA) show higher swelling. Time to full swelling: 5–30 min. | [3,33,39,53,61,62,100,101] |
Skin Penetration and Insertion Efficiency | Depth: 100–900 µm. Efficiency: confirmed via parafilm, porcine skin, and human skin models. Micropore closure rate: 24–48 h post application. | [19,51,66,102,103,104] |
Drug Release and Permeation Studies | Fast release: HA, PEGDA, alginate MNs (50–80% in first 2–6 h). Sustained release: GelMA, Dex-MA, PNIPAAm (24 h–weeks). Drug permeation enhancement: 3–50× vs. control. | [6,7,13,42,45,49,54,86] |
Transdermal Drug Delivery Enhancement | HMNs increase transdermal permeation 3–50×. Drugs like caffeine, diclofenac, and valsartan show six-fold+ improvement. Permeation rates: 20–90% of drug over 24–48 h. | [6,59,85,94,95] |
Histological and Microscopic Analysis | Needle morphology: SEM, AFM, OCT imaging. Micropore closure: tracked using OCT and TEWL analysis. Histology staining: Hematoxylin and Eosin (H&E), Masson’s Trichrome. | [10,34,66,100,103,104,111] |
Pharmacokinetics and Pharmacodynamics | Peak plasma concentration monitoring for sustained drug release evaluation. Area under the curve increase: 2–10× for MNs vs. oral/intravenous administration. Plasma half-life: extended 1.5–6× with MNs. | [39,57,60,86] |
Biomarker and ISF Extraction Studies | ISF extraction rates: 5–15 µL in 1–5 min. Common for glucose, lactate, urea, dopamine, cytokine monitoring. Recovery efficiency: 70–98% vs. blood sampling. | [5,15,17,64,74,93,111] |
Biosensing and Diagnostic Validation | HMNs successfully integrated with sensors (fluorescence, electrochemical, colorimetric) for real-time biomarker tracking. Glucose detection range: 0.02–6 mM, accuracy > 90%. | [15,21,58,78,80,112,114] |
Electrochemical and Optical Sensing | Sensitivity: detection limit 0.02–6 mM for glucose and other analytes, comparable to commercial glucometers. Response time: 5–10 min for in situ detection. | [15,21,33,58,78,80] |
Antibacterial and Antioxidant Testing | MNs loaded with silver nanoparticles, nitric oxide, and graphene oxide achieved >99% bacterial reduction in wound healing studies. Biofilm eradication efficiency: 80–98%. | [47,73,109,110] |
Light-Responsive and Photodynamic Therapy (PDT) Studies | Wavelength ranges: 405–650 nm. Used for melanoma, PDT treatments, and controlled drug release systems. Photothermal effect efficiency: 2–4× higher vs. standard light therapy. | [4,14,105] |
Toxicity and Biocompatibility Studies | Cell viability: >70% in keratinocytes, fibroblasts, and endothelial cells. Evaluated through hemolysis, MTT assays, and in vivo toxicity studies. No significant inflammatory response detected in in vivo studies. | [21,38,62,98,126] |
In Vivo Animal Models for Disease Treatment, Ex Vivo Model | Used in rats, mice, and porcine models for wound healing, diabetes, cancer therapy, and neurological disorders. Therapeutic efficacy vs. standard treatment: 1.5–5× improved. | [39,57,60,70,86,133,134] |
Patient and User Compliance Testing | Self-administration trials confirm minimal pain, high acceptance in volunteers, and enhanced compliance vs. injections. Pain score reduction: 3–7 points vs. hypodermic needles. Application time: 5–20 s. | [34,100,104,111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omidian, H.; Dey Chowdhury, S. Multifunctional Hydrogel Microneedles (HMNs) in Drug Delivery and Diagnostics. Gels 2025, 11, 206. https://doi.org/10.3390/gels11030206
Omidian H, Dey Chowdhury S. Multifunctional Hydrogel Microneedles (HMNs) in Drug Delivery and Diagnostics. Gels. 2025; 11(3):206. https://doi.org/10.3390/gels11030206
Chicago/Turabian StyleOmidian, Hossein, and Sumana Dey Chowdhury. 2025. "Multifunctional Hydrogel Microneedles (HMNs) in Drug Delivery and Diagnostics" Gels 11, no. 3: 206. https://doi.org/10.3390/gels11030206
APA StyleOmidian, H., & Dey Chowdhury, S. (2025). Multifunctional Hydrogel Microneedles (HMNs) in Drug Delivery and Diagnostics. Gels, 11(3), 206. https://doi.org/10.3390/gels11030206