CMC-Based Injectable Hydrogels Crosslinked by Diels–Alder Chemistry for Wound Healing Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of Fu Conjugated Carboxymethyl Cellulose (CMC-Fu)
2.2. Fabrication of Hydrogels and Rheological Analysis
2.3. Swelling Studies of Hydrogels
2.4. Morphologies of Hydrogels
2.5. Drug Loading and Release Studies
2.6. In Vitro Cytocompatibility of Hydrogels
2.7. Anti-Bacterial Analysis of Hydrogels
2.8. In Vitro Biodegradation Analysis of Hydrogels
3. Conclusions
4. Material and Methods
4.1. Materials
4.2. Measurements
4.3. Methods
Functionalization of CMC-Fu
4.4. Formation of Hydrogels via DA Reaction
4.5. Rheological Analysis of Hydrogels
4.6. Swelling Study
4.7. Curcumin Encapsulation and Release Studies
4.8. In Vitro Cytotoxicity
4.9. Anti-Bacterial Analysis
4.10. In Vitro Biodegradation Study
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sen, C.K. Human wound and its burden: Updated 2020 compendium of estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Michalicha, A.; Belcarz, A.; Giannakoudakis, D.A.; Staniszewska, M.; Barczak, M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. Materials 2024, 17, 278. [Google Scholar] [CrossRef]
- Kong, L.; Wu, Z.; Zhao, H.; Cui, H.; Shen, J.; Chang, J.; Li, H.; He, Y. Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl. Mater. Interfaces 2018, 10, 30103–30114. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef]
- Divyashri, G.; Badhe, R.V.; Sadanandan, B.; Vijayalakshmi, V.; Kumari, M.; Ashrit, P.; Bijukumar, D.; Mathew, M.T.; Shetty, K.; Raghu, A.V. Applications of hydrogel-based delivery systems in wound care and treatment: An up-to-date review. Polym. Adv. Technol. 2022, 33, 2025–2043. [Google Scholar] [CrossRef]
- Robson, M.C. Wound infection: A failure of wound healing caused by an imbalance of bacteria. Surg. Clin. N. Am. 1997, 77, 637–650. [Google Scholar] [CrossRef]
- Nandhini, J.; Karthikeyan, E.; Rajeshkumar, S. Nanomaterials for wound healing: Current status and futuristic frontier. Biomed. Technol. 2024, 6, 26–45. [Google Scholar] [CrossRef]
- McCarty, S.M.; Percival, S.L. Proteases and delayed wound healing. Adv. Wound Care 2013, 2, 438–447. [Google Scholar] [CrossRef]
- Simões, D.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P.; Mendonça, A.G.; Correia, I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018, 127, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Derwin, R.; Patton, D.; Avsar, P.; Strapp, H.; Moore, Z. The impact of topical agents and dressing on pH and temperature on wound healing: A systematic, narrative review. Int. Wound J. 2022, 19, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Barbu, A.; Neamtu, B.; Zăhan, M.; Iancu, G.M.; Bacila, C.; Mireșan, V. Current trends in advanced alginate-based wound dressings for chronic wounds. J. Pers. Med. 2021, 11, 890. [Google Scholar] [CrossRef]
- Tatarusanu, S.-M.; Lupascu, F.-G.; Profire, B.-S.; Szilagyi, A.; Gardikiotis, I.; Iacob, A.-T.; Caluian, I.; Herciu, L.; Giscă, T.-C.; Baican, M.-C.; et al. Modern approaches in wounds management. Polymers 2023, 15, 3648. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, J.; Yang, L.; Wang, W.; Yue, Z.; Li, J.; Shi, L.; Sun, T. Driven metal organic frameworks based hydrogels as wound dressing for anti-inflammatory and antibacterial. Appl. Organomet. Chem. 2024, 38, e7328. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, H.; Zhang, Z.; Chen, K.; Zhang, Q.; Zhang, C.; Gao, W.; Zheng, Y. Antibacterial Hydrogels for Wound Dressing Applications: Current Status, Progress, Challenges, and Trends. Gels 2024, 10, 495. [Google Scholar] [CrossRef] [PubMed]
- Amruth, P.; Akshay, P.; Jacob, M.R.; Joy, J.M.; Mathew, S. Developmental prospects of carrageenan-based wound dressing films: Unveiling techno-functional properties and freeze-drying technology for the development of absorbent films—A review. Int. J. Biol. Macromol. 2024, 276, 133668. [Google Scholar]
- Gefen, A.; Alves, P.; Beeckman, D.; Cullen, B.; Lázaro-Martínez, J.L.; Lev-Tov, H.; Santamaria, N.; Swanson, T.; Woo, K.; Söderström, B.; et al. Fluid handling by foam wound dressings: From engineering theory to advanced laboratory performance evaluations. Int. Wound J. 2024, 21, e14674. [Google Scholar] [CrossRef]
- Hargis, A.; Yaghi, M.; Bermudez, N.M.; Gefen, A. Foam Dressings for Wound Healing. Curr. Dermatol. Rep. 2024, 13, 28–35. [Google Scholar] [CrossRef]
- Aruan, N.M.; Sriyanti, I.; Edikresnha, D.; Suciati, T.; Munir, M.M.; Khairurrijal. Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing. Procedia Eng. 2017, 170, 31–35. [Google Scholar] [CrossRef]
- Jafari, D.; Gholipourmalekabadi, M.; Alizadeh, S.; Rajabi Fomeshi, M.; Amoupour, M.; Samadikuchaksaraei, A. Fabrication and characterization of a hydrocolloid wound dressing functionalized with human placental derived extracellular matrix for management of skin wounds: An animal study. Artif. Organs 2024, 48, 117–129. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.; Huang, S.; Guo, B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv. Colloid Interface Sci. 2024, 332, 103267. [Google Scholar] [CrossRef]
- Bibire, T.; Dănilă, R.; Yilmaz, C.N.; Verestiuc, L.; Nacu, I.; Ursu, R.G.; Ghiciuc, C.M. In vitro biological evaluation of an alginate-based hydrogel loaded with rifampicin for wound care. Pharmaceuticals 2024, 17, 943. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.-W.; Wang, Z.-Y.; Ren, Z.-W.; Zhang, X.-W.; Wei, D.-X. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater. Sci. 2022, 10, 3393–3409. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Li, Y.; Yang, Y.; Jin, M.; Lin, X.; Zhuang, Z.; Guo, K.; Zhang, T.; Tan, W. Application of collagen-based hydrogel in skin wound healing. Gels 2023, 9, 185. [Google Scholar] [CrossRef]
- Kang, J.I.; Park, K.M. Advances in gelatin-based hydrogels for wound management. J. Mater. Chem. B 2021, 9, 1503–1520. [Google Scholar] [CrossRef]
- Ali, I.; Gulfam, M.; Jo, S.-H.; Seo, J.-W.; Rizwan, A.; Park, S.-H.; Lim, K.T. Reduction-responsive and bioorthogonal carboxymethyl cellulose based soft hydrogels cross-linked via IEDDA click chemistry for cancer therapy application. Int. J. Biol. Macromol. 2022, 219, 109–120. [Google Scholar] [CrossRef]
- Ali, I.; Rizwan, A.; Vu, T.T.; Jo, S.-H.; Oh, C.-W.; Kim, Y.H.; Park, S.-H.; Lim, K.T. NIR-responsive carboxymethyl-cellulose hydrogels containing thioketal-linkages for on-demand drug delivery system. Int. J. Biol. Macromol. 2024, 260, 129549. [Google Scholar] [CrossRef]
- Cometa, S.; Licini, C.; Bonifacio, M.; Mastrorilli, P.; Mattioli-Belmonte, M.; De Giglio, E. Carboxymethyl cellulose-based hydrogel film combined with berberine as an innovative tool for chronic wound management. Carbohydr. Polym. 2022, 283, 119145. [Google Scholar] [CrossRef] [PubMed]
- Kanikireddy, V.; Varaprasad, K.; Jayaramudu, T.; Karthikeyan, C.; Sadiku, R. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int. J. Biol. Macromol. 2020, 164, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, Z.; Huang, J.; Zhao, M.; Wu, J. In situ formation of injectable hydrogels for chronic wound healing. J. Mater. Chem. B 2020, 8, 8768–8780. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Meng, Q.; Yang, Y.; Zhang, R.; Zhong, S.; Gao, Y.; He, W.; Cui, X. Photocrosslinked carboxymethylcellulose-based hydrogels: Synthesis, characterization for curcumin delivery and wound healing. Int. J. Biol. Macromol. 2024, 275, 133558. [Google Scholar] [CrossRef]
- Hu, S.; Dai, Y.; Xin, L.; Zheng, X.; Ye, Z.; Zhang, S.; Ma, L. Minimally invasive delivery of human umbilical cord-derived mesenchymal stem cells by an injectable hydrogel via Diels–Alder click reaction for the treatment of intrauterine adhesions. Acta Biomater. 2024, 177, 77–90. [Google Scholar] [CrossRef]
- Dimatteo, R.; Darling, N.J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 2018, 127, 167–184. [Google Scholar] [CrossRef]
- Li, A.; Ma, B.; Hua, S.; Ping, R.; Ding, L.; Tian, B.; Zhang, X. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydr. Polym. 2024, 333, 121952. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Raina, N.; Wahi, A.; Goh, K.W.; Sharma, P.; Nagpal, R.; Jain, A.; Ming, L.C.; Gupta, M. Wound-healing effects of curcumin and its nanoformulations: A comprehensive review. Pharmaceutics 2022, 14, 2288. [Google Scholar] [CrossRef] [PubMed]
- Siboro, S.A.; Anugrah, D.S.; Ramesh, K.; Park, S.-H.; Kim, H.-R.; Lim, K.T. Tunable porosity of covalently crosslinked alginate-based hydrogels and its significance in drug release behavior. Carbohydr. Polym. 2021, 260, 117779. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xu, S.; Zhao, J.; Zhu, H.; Pan, X.; Zhao, B.; Sun, Z.; Li, N.; Hou, X. Development of injectable in situ hydrogels based on hyaluronic acid via Diels-Alder reaction for their antitumor activities studies. Int. J. Biol. Macromol. 2024, 262, 129642. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Q.; Liao, Q.; Meldrum, O.W.; Guo, L.; Wang, K.; Zhang, S.; Liu, Y.; Chen, X.; Zhu, J.; Li, L. Mechanical properties and wound healing potential of bacterial cellulose-xyloglucan-dextran hydrogels. Carbohydr. Polym. 2023, 321, 121268. [Google Scholar] [CrossRef]
- Jeon, O.; Bouhadir, K.H.; Mansour, J.M.; Alsberg, E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 2009, 30, 2724–2734. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Z.; Huang, T.; Liu, L.; Liu, Q.; Zhao, Y.; Zeng, W.; Yi, Q.; Cao, D. Effect of chemical cross-linking on properties of gelatin/hyaluronic acid composite hydrogels. Polym.-Plast. Technol. Eng. 2013, 52, 45–50. [Google Scholar] [CrossRef]
- Biyani, S.R.; Moon, R.S.; Gattani, S.G.; Kothawade, S.A. Formulation and Evaluation of Cevimeline Hydrochloride Orally Dissolving Film for Sjogrens Syndrome by Optimal Design. World J. Pharm. Med. Res. 2019, 5, 166–178. [Google Scholar]
- Gulfam, M.; Jo, S.-H.; Jo, S.-W.; Vu, T.T.; Park, S.-H.; Lim, K.T. Highly porous and injectable hydrogels derived from cartilage acellularized matrix exhibit reduction and NIR light dual-responsive drug release properties for application in antitumor therapy. NPG Asia Mater. 2022, 14, 8. [Google Scholar] [CrossRef]
- Liuyun, J.; Yubao, L.; Chengdong, X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci. 2009, 16, 65. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Xia, Y.; Chen, Z.; Zong, R.; Meng, Q.; Wang, W.; Zhuang, W.; Meng, X.; Chen, G. Characterization of an Escherichia coli phage Tequatrovirus YZ2 and its application in bacterial wound infection. Virology 2024, 597, 110155. [Google Scholar] [CrossRef] [PubMed]
- Kannan, P.R.; Kumar, C.S.; Zhao, R.; Iqbal, M.Z.; Li, Y.; Kong, X. Dual-functional hydrogel with curcumin-loaded GelMA and silk fibroin for wound healing: Characterization and in vitro evaluation. Mater. Today Commun. 2025, 44, 112014. [Google Scholar] [CrossRef]
- El-Samad, L.M.; Hassan, M.A.; Basha, A.A.; El-Ashram, S.; Radwan, E.H.; Aziz, K.K.A.; Tamer, T.M.; Augustyniak, M.; El Wakil, A. Carboxymethyl cellulose/sericin-based hydrogels with intrinsic antibacterial, antioxidant, and anti-inflammatory properties promote re-epithelization of diabetic wounds in rats. Int. J. Pharm. 2022, 629, 122328. [Google Scholar] [CrossRef] [PubMed]
Sample | Fu/Mal Molar Ratio | Gelation Time (s) a |
---|---|---|
CMHG-A | 10/2.5 | 490 |
CMHG-B | 10/5 | 477 |
CMHG-C | 10/10 | 465 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Shahid, U.; Kim, S.-H.; Ramamoorthy, S.; Han, W.; Kim, M.; Gavande, V.; Lee, W.-K.; Shin, J.H.; Park, S.-H.; et al. CMC-Based Injectable Hydrogels Crosslinked by Diels–Alder Chemistry for Wound Healing Applications. Gels 2025, 11, 674. https://doi.org/10.3390/gels11090674
Ali I, Shahid U, Kim S-H, Ramamoorthy S, Han W, Kim M, Gavande V, Lee W-K, Shin JH, Park S-H, et al. CMC-Based Injectable Hydrogels Crosslinked by Diels–Alder Chemistry for Wound Healing Applications. Gels. 2025; 11(9):674. https://doi.org/10.3390/gels11090674
Chicago/Turabian StyleAli, Israr, Urwa Shahid, Seon-Hwa Kim, Suganthy Ramamoorthy, Won Han, Minseon Kim, Vishal Gavande, Won-Ki Lee, Joong Ho Shin, Sang-Hyug Park, and et al. 2025. "CMC-Based Injectable Hydrogels Crosslinked by Diels–Alder Chemistry for Wound Healing Applications" Gels 11, no. 9: 674. https://doi.org/10.3390/gels11090674
APA StyleAli, I., Shahid, U., Kim, S.-H., Ramamoorthy, S., Han, W., Kim, M., Gavande, V., Lee, W.-K., Shin, J. H., Park, S.-H., & Lim, K. T. (2025). CMC-Based Injectable Hydrogels Crosslinked by Diels–Alder Chemistry for Wound Healing Applications. Gels, 11(9), 674. https://doi.org/10.3390/gels11090674