The Impact of Tween 20 on the Physical Properties and Structure of Agar Gel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristic of Selected Properties of Agar Gel A and B
2.2. Comparision of Agar Gels A and B with Tween 20
2.3. Characteristics of Selected Physical Properties of Agar Gel A with Tween 20
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Selected Physical Properties of Agar Gels with and Without Tween 20
4.2.1. Agar A and Agar B Gels
4.2.2. Agar A and Agar B Gels with Addition of Tween 20
4.2.3. Characteristic of Agar A Gels with Tween 20
4.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Correa, S.; Grosskopf, A.K.; Lopez Hernandez, H.; Chan, D.; Yu, A.C.; Stapleton, L.M.; Appel, E.A. Translational applications of hydrogels. Chem. Rev. 2021, 121, 11385–11457. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.; Singh, J.; Bandral, J.D.; Gani, A.; Shams, R. Food hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. Int. J. Biol. Macromol. 2020, 165, 554–567. [Google Scholar] [CrossRef] [PubMed]
- López-Ramírez, A.M.; Duarte-Sierra, A. Avocado jelly: Formulation and optimization of an avocado gel using hydrocolloids. Int. J. Gastron. Food Sci. 2020, 21, 100234. [Google Scholar] [CrossRef]
- Jia, Y.; Sciutto, G.; Botteon, A.; Conti, C.; Focarete, M.L.; Gualandi, C.; Samorì, C.; Prati, S.; Mazzeo, R. Deep eutectic solvent and agar: A new green gel to remove proteinaceous-based varnishes from paintings. J. Cult. Herit. 2021, 51, 138–144. [Google Scholar] [CrossRef]
- vanVliet, T.; Walstra, P. Large deformation and fracture behaviour of gels. Faraday Discuss. 1995, 101, 359–370. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, M.; Yang, C.; Nishinari, K.; Fang, Y.; Ni, X.; Huang, W.; Dou, Z. An agar structured fluid prepared by pipe wall shear as a dysphagia diet. Food Hydrocolloids 2023, 135, 108095. [Google Scholar] [CrossRef]
- Ross, K.A.; Pyrak-Nolte, L.J.; Campanella, O.H. The effect of mixing conditions on the material properties of an agar gel—Microstructural and macrostructural considerations. Food Hydrocolloids 2006, 20, 79–87. [Google Scholar] [CrossRef]
- Marcotte, M.; Taherian Hoshahili, A.R.; Ramaswamy, H.S. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res. Int. 2001, 34, 695–703. [Google Scholar] [CrossRef]
- Barrangou, L.M.; Daubert, C.R.; Allen Foegeding, E. Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocolloids 2006, 20, 184–195. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Linde, M.; Gondek, E.; Kamińska-Dwórznicka, A.; Samborska, K.; Antoniuk, A. The effect of phytosterols addition on the textural properties of extruded crisp bread. J. Food Eng. 2015, 167, 156–161. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Gondek, E.; Kamińska-Dwórznicka, A.; Samborska, K.; Wiktor, A.; Królikowski, K. A complex approach to assessing properties of aerated agar-fructose gels: Application of acoustic emission technique. Food Hydrocolloids 2019, 91, 66–75. [Google Scholar] [CrossRef]
- Erkinbaev, C.; Herremans, E.; Nguyen Do Trong, N.; Jakubczyk, E.; Verboven, P.; Nicolaï, B.; Saeys, W. Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging. Innov. Food Sci. Emerg. Technol. 2014, 24, 131–137. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Marzec, A.; Mieszkowska, A.; Lenart, A. Structure influence on mechanical and acoustic properties of freeze-dried gels obtained with the use of hydrocolloids. J. Texture Stud. 2017, 48, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; You, Y.; Reis, R.L.; Kundu, S.C.; Li, J. Manipulating supramolecular gels with surfactants: Interfacial and non-interfacial mechanisms. Adv. Colloid. Interface Sci. 2023, 318, 102950. [Google Scholar] [CrossRef]
- Li, J.L.; Liu, X.Y.; Strom, C.S.; Xiong, J.Y. Engineering of small molecule organogels by design of the nanometer structure of fiber networks. Adv. Mater. 2006, 18, 2574–2578. [Google Scholar] [CrossRef]
- Raeisi Estabragh, M.A.; Sajadi Bami, M.; Dehghannoudeh, G.; Noudeh, Y.D.; Moghimipour, E. Cellulose derivatives and natural gums as gelling agents for preparation of emulgel-based dosage forms: A brief review. Int. J. Biol. Macromol. 2023, 241, 124538. [Google Scholar] [CrossRef] [PubMed]
- Lundblad, R.L.; Macdonald, F.M. Some Properties of Detergents and Surfactants Used in Biochemistry and Molecular Biology. In Handbook of Biochemistry and Molecular Biology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 813–818. [Google Scholar]
- Zhang, H.; Xu, G.; Liu, T.; Xu, L.; Zhou, Y. Foam and interfacial properties of Tween 20–bovine serum albumin systems. Colloids Surf. A Physicochem. Eng. Asp. 2013, 416, 23–31. [Google Scholar] [CrossRef]
- Kothekar, S.C.; Ware, A.M.; Waghmare, J.T.; Momin, S.A. Comparative analysis of the properties of Tween-20, Tween-60, Tween-80, Arlacel-60, and Arlacel-80. J. Dispers. Sci. Technol. 2007, 28, 477–484. [Google Scholar] [CrossRef]
- Green, A.J.; Littlejohn, K.A.; Hooley, P.; Cox, P.W. Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Curr. Opin. Colloid Interface Sci. 2013, 18, 292–301. [Google Scholar] [CrossRef]
- Raharitsifa, N.; Genovese, D.B.; Ratti, C. Characterization of apple juice foams for foam-mat drying prepared with egg white protein and methylcellulose. J. Food Sci. 2006, 71, E142–E151. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Bourret, E. Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour. Technol. 2003, 90, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Lignell, Å.; Pedersén, M. Agar composition as a function of morphology and growth rate. studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Bot. Mar. 1989, 32, 219–228. [Google Scholar] [CrossRef]
- Bird, K.T.; Ryther, J.H. Cultivation of Gracilaria verrucosa (Gracilariales, Rhodophyta) strain G-16 for agar. Hydrobiologia 1990, 204, 347–351. [Google Scholar] [CrossRef]
- Xiao, Q.; Weng, H.; Ni, H.; Hong, Q.; Lin, K.; Xiao, A. Physicochemical and gel properties of agar extracted by enzyme and enzyme-assisted methods. Food Hydrocolloids 2019, 87, 530–540. [Google Scholar] [CrossRef]
- Aranda-Lara, L.; Torres-García, E.; Oros-Pantoja, R. Biological tissue modeling with agar gel phantom for radiation dosimetry of 99mTc. Open J. Radiol. 2014, 4, 44–52. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Kamińska-Dwórznicka, A. Effect of addition of chokeberry juice concentrate and foaming agent on the physical properties of agar gel. Gels 2021, 7, 137. [Google Scholar] [CrossRef] [PubMed]
- Labropoulos, K.; Niesz, D.; Danforth, S.; Kevrekidis, P. Dynamic rheology of agar gels: Theory and experiments. Part II: Gelation behavior of agar sols and fitting of a theoretical rheological model. Carbohydr. Polym. 2002, 50, 407–415. [Google Scholar] [CrossRef]
- Labropoulos, K.C.; Rangarajan, S.; Niesz, D.E.; Danforth, S.C. Dynamic rheology of agar gel based aqueous binders. J. Am. Ceram. Soc. 2001, 84, 1217–1224. [Google Scholar] [CrossRef]
- Zhao, X.; Li, D.; Wang, L.J.; Wang, Y. Rheological properties and microstructure of a novel starch-based emulsion gel produced by one-step emulsion gelation: Effect of oil content. Carbohydr. Polym. 2022, 281, 119061. [Google Scholar] [CrossRef]
- Bertasa, M.; Dodero, A.; Alloisio, M.; Vicini, S.; Riedo, C.; Sansonetti, A.; Scalarone, D.; Castellano, M. Agar gel strength: A correlation study between chemical composition and rheological properties. Eur. Polym. J. 2020, 123, 109442. [Google Scholar] [CrossRef]
- Ikeda, S.; Foegeding, E.A. Dynamic viscoelastic properties of thermally induced whey protein isolate gels with added lecithin. Food Hydrocolloids 1999, 13, 245–254. [Google Scholar] [CrossRef]
- Ellis, A.L.; Norton, A.B.; Mills, T.B.; Norton, I.T. Stabilisation of foams by agar gel particles. Food Hydrocolloids 2017, 73, 222–228. [Google Scholar] [CrossRef]
- Thuy, N.M.; Tien, V.Q.; Van Tai, N.; Minh, V.Q. Effect of Foaming Conditions on Foam Properties and Drying Behavior of Powder from Magenta (Peristropheroxburghiana) Leaves Extracts. Horticulturae 2022, 8, 546. [Google Scholar] [CrossRef]
- Zúñiga, R.; Aguilera, J. Structure–fracture relationships in gas-filled gelatin gels. Food Hydrocolloids 2009, 23, 1351–1357. [Google Scholar] [CrossRef]
- Lau, M.H.; Tang, J.; Paulson, A.T. Texture profile and turbidity of gellan/gelatin mixed gels. Food Res. Int. 2000, 33, 665–671. [Google Scholar] [CrossRef]
- Bourne, M.C. Texture profile of ripening pears. J. Food Sci. 1968, 33, 223–226. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Marzec, A.; Ranachowski, Z. Acoustic properties of foods. In Food Properties Handbook; Rahman, M.S., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 811–841. [Google Scholar]
- Herremans, E.; Bongaers, E.; Estrade, P.; Gondek, E.; Hertog, M.; Jakubczyk, E.; Nguyen Do Trong, N.; Rizzolo, A.; Saeys, W.; Spinelli, L.; et al. Microstructure–texture relationships of aerated sugar gels: Novel measurement techniques for analysis and control. Innov. Food Sci. Emerg. Technol. 2013, 18, 202–211. [Google Scholar] [CrossRef]
- Nikkilä, I.; Waldén, M.; Maina, N.H.; Tenkanen, M.; Mikkonen, K.S. Fungal cell biomass from enzyme industry as a sustainable source of hydrocolloids. Front. Chem. Eng. 2020, 2, 574072. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Kamińska-Dwórznicka, A.; Kot, A. The rheological properties and texture of agar gels with canola oil-effect of mixing rate and addition of lecithin. Gels 2022, 8, 738. [Google Scholar] [CrossRef] [PubMed]
- Abd Karim, A.; Wai, C.C. Characteristics of foam prepared from starfruit (Averrhoa carambola L.) puree by using methyl cellulose. Food Hydrocolloids 1999, 13, 203–210. [Google Scholar] [CrossRef]
- Orrego, M.; Troncoso, E.; Zúñiga, R.N. Aerated whey protein gels as new food matrices: Effect of thermal treatment over microstructure and textural properties. J. Food Eng. 2015, 163, 37–44. [Google Scholar] [CrossRef]
Parameter | Agar Gel A | Agar Gel B |
---|---|---|
Water activity | 0.985 ± 0.001 a | 0.986 ± 0.002 a |
Density, g/cm–3 | 1.094 ± 0.001 a | 1.095 ± 0.007 a |
Syneresis index, % | 1.20 ± 0.50 a | 1.28 ± 0.40 a |
Maximal force, N | 24.15 ± 1.80 a | 26.14 ± 2.40 a |
Tween Concentration, % | Hardness, N | Springiness | Cohesiveness | Gumminess, N |
---|---|---|---|---|
0.00 | 11.71 ± 4.19 a | 0.91 ± 0.01 a | 0.68 ± 0.02 a | 7.68 ± 0.05 a |
0.10 | 1.98 ± 0.19 b | 0.89 ± 0.05 ab | 0.59 ± 0.03 b | 1.16 ± 0.10 b |
0.15 | 0.78 ± 0.11 c | 0.83 ± 0.02 b | 0.60 ± 0.02 b | 0.47 ± 0.07 c |
0.20 | 1.01 ± 0.14 c | 0.70 ± 0.04 c | 0.59 ± 0.01 b | 0.59 ± 0.09 c |
0.35 | 0.75 ± 0.15 c | 0.75 ± 0.07 bc | 0.56 ± 0.03 bc | 0.43 ± 0.10 c |
0.70 | 0.87 ± 0.14 c | 0.67 ± 0.04 c | 0.54 ± 0.03 c | 0.47 ± 0.09 c |
Tween Concentration, % | Number of AE Events | Total Acoustic Energy, a.u. | Duration of AE Event, μs |
---|---|---|---|
0.00 | - | - | - |
0.10 | 110 ± 18 a | 22.3 ± 3.2 bc | 54 ± 3 d |
0.15 | 79 ± 10 b | 17.3 ± 2.8 c | 82 ± 4 ab |
0.20 | 56 ± 11 c | 25.4 ± 5.0 bc | 77 ± 3 b |
0.35 | 62 ± 13 bc | 30.2 ± 5.4 b | 89 ± 4 a |
0.70 | 120 ± 23 a | 60.4 ± 7.4 a | 62 ± 2 c |
Tween Concentration, % | Gas Hold-Up, % | Syneresis Index, % | TSI | Mean Diameter, mm |
---|---|---|---|---|
0.00 | - | 3.20 ± 0.50 d | 5.06 ± 0.05 a | - |
0.10 | 70.4 ± 0.2 d | 5.82 ± 0.47 c | 2.35 ± 0.09 d | 0.168 b |
0.15 | 73.9 ± 0.2 c | 7.12 ± 0.11 b | 2.01 ± 0.21 e | 0.203 a |
0.20 | 78.7 ± 0.7 b | 6.59 ± 0.26 bc | 2.75 ± 0.20 c | 0.196 ab |
0.35 | 78.0 ± 0.5 b | 9.80 ± 0.90 a | 4.15 ± 0.11 b | 0.251 a |
0.70 | 81.0 ± 0.4 a | 5.99 ± 0.14 c | 2.05 ± 0.10 e | 0.183 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, E.; Kamińska-Dwórznicka, A.; Kot, A. The Impact of Tween 20 on the Physical Properties and Structure of Agar Gel. Gels 2025, 11, 159. https://doi.org/10.3390/gels11030159
Jakubczyk E, Kamińska-Dwórznicka A, Kot A. The Impact of Tween 20 on the Physical Properties and Structure of Agar Gel. Gels. 2025; 11(3):159. https://doi.org/10.3390/gels11030159
Chicago/Turabian StyleJakubczyk, Ewa, Anna Kamińska-Dwórznicka, and Anna Kot. 2025. "The Impact of Tween 20 on the Physical Properties and Structure of Agar Gel" Gels 11, no. 3: 159. https://doi.org/10.3390/gels11030159
APA StyleJakubczyk, E., Kamińska-Dwórznicka, A., & Kot, A. (2025). The Impact of Tween 20 on the Physical Properties and Structure of Agar Gel. Gels, 11(3), 159. https://doi.org/10.3390/gels11030159