The Impact of GAGs, Cross-Link Maturity and Telopeptides on the Formation of a Porcine Collagen-Based Hydrogel
Abstract
1. Introduction
2. Results and Discussion
2.1. Preparation of the Collagen-Based Hydrogels
2.2. Characterisation of the Porcine Collagen-Rich Lyophilisates
2.2.1. Compositions of the Amino Acid and GAGs
2.2.2. Structural Characterisation
2.2.3. Morphological Assessment of the Internal Hydrogel Structure
2.3. Factors for Successful Gelation
3. Conclusions
4. Materials and Methods
4.1. Isolation of Collagen
4.1.1. Procedure A
4.1.2. Procedure B
4.1.3. Procedure B with Exposure to Pepsin
4.2. Preparation of the Collagen Hydrogels
4.3. Characterisation of the Porcine Collagen-Rich Lyophilisates
4.4. Statistical Analysis
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taghipour, Y.D.; Hokmabad, V.R.; Bakhshayesh, A.R.D.; Asadi, N.; Salehi, R.; Nasrabadi, H.T. The Application of Hydrogels Based on Natural Polymers for Tissue Engineering. Curr. Med. Chem. 2020, 27, 2658–2680. [Google Scholar] [CrossRef]
- Yang, J.; Sun, X.; Zhang, Y.; Chen, Y. Chapter 10—The application of natural polymer–based hydrogels in tissue engineering. In Hydrogels Based on Natural Polymers, 1st ed.; Chen, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 273–307. Available online: https://shop.elsevier.com/books/hydrogels-based-on-natural-polymers/chen/978-0-12-816421-1 (accessed on 1 September 2024).
- Badylak, S.F.; Freytes, D.O.; Gilbert, T.W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2015, 23, S17–S26. [Google Scholar] [CrossRef]
- Syedain, Z.; Reimer, J.; Lahti, M.; Berry, J.; Johnson, S.; Bianco, R.; Tranquillo, R.T. Tissue engineering of acellular vascular grafts capable of somatic growth inyoung lambs. Nat. Commun. 2016, 7, 12951. [Google Scholar] [CrossRef] [PubMed]
- Antoine, E.E.; Vlachos, P.P.; Rylander, M.N. Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments. PLoS ONE 2015, 10, e0122500. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, T.C.; Wilkins, B.; Black, A.; Jockenhoevel, S.; Smith, T.J.; Pandit, A.S. A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications. Biomaterials 2006, 27, 2233–2246. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Hockaday, L.A.; Kang, K.H.; Butcher, J.T. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. Part A 2013, 101A, 1255–1264. [Google Scholar] [CrossRef]
- Duconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocoll. 2015, 43, 360–376. [Google Scholar] [CrossRef]
- Fratzl, P. Collagen: Structure and Mechanics; Springer: New York, NY, USA, 2008. [Google Scholar]
- Sarrigiannidis, S.O.; Rey, J.M.; Dobre, O.; González-García, C.; Dalby, M.J.; Salmeron-Sanchez, M. A tough act to follow: Collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio 2021, 10, 100098. [Google Scholar] [CrossRef]
- Silver, F.H.; Freeman, J.W.; Seehra, G.P. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 2003, 36, 1529–1553. [Google Scholar] [CrossRef]
- Yang, Y.; Motte, S.; Kaufman, L.J. Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 2010, 31, 5678–5688. [Google Scholar] [CrossRef]
- Yang, Y.L.; Kaufman, L.J. Rheology and confocal reflectance microscopy as probes of mechanical properties and structure during collagen and collagen/hyaluronan self-assembly. Biophys. J. 2009, 96, 1566–1585. [Google Scholar] [CrossRef]
- Prockop, D.J.; Fertala, A. Inhibition of the Self-assembly of Collagen I into Fibrils with Synthetic Peptides: Demonstration that Assembly is Driven by Specific Binding Sites on the Monomers. J. Biolog. Chem. 1998, 273, 15598–15604. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, S.; Shen, L.; Li, G. Factors affecting thermal stability of collagen from the aspects of extraction, processing and modification. J. Leather Sci. Eng. 2020, 2, 19. [Google Scholar] [CrossRef]
- Matinong, A.M.E.; Chisti, Y.; Pickering, K.L.; Haverkamp, R.G. Collagen Extraction from Animal Skin. Biology 2022, 11, 905. [Google Scholar] [CrossRef] [PubMed]
- Gobeaux, F.; Mosser, G.; Anglo, A.; Panine, P.; Davidson, P.; Giraud-Guille, M.-M.; Belamie, E. Fibrillogenesis in dense collagen solutions: A physicochemical study. J. Mol. Biol. 2008, 376, 1509–1522. [Google Scholar] [CrossRef]
- Forgacs, G.; Newman, S.A.; Hinner, B.; Maier, C.W.; Sackmann, E. Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies. Biophys. J. 2003, 84, 1272–1280. [Google Scholar] [CrossRef]
- Wood, G.C.; Keech, M.K. The formation of fibrils from collagen solutions 1. The effect of experimental conditions: Kinetic and electron-microscope studies. Biochem. J. 1960, 75, 588–598. [Google Scholar] [CrossRef]
- Joseph, A. Assessment of pH and Temperature Effects on Collagen Gel Microstructure Using Second Harmonic Generation and Scanning Electron Microscopies. Bachelor’s Thesis, Saint Mary’s University, Halifax, Nova Scotia, 2020. Available online: https://library2.smu.ca/bitstream/handle/01/29355/Joseph_Ariana_Honours_2020.pdf?sequence=1&isAllowed=y (accessed on 1 October 2023).
- Furusawa, K.; Sato, S.; Masumoto, J.; Hanazaki, Y.; Maki, Y.; Dobashi, T.; Yamamoto, T.; Fukui, A.; Sasaki, N. Studies on the Formation Mechanism and the Structure of the Anisotropic Collagen Gel Prepared by Dialysis-Induced Anisotropic Gelation. Biomacromolecules 2012, 13, 29–39. [Google Scholar] [CrossRef]
- Wood, G.C. The formation of fibrils from collagen solutions. 2. A mechanism of collagen-fibril formation. Biochem. J. 1960, 75, 598–605. [Google Scholar] [CrossRef]
- Kar, K.; Amin, P.; Bryan, M.A.; Persikov, A.V.; Mohs, A.; Wang, Y.-H.; Brodsky, B. Self-association of Collagen Triple Helic Peptides into Higher Order Structures. J. Biol. Chem. 2006, 281, 33283–33290. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.F.; Capaldi, M.J.; Chapman, J.A. Reconstitution of collagen fibrils in vitro; the assembly proces depends on the initiating procedure. Inter. J. Biol. Macromol. 1986, 8, 161–166. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef]
- Shu, F.; Dai, C.; Wang, H.; Xu, C.; Wie, B.; Zhang, J.; Xu, Y.; He, L.; Li, S. Formation, Stability and Self-Assembly Behaviour of the Collagen-Like Triple Helix Confirmation: The Role of Ser, Ala and Arg/Glu. ChemistrySelect 2019, 4, 13370–13379. [Google Scholar] [CrossRef]
- Stepanovska, J.; Supova, M.; Hanzalek, K.; Broz, A.; Matejka, R. Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines 2021, 9, 1137. [Google Scholar] [CrossRef]
- Holder, A.J.; Badiei, N.; Hawkins, K.; Wright, C.; Williams, P.R.; Curtis, D.J. Control of collagen gel mechanical properties through manipulation of gelation conditions near the sol–gel transition. Soft Matter. 2018, 14, 574. [Google Scholar] [CrossRef]
- Correa de Moraes, M.; Lopes Cunha, R. Gelation property and water holding capacity of heat-treated collagen at different temperature and pH values. Food Res. Inter. 2013, 50, 213–223. [Google Scholar] [CrossRef]
- Kim, J.; Bonassar, L. Controlling collagen gelation pH to enhance biochemical, structural, and biomechanical properties of tissue-engineered menisci. J. Biomed. Mater. Res. A 2023, 111, 478–487. [Google Scholar] [CrossRef]
- Wang, H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers 2021, 13, 3868. [Google Scholar] [CrossRef]
- Stepanovska, J.; Otahal, M.; Hanzalek, K.; Supova, M.; Matejka, R. pH Modification of High-Concentrated Collagen Bioinks as a Factor Affecting Cell Viability, Mechanical Properties, and Printability. Gels 2021, 7, 252. [Google Scholar] [CrossRef]
- Kanokova, D.; Matejka, R.; Zaloudkova, M.; Zigmond, J.; Supova, M.; Matejkova, J. Active Media Perfusion in Bioprinted Highly Concentrated Collagen Bioink Enhances the Viability of Cell Culture and Substrate Remodeling. Gels 2024, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Choo, L.P.; Watson, P.H.; Halliday, W.C. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Biophys. Acta 1995, 1270, 1–6. [Google Scholar] [CrossRef]
- Rýglová, Š.; Braun, M.; Suchý, T.; Hříbal, M.; Žaloudková, M.; Vištejnová, L. The investigation of batch-to-batch variabilities in the composition of isolates from fish and mammalian species using different protocols. Food Res. Int. 2023, 169, 112798. [Google Scholar] [CrossRef]
- Veeruraj, A.; Arumugam, M.; Ajithkumar, T.; Balasubramanian, T. Isolation and characterization of collagen from the outer skin of squid (Doryteuthis singhalensis). Food Hydrocoll. 2015, 43, 708–716. [Google Scholar] [CrossRef]
- Payne, K.J.; Veis, A. Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the Amide I band for conformational studies. Biopolymers 1988, 27, 1749–1760. [Google Scholar] [CrossRef]
- Rabotyagova, O.S.; Cebe, P.; Kaplan, D.L. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation. Mater. Sci. Eng. C 2008, 28, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- PRYSTUPA, D.A.; DONALD, A.M. Infrared study of gelatin conformations in gel and sol states. Polym. Gels Netw. 1996, 4, 87–110. [Google Scholar] [CrossRef]
- Gaar, J.; Naffa, R.; Brimble, M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front. 2020, 7, 2789–2814. [Google Scholar] [CrossRef]
- Sanden, K.W.; Böcker, U.; Ofstad, R.; Pedersen, M.E.; Høst, V.; Afseth, N.K.; Rønning, S.B.; Pleshko, N. Characterization of Collagen Structure in Normal, Wooden Breast and Spaghetti Meat Chicken Fillets by FTIR Microspectroscopy and Histology. Foods 2021, 10, 548. [Google Scholar] [CrossRef]
- Rýglová, Š.; Braun, M.; Hříbal, M.; Suchý, T.; Vörös, D. The proportion of the key components analysed in collagen-based isolates from fish and mammalian tissues processed by different protocols. J. Food Comp. Anal. 2021, 103, 104059. [Google Scholar] [CrossRef]
- Stenzel, K.H.; Miyata, T.; Rubin, A.L. Collagen as a biomaterial. Ann. Rev. Biophysic. Bioeng. 1974, 3, 231–253. [Google Scholar] [CrossRef]
- Bailey, A.J.; Paul, R.G.; Knott, L. Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 1998, 106, 1–56. [Google Scholar] [CrossRef]
- Pešáková, V.; Štol, M.; Gillery, P.; Maquart, F.X.; Borel, J.P.; Adam, M. The effect of different collagens and of proteoglycan on the retraction of collagen lattice. Biomed. Pharmacother. 1994, 48, 261–266. [Google Scholar] [CrossRef]
- Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 1979, 76, 1274–1278. [Google Scholar] [CrossRef]
- Blidi, O.E.; Omari, N.E.; Balahbib, A.; Ghchime, R.; Menyiy, N.E.; Ibrahimi, A.; Kaddour, K.B.; Bouyahya, A.; Chokairi, O.; Barkiyou, M. Extraction Methods, Characterization and Biomedical Applications of Collagen: A Review. Biointerf. Res. Appl. Chem. 2021, 11, 13587–13613. [Google Scholar] [CrossRef]
- Salim, N.V.; Madhan, B.; Glattauer, V.; Ramshaw, J.A.M. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int. J. Biol. Macromol. 2024, 278, 134374. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.M.; Dornelles, R.C.P.; Mello, R.O.; Kubota, E.H.; Mazutti, M.A.; Kempka, A.P.; Demiate, I.M. Collagen extraction process. Int. Food Res. J. 2015, 23, 913–922. [Google Scholar]
- Davison, P.F.; Cannon, D.J.; Andersson, L.P. The effects of acetic acid on collagen cross-links. Connect. Tissue Res. 1972, 1, 205–216. [Google Scholar] [CrossRef]
- Skierka, E.; Sadowska, M. The influence of different acids and pepsin on the extractability of collagen from the skin of Baltic cod (Gadus morhua). Food Chem. 2007, 105, 1302–1306. [Google Scholar] [CrossRef]
- Bella, J.; Brodsky, B.; Berman, H.M. Hydration structure of a collagen peptide. Structure 1995, 3, 893–906. [Google Scholar] [CrossRef]
- Sionkowska, S.A.; Skopinska-Wisniewska, J.; Gawron, M.; Kozlowska, J.; Planecka, A. Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int. J. Biol. Macromol. 2010, 47, 570–577. [Google Scholar] [CrossRef]
- Neves, M.I.; Araújo, M.; Moroni, L.; da Silva, R.M.P.; Barrias, C.C. Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks. Molecules 2020, 25, 978. [Google Scholar] [CrossRef]
- Chen, X.; Chen, D.; Ban, E.; Toussaint, K.C.; Janmeya, P.A.; Wells, R.G.; Shenoy, V.B. Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proc. Natl. Acad. Sci. USA 2022, 119, e2116718119. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Sionkowska, A.; Osyczka, A.M. Collagen-based scaffolds enriched with glycosaminoglycans isolated from skin of Salmo salar fish. Polym. Test. 2017, 62, 132–136. [Google Scholar] [CrossRef]
- Badylak, S.F.; Brown, B.N.; Gilbert, T.W. Chapter II.6.16.—Tissue Engineering with Decellularized Tissues. In Biomaterials Science, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1316–1331. [Google Scholar] [CrossRef]
- Bi, Y.; Patra, P.; Faezipour, M. Structure of Collagen-Glycosaminoglycan Matrix and the Influence to its Integrity and Stability. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014, 2014, 3949–3952. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Ebihara, T.; Adachi, E.; Kawashima, S.; Hattori, S.; Irie, S. Possible involvement of aminotelopeptide in self-assembly and thermal stability of collagen I as revealed by its removal with proteases. J. Biol. Chem. 2000, 275, 25870–25875. [Google Scholar] [CrossRef] [PubMed]
- Walton, R.S.; Brand, D.D.; Czernuszka, J.T. Influence of telopeptides, fibrils and crosslinking on physicochemical properties of type I collagen films. J. Mater. Sci. Mater. Med. 2010, 21, 451–461. [Google Scholar] [CrossRef]
- Piez, K.A.; Trus, B.L. Microfibrillar structure and packing of collagen: Hydrophobic interactions. J. Mol. Biol. 1977, 110, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Suchý, T.; Horný, L.; Šupová, M.; Adámek, T.; Blanková, A.; Žaloudková, M.; Grajciarová, M.; Yakushko, O.; Blassová, T.; Braun, M. Age-related changes in the biochemical composition of the human aorta and their correlation with the delamination strength. Acta Biomater. 2024, 190, 344–361. [Google Scholar] [CrossRef]
- Amirrah, I.N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M.F.M.R.; Motta, A.; Fauzi, M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022, 10, 2307. [Google Scholar] [CrossRef]
- Sloseris, D.; Forde, N.R. AGEing of collagen: The effects of glycation on collagen’s stability, mechanics and assembly. Matrix Biol. 2025, 135, 153–160. [Google Scholar] [CrossRef]
- Gandhi, M.; Elfeky, O.; Ertugrul, H.; Chela, H.K.; Daglilar, E. Scurvy: Rediscovering a Forgotten Disease. Diseases 2023, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- ČSN 46 7092-25 (467092); Methods of Testing for Feedingstuffs—Part 25: Determination of Amino Acid Content. Available online: https://www.technicke-normy-csn.cz/csn-46-7092-25-467092-207000.html# (accessed on 18 May 2025).
- ISO 3496:1994(E); Meat and Meat Products—Determination of Hydroxyproline Content. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/8848.html (accessed on 18 May 2025).
- Lee, D.K. Data transformation: A focus on the interpretation. Korean J. Anesthesiol. 2020, 73, 503–508. [Google Scholar] [CrossRef] [PubMed]
Analysed Component | Numbers of AA Residues/1000 Units | |||
---|---|---|---|---|
1A | 1B | 2A | 2B = 2B-1 | |
* Aspartic acid (Asp) + Asparagine (Asn) | 50 | 49 | 49 | 48 |
* Glutamic acid (Glu) + Glutamine (Gln) | 77 | 78 | 76 | 77 |
Threonine (Thr) | 16 | 18 | 16 | 18 |
Serine (Ser) | 30 | 31 | 30 | 33 |
Glycine (Gly) | 319 | 315 | 328 | 322 |
Alanine (Ala) | 108 | 110 | 109 | 112 |
Valine (Val) | 31 | 31 | 28 | 28 |
Isoleucine (Ile) | 13 | 12 | 11 | 11 |
Leucine (Leu) | 28 | 31 | 26 | 28 |
Cysteine (Cys) | 2 | 3 | 2 | 2 |
Methionine (Met) | 6 | 6 | 6 | 9 |
Tyrosine (Tyr) | 4 | 5 | 4 | 3 |
Phenylalanine (Phe) | 15 | 16 | 14 | 15 |
Lysine (Lys) | 31 | 34 | 30 | 31 |
Histidine (His) | 15 | 15 | 14 | 14 |
Arginine (Arg) | 51 | 50 | 49 | 49 |
Proline (Pro) | 118 | 121 | 122 | 123 |
Hydroxyproline (Hyp) | 85 | 75 | 87 | 75 |
Degree of hydroxylation (%) a | 42 | 38 | 42 | 38 |
Imidoacids b | 203 | 196 | 209 | 198 |
Nonpolar AAs c | 638 | 632 | 644 | 648 |
Polar AAs d | 361 | 358 | 357 | 350 |
Acidic AAs (COO-) e | 127 | 127 | 125 | 125 |
Basic AAs (=NH+, -NH2+) f | 97 | 99 | 93 | 94 |
Ratio acidic AAs/basic AAs | 1.31 | 1.28 | 1.34 | 1.33 |
Ratio nonpolar AAs/polar AAs | 1.77 | 1.77 | 1.80 | 1.85 |
GAGs (wt%) | 3.00 ± 0.12 | 3.08 ± 0.13 | 3.03 ± 0.54 | 4.29 ± 1.05 |
Lipids (wt%) | 21.49 ± 1.75 | 26.65 ± 0.97 | 6.24 ± 0.18 | 47.83 ± 15.55 |
Protein (wt%) | 55.93 | 70.40 | 69.40 | 54.26 |
Analysed Component | Numbers of AA Residues/1000 Units | ||||
---|---|---|---|---|---|
2B-1 | 2B-2 | 2B-3 | 2B-4 | 2B-5 | |
Asp + Asn | 48 | 48 | 48 | 50 | 50 |
Glu + Gln | 77 | 77 | 76 | 84 | 84 |
Thr | 18 | 16 | 17 | 18 | 18 |
Ser | 33 | 35 | 33 | 33 | 31 |
Gly | 322 | 311 | 316 | 304 | 312 |
Ala | 112 | 109 | 109 | 110 | 112 |
Val | 28 | 25 | 26 | 24 | 24 |
Ile | 11 | 12 | 12 | 11 | 11 |
Leu | 28 | 29 | 28 | 29 | 29 |
Cys | 2 | 2 | 2 | 3 | 3 |
Met | 9 | 6 | 7 | 7 | 6 |
Tyr | 3 | 8 | 7 | 5 | 3 |
Phe | 15 | 13 | 15 | 16 | 16 |
Lys | 31 | 31 | 29 | 30 | 30 |
His | 14 | 13 | 12 | 13 | 14 |
Arg | 49 | 46 | 49 | 49 | 48 |
Pro | 123 | 137 | 120 | 129 | 127 |
Hyp | 75 | 82 | 91 | 85 | 81 |
Degree of hydroxylation (%) | 38 | 37 | 43 | 40 | 39 |
Imidoacids (Pro + Hyp) | 198 | 219 | 211 | 214 | 208 |
Nonpolar AAs | 648 | 636 | 633 | 630 | 637 |
Polar AAs | 350 | 358 | 364 | 370 | 362 |
Acidic AAs (COO-) | 125 | 125 | 124 | 134 | 134 |
Basic AAs (=NH+, -NH2+) | 94 | 90 | 90 | 92 | 92 |
Ratio acidic AAs/basic AAs | 1.33 | 1.39 | 1.38 | 1.46 | 1.46 |
Ratio nonpolar AAs/polar AAs | 1.85 | 1.78 | 1.74 | 1.70 | 1.76 |
GAGs (wt%) | 4.29 ± 1.05 | 3.92 ± 0.91 | 3.20 ± 0.62 | 3.35 ± 0.94 | 3.70 ± 0.92 |
Lipids (wt%) | 47.83 ± 15.55 | 28.81 ± 1.78 | 27.47 ± 1.35 | 23.16 ± 3.03 | 20.25 ± 2.60 |
Protein (wt%) | 54.26 | 62.95 | 61.92 | 67.89 | 76.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šupová, M.; Rýglová, Š.; Suchý, T.; Žaloudková, M.; Braun, M. The Impact of GAGs, Cross-Link Maturity and Telopeptides on the Formation of a Porcine Collagen-Based Hydrogel. Gels 2025, 11, 695. https://doi.org/10.3390/gels11090695
Šupová M, Rýglová Š, Suchý T, Žaloudková M, Braun M. The Impact of GAGs, Cross-Link Maturity and Telopeptides on the Formation of a Porcine Collagen-Based Hydrogel. Gels. 2025; 11(9):695. https://doi.org/10.3390/gels11090695
Chicago/Turabian StyleŠupová, Monika, Šárka Rýglová, Tomáš Suchý, Margit Žaloudková, and Martin Braun. 2025. "The Impact of GAGs, Cross-Link Maturity and Telopeptides on the Formation of a Porcine Collagen-Based Hydrogel" Gels 11, no. 9: 695. https://doi.org/10.3390/gels11090695
APA StyleŠupová, M., Rýglová, Š., Suchý, T., Žaloudková, M., & Braun, M. (2025). The Impact of GAGs, Cross-Link Maturity and Telopeptides on the Formation of a Porcine Collagen-Based Hydrogel. Gels, 11(9), 695. https://doi.org/10.3390/gels11090695