Microencapsulation of Chokeberry Polyphenols and Volatiles: Application of Alginate and Pectin as Wall Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyphenols and Antioxidant Activity of Chokeberry Juice
2.2. Evaluation of Polyphenols
2.3. Evaluation of Antioxidant Activity
2.4. Evaluation of Volatiles
3. Conclusions
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Hydrogel Beads
4.3. Extraction of Polyphenols from Hydrogel Beads
4.4. Spectrophotometric Determination of Total Polyphenols, Monomeric Anthocyanins and Antioxidant Activity in Extracts
4.4.1. Total Polyphenols and Monomeric Anthocyanins
4.4.2. Determination of Antioxidant Activity (FRAP, CUPRAC, DPPH and ABTS Assays)
4.5. High-Performance Liquid Chromatography (HPLC) for Evaluation of Individual Polyphenols
4.6. Volatile Compounds Analysis
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jantrawut, P.; Assifaoui, A.; Chambin, O. Influence of low methoxyl pectin gel textures and in vitro release of rutin from calcium pectinate beads. Carbohydr. Polym. 2013, 97, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Atencio, S.; Maestro, A.; Santamaría, E.; Gutiérrez, J.M.; González, C. Encapsulation of ginger oil in alginate-based shell materials. Food Biosci. 2020, 37, 100714. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Kurek, M.A. Microencapsulation of Anthocyanins—Critical Review of Techniques and Wall Materials. Appl. Sci. 2021, 11, 3936. [Google Scholar] [CrossRef]
- Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit. Rev. Food Sci. Nutr. 2020, 61, 1515–1536. [Google Scholar] [CrossRef]
- Macías-Cortés, E.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E.; Moreno-Jiménez, M.R.; Medina-Torres, L.; González-Laredo, R.F. Microencapsulation of phenolic compounds: Technologies and novel polymers. Rev. Mex. Ing. Quim. 2020, 19, 2491–2521. [Google Scholar] [CrossRef]
- Nemethova, V.; Lacik, I.; Razga, F. Vibration Technology for Microencapsulation: The Restrictive Role of Viscosity. J. Bioproces. Biotech. 2014, 5, 199. [Google Scholar] [CrossRef] [Green Version]
- Whelehan, M.; Marison, I.W. Microencapsulation using vibrating technology. J. Microencapsul. 2011, 28, 669–688. [Google Scholar] [CrossRef]
- Najafi-Soulari, S.; Shekarchizadeh, H.; Kadivar, M. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels. J. Biomat. Sci. Polym. Ed. 2016, 27, 1631–1644. [Google Scholar] [CrossRef]
- Bušić, A.; Belščak-Cvitanović, A.; Vojvodić Cebin, A.; Karlović, S.; Kovač, V.; Špoljarić, I.; Mršić, G.; Komes, D. Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials. Food Res. Int. 2017, 111, 244–255. [Google Scholar] [CrossRef]
- Guo, J.; Giusti, M.M.; Kaletunç, G. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency. Food Res. Int. 2017, 107, 414–422. [Google Scholar] [CrossRef]
- Aguirre Calvo, T.R.; Santagapita, P.R.; Perullini, M. Functional and structural effects of hydrocolloids on Ca(II)-alginate beads containing bioactive compounds extracted from beetroot. LWT 2019, 111, 520–526. [Google Scholar] [CrossRef]
- Heckert Bastos, L.P.; Vicente, J.; Corrêa dos Santos, C.H.; Geraldo de Carvalho, M.; Garcia-Rojas, E.E. Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocoll. 2019, 102, 105605. [Google Scholar] [CrossRef]
- Keskin, M.; Keskin, Ş.; Kolayli, S. Preparation of alcohol free propolis-alginate microcapsules, characterization and release property. LWT 2019, 108, 89–96. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Dong, H.; Li, X.; Zhang, J.; Ramaswamy, S.; Xu, F. Pectin in biomedical and drug delivery applications: A review. Int. J. Biol. Macromol. 2021, 185, 49–65. [Google Scholar] [CrossRef]
- Ćorković, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Hydrogels: Characteristics and Application as Delivery Systems of Phenolic and Aroma Compounds. Foods 2021, 10, 1252. [Google Scholar] [CrossRef]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Sumczynski, D.; Sochor, J.; Hlavacova, I.; Snopek, L.; Orsavova, J. Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases. Molecules 2017, 22, 944. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Bušić, A.; Barišić, L.; Vrsaljko, D.; Karlović, S.; Špoljarić, I.; Vojvodić, A.; Mršić, G.; Komes, D. Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and ß-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll. 2016, 57, 139–152. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Gajdoš Kljusurić, J.; Putnik, P.; Vukušić, T.; Herceg, Z.; Dragović-Uzelac, V. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chem. 2016, 212, 323–331. [Google Scholar] [CrossRef]
- Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019, 284, 108–117. [Google Scholar] [CrossRef]
- Jakobek, L.; Matić, P.; Ištuk, J.; Barron, A.R. Study of Interactions Between Individual Phenolics of Aronia with Barley Beta-Glucan. Pol. J. Food Nutr. Sci. 2021, 71, 187–196. [Google Scholar] [CrossRef]
- Zam, W.; Bashour, G.; Abdelwahed, W.; Khayata, W. Alginate-pomegranate peels’ polyphenols beads: Effects of formulation parameters on loading efficiency. Braz. J. Pharm. Sci. 2014, 50, 741–748. [Google Scholar] [CrossRef] [Green Version]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues—Part 2: Phenolic acids. Food Chem. 2012, 135, 2287–2292. [Google Scholar] [CrossRef]
- Liu, X.; Le Bourvellec, C.; Renard, C.M. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3574–3617. [Google Scholar] [CrossRef]
- Caballero, S.; Li, Y.O.; McClements, D.J.; Davidov-Pardo, G. Encapsulation and delivery of bioactive citrus pomace polyphenols: A review. Crit. Rev. Food Sci. Nutr. 2021, 1–17. [Google Scholar] [CrossRef]
- Hubbermann, E.M.; Heins, A.; Stöckmann, H.; Schwarz, K. Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. Eur. Food Res. Technol. 2006, 223, 83–90. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues—Part 1: Anthocyanins. Food Chem. 2012, 134, 155–161. [Google Scholar] [CrossRef]
- Tzatsi, P.; Goula, A.M. Encapsulation of Extract from Unused Chokeberries by Spray Drying, Co-crystallization, and Ionic Gelation. Waste Biomass Valor. 2021, 12, 4567–4585. [Google Scholar] [CrossRef]
- Stoica, R.; Pop, S.F.; Ion, R.M. Evaluation of natural polyphenols entrapped in calcium alginate beads prepared by ionotropic gelation method. J. Optoelectron. Adv. Mater. 2008, 15, 893–898. [Google Scholar]
- Pedrali, D.; Barbarito, S.; Lavelli, V. Encapsulation of grape seed phenolics from winemaking byproducts in hydrogel microbeads—Impact of food matrix and processing on the inhibitory activity towards α-glucosidase. LWT 2020, 133, 109952. [Google Scholar] [CrossRef]
- Pasukamonset, P.; Kwon, O.; Adisakwattana, S. Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food Hydrocoll. 2016, 61, 772–779. [Google Scholar] [CrossRef]
- Li, Q.; Duan, M.; Hou, D.; Chen, X.; Shi, J.; Zhou, W. Fabrication and characterization of Ca(II)-alginate-based beads combined with different polysaccharides as vehicles for delivery, release and storage of tea polyphenols. Food Hydrocoll. 2021, 112, 106274. [Google Scholar] [CrossRef]
- Maleki, M.; Mortazavi, S.A.; Yeganehzad, S.; Nia, A. P Study on liquid core barberry (Berberis vulgaris) hydrogel beads based on calcium alginate: Effect of storage on physical and chemical characterizations. J. Food Process. Preserv. 2020, 44, 14426. [Google Scholar] [CrossRef]
- Mercado-Mercado, G.; de la Rosa, L.A.; Alvarez-Parrilla, E. Effect of pectin on the interactions among phenolic compounds determined by antioxidant capacity. J. Mol. Struct. 2020, 1199, 126967. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Nenadis, N.; Tsimidou, M.Z. Assessing the activity of natural food antioxidants. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Oxidation in Foods and Beverages and Antioxidant Applications; Decker, E.A., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 332–367. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, W. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innov. Food Sci. Emerg. Technol. 2010, 11, 169–176. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Liu, X.; Hasan, K.M.F.; Li, H.; Zhou, S.; Zhang, Q.; Zhou, Y. Effect of thermosonication treatment on blueberry juice quality: Total phenolics, flavonoids, anthocyanin, and antioxidant activity. LWT 2021, 150, 112021. [Google Scholar] [CrossRef]
- Kopjar, M.; Ivić, I.; Vukoja, J.; Šimunović, J.; Pichler, A. Retention of linalool and eugenol in hydrogels. J. Food Sci. Technol. 2020, 55, 1416–1425. [Google Scholar] [CrossRef]
- Tromelin, A.; Merabtine, Y.; Andriot, I. Retention-release equilibrium of aroma compounds in polysaccharide gels: Study by quantitative structure-activity/property relationships approach. Flavour Fragr. J. 2010, 25, 431–442. [Google Scholar] [CrossRef]
- Misharina, T.A.; Terenina, M.B.; Krikunova, N.I.; Medvedeva, I.B. Binding of Volatile Organic Compounds to Food Biopolymers. Appl. Biochem. Microbiol. 2016, 52, 226–232. [Google Scholar] [CrossRef]
- Martins, E.; Poncelet, D.; Rodrigues, R.C.; Renard, D. Oil encapsulation techniques using alginate as encapsulating agent: Applications and drawbacks. J. Microencapsul. 2017, 34, 754–771. [Google Scholar] [CrossRef]
- Zhang, Y.; Barringer, S. Effect of hydrocolloids, sugar, and citric acid on strawberry volatiles in a gummy candy. J. Food Process. Preserv. 2017, 42, 13327. [Google Scholar] [CrossRef]
- Hansson, A.; Andersson, J.; Leufvén, A. The effect of sugars and pectin on flavor release from a soft drink-related model system. Food Chem. 2001, 72, 363–368. [Google Scholar] [CrossRef]
- Boland, A.B.; Delahunty, C.M.; Van Ruth, S.M. Influence of the texture of gelatin gels and pectin gels on strawberry flavor release and perception. Food Chem. 2006, 96, 452–460. [Google Scholar] [CrossRef]
- Kopjar, M.; Ivić, I.; Buljeta, I.; Ćorković, I.; Vukoja, J.; Šimunović, J.; Pichler, A. Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose. Plants 2021, 10, 1640. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotonutric acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. In Current Protocols in Food Analytical Chemistry Current Protocols; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1994, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Sci. Food Agric. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes. Molecules 2021, 26, 4400. [Google Scholar] [CrossRef]
- Kay, C.D.; Mazza, G.; Holub, B.J.; Wang, J. Anthocyanin metabolites in human urine and serum. Brit. J. Nutr. 2004, 91, 933. [Google Scholar] [CrossRef] [Green Version]
- Sosnowska, D.; Podsędek, A.; Redzynia, M.; Kucharska, A.Z. Inhibitory effect of black chokeberry fruit polyphenols on pancreatic lipase—Searching for most active inhibitors. J. Funct. Foods 2018, 49, 196–204. [Google Scholar] [CrossRef]
Antioxidant Activity (µmol/100 g) | |
FRAP | 2.60 ± 0.00 |
CUPRAC | 166.63 ± 0.14 |
DPPH | 21.36 ± 0.21 |
ABTS | 36.07 ± 0.15 |
Concentrations of Individual Polyphenols (mg/kg) | |
Anthocyanins | |
Cyanidin-3-galactoside | 41.68 ± 0.58 |
Cyanidin-3-arabinoside | 10.31 ± 0.22 |
Cyanidin-3-xyloside | 1.11 ± 0.00 |
Phenolic acids | |
Chlorogenic acid | 172.07 ± 0.47 |
Neochlorogenic acid | 1409.75 ± 34.44 |
Flavonols | |
Quercetin | 3.21 ± 0.00 |
Hyperoside | 9.61 ± 0.01 |
Rutin | 25.54 ± 0.03 |
Sample | Total Polyphenols (g/kg) | Monomeric Anthocyanins (g/kg) | FRAP (µmol/100 g) | CUPRAC (µmol/100 g) | DPPH (µmol/100 g) | ABTS (µmol/100 g) |
---|---|---|---|---|---|---|
ALG-30 | 4.51 ± 0.29 a | 1.42 ± 0.00 c | 3.06 ± 0.00 b | 183.81 ± 0.42 b | 22.95 ± 0.08 a | 27.63 ± 0.31 b |
ALG-90 | 4.36 ± 0.14 a | 1.29 ± 0.01 a | 2.72 ± 0.00 a | 176.56 ± 0.40 a | 22.14 ± 0.21 a | 25.37 ± 0.64 a |
ALG/PEC-30 | 5.63 ± 0.17 b | 1.34 ± 0.01 b | 3.68 ± 0.00 d | 230.49 ± 0.35 d | 28.59 ± 0.79 b | 35.24 ± 0.08 c |
ALG/PEC-90 | 5.69 ± 0.18 b | 1.47 ± 0.01 d | 3.49 ± 0.00 c | 220.05 ± 0.47 c | 27.89 ± 0.46 b | 35.58 ± 0.26 c |
Sample | Anthocyanins (mg/kg) | Phenolic Acids (mg/kg) | Flavonols (mg/kg) | ||||
---|---|---|---|---|---|---|---|
C3G | C3A | CHA | NCHA | Q | H | R | |
ALG-30 | 91.87 ± 0.09 b | 23.10 ± 0.00 a,b | 303.09 ± 1.09 a | 181.60 ± 2.69 b | 24.82 ± 0.08 a | 24.91 ± 0.08 a,c | 36.70 ± 0.04 a |
ALG-90 | 87.86 ± 0.48 a | 22.06 ± 0.08 a | 309.40 ± 2.95 a | 167.75 ± 5.31 b | 25.00 ± 0.06 a | 24.24 ± 0.08 a | 34.68 ± 0.08 a |
ALG/PEC-30 | 95.78 ± 2.46 b | 24.73 ± 0.57 b,c | 317.54 ± 1.05 b | 144.38 ± 6.16 a | 25.86 ± 0.02 b | 24.83 ± 0.23 a,b | 34.76 ± 1.06 a |
ALG/PEC-90 | 96.50 ± 2.02 b | 24.91 ± 0.62 c | 322.34 ± 0.36 b | 140.17 ± 4.81 a | 26.08 ± 0.21 b | 25.01 ± 0.26 b,c | 35.78 ± 0.84 a |
R2 | FRAP | CUPRAC | DPPH | ABTS |
---|---|---|---|---|
Total anthocyanins | 0.9358 | 0.8756 | 0.8951 | 0.9532 |
Total phenolic acids | 0.6554 | 0.8387 | 0.8605 | 0.8048 |
Total flavonols | 0.3326 | 0.1960 | 0.2219 | 0.3341 |
Volatiles | RT | RI | MW | logP (o/w) | VP (mm/Hg) | J (µg/100 g) | Flavor Note |
---|---|---|---|---|---|---|---|
3-hexen-1-ol | 7.5448 | 849 | 100.16 | 1.697 | 1.039 | 66.34 ± 5.31 | Green |
1-hexanol | 8.3815 | 868 | 102.18 | 2.03 | 0.947 | 933.50 ± 11.96 | Green |
Benzaldehyde | 14.7581 | 955 | 106.12 | 1.480 | 1.270 | 58.10 ± 0.28 | Fruity |
Octanal | 17.9018 | 997 | 128.21 | 2.951 | 2.068 | - | Green |
Ethyl hexanoate | 18.0561 | 998 | 144.21 | 2.823 | 1.665 | 34.12 ± 0.33 | Fruity |
Hexyl acetate | 18.7547 | 1009 | 144.21 | 2.870 | 1.391 | 319.63 ± 0.10 | Fruity |
D-limonene | 19.1852 | 1018 | 136.24 | 4.570 | 0.198 | 103.09 ± 5.69 | Citrus |
2-ethylhexanol | 19.6808 | 1030 | 130.23 | 2.820 | 0.207 | 188.52 ± 1.40 | Citrus |
Linalool oxide | 21.9958 | 1068 | 170.25 | 1.375 | 0.002 | 12.42 ± 0.32 | Floral |
Octanol | 22.2558 | 1071 | 130.23 | 3.000 | 0.079 | 114.97 ± 2.13 | Green |
Linalool | 23.7423 | 1096 | 154.25 | 2.970 | 0.016 | 41.01 ± 0.57 | Citrus |
Nonanal | 23.9941 | 1095 | 142.24 | 3.461 | 0.532 | 130.10 ± 0.00 | Citrus |
Phenethyl alcohol | 24.3597 | 1103 | 122.17 | 1.360 | 0.087 | 365.46 ± 2.15 | Floral |
2-ethylhexanoic acid | 26.1874 | 1128 | 144.21 | 2.640 | 0.030 | 18.44 ± 1.82 | Herbal |
1-nonanol | 27.8932 | 1168 | 144.26 | 3.770 | 0.041 | 260.29 ± 4.01 | Waxy |
Decanal | 29.396 | 1200 | 156.27 | 3.970 | 0.207 | 209.75 ± 11.62 | Floral |
Phenethyl acetate | 31.8005 | 1250 | 164.20 | 2.300 | 0.056 | 182.06 ± 3.10 | Floral |
Phellandral | 32.4665 | 1264 | 152.24 | 3.168 | 0.098 | 72.90 ± 0.95 | Floral |
Nonanoic acid | 33.1976 | 1277 | 158.24 | 3.42 0 | 0.009 | 310.23 ± 5.87 | Waxy |
Perillyl alcohol | 33.7338 | 1286 | 152.24 | 2.100 | 0.006 | 154.10 ± 3.09 | Green |
Decanoic acid | 37.4785 | 1376 | 172.27 | 4.090 | 15.00 | 679.29 ± 6.97 | Waxy |
β-damascenone | 37.6004 | 1377 | 190.29 | 4.042 | 0.020 | 55.55 ± 0.13 | Floral |
Ethyl decanoate | 37.9984 | 1391 | 200.32 | 4.861 | 0.034 | 38.67 ± 1.43 | Fruity |
α-ionone | 38.8269 | 1417 | 192.30 | 3.995 | 0.014 | 18.64 ± 2.15 | Fruity |
Geranylacetone | 39.5093 | 1448 | 194.32 | 3.834 | 0.016 | 181.48 ± 0.29 | Floral |
γ-ionone | 40.0779 | 1470 | 192.30 | 3.505 | 0.008 | 21.51 ± 2.13 | Fruity |
β-ionone | 40.2323 | 1477 | 192.30 | 3.995 | 0.017 | 29.54 ± 0.14 | Fruity |
Lilial | 40.0528 | 1517 | 204.31 | 4.216 | 0.005 | 42.35 ± 0.64 | Floral |
α-cedrol | 42.3443 | 1592 | 222.37 | 4.330 | 0.001 | 21.51 ± 3.48 | Woody |
Myristaldehyde | 42.4661 | 1601 | 212.38 | 6.008 | 0.006 | 14.70 ± 0.72 | Woody |
Methyl dihydrojasmonate | 43.1078 | 1644 | 226.32 | 2.653 | 0.001 | 43.97 ± 2.20 | Floral |
Hexyl cinnamal | 44.3507 | 1738 | 216.32 | 4.866 | 0.001 | 31.85 ± 0.46 | Floral |
Volatiles | ALG-30 | ALG-90 | ALG/PEC-30 | ALG/PEC-90 |
---|---|---|---|---|
Alcohols | 164.1 | 174.9 | 175.4 | 171.6 |
3-hexen-1-ol | 9.85 ± 0.14 b | 10.56 ± 0.03 b | 6.68 ± 0.00 a | 6.66 ± 0.43 a |
1-hexanol | 24.85 ± 0.04 d | 23.11 ± 0.36 c | 9.33 ± 1.03 b | 5.33 ± 0.96 a |
2-ethylhexanol | 67.58 ± 0.04 a | 83.17 ± 1.17 c | 68.73 ± 1.32 a | 71.86 ± 0.11 b |
Octanol | 13.40 ± 0.54 a | 15.63 ± 3.13 b | 15.44 ± 0.07 b | 15.00 ± 1.95 b |
Phenethyl alcohol | 3.95 ± 0.00 a | - | - | - |
1-nonanol | 7.58 ± 0.41 a | - | 32.37 ± 0.83 b | 32.83 ± 2.10 b |
Perillyl alcohol | 36.86 ± 0.32 a | 42.39 ± 2.39 c | 42.87 ± 1.27 c | 39.95 ± 0.42 b |
Acids | 89.9 | 90.1 | 106.6 | 76.6 |
2-ethylhexanoic acid | 5.34 ± 0.39 b | 4.47 ± 0.74 b | 3.35 ± 0.33 a | 3.50 ± 0.11 a |
Nonanoic acid | 16.28 ± 0.57 a | 19.95 ± 1.14 a | 32.78 ± 0.53 b | 16.40 ± 2.53 a |
Decanoic acid | 68.26 ± 0.91 b | 65.68 ± 1.55 b | 70.49 ± 1.50 b | 56.70 ± 0.39 a |
Carbonyl compounds | 238.9 | 229.9 | 394.5 | 362.7 |
Benzaldehyde | 6.93 ± 0.31 c | - | 2.71 ± 0.18 b | 1.91 ± 0.16 a |
Octanal | 15.80 ± 1.33 a | 23.39 ± 0.70 b | 34.79 ± 2.33 c | 29.10 ± 1.52 c |
Nonanal | 37.82 ± 2.26 a | 43.62 ± 1.22 b | 59.54 ± 0.85 c | 63.64 ± 1.91 d |
Decanal | 81.84 ± 2.12 a | 85.95 ± 1.63 a | 161.50 ± 0.03 c | 126.98 ± 0.02 b |
Geranylacetone | 58.46 ± 0.91 b | 39.04 ± 0.58 a | 88.77 ± 1.69 c | 92.70 ± 2.11 c |
Lilial | 18.42 ± 0.38 b | 15.39 ± 0.37 a | 21.01 ± 0.63 c | 22.06 ± 0.50 c |
Myristaldehyde | 9.48 ± 0.89 a | 10.62 ± 1.21 a | 10.37 ± 1.14 a | 10.26 ± 0.51 a |
Hexyl cinnamal | 10.14 ± 0.15 a | 11.88 ± 0.34 b | 15.82 ± 0.35 c | 16.08 ± 0.42 c |
Esters | 14.5 | 28.2 | 20.5 | 24.3 |
Ethyl hexanoate | - | - | - | - |
Hexyl acetate | - | - | - | - |
Phenethyl acetate | 4.96 ± 0.61 a | 5.42 ± 0.11 a | 4.81 ± 0.88 a | 4.78 ± 0.32 a |
Ethyl decanoate | 5.70 ± 0.86 b | 5.58 ± 0.14 b | 3.99 ± 0.27 a | 7.66 ± 0.47 c |
Methyl dihydrojasmonate | 17.82 ± 0.79 b | 17.17 ± 1.29 b | 11.66 ± 0.67 a | 11.86 ± 0.77 a |
Terpenes | 116.4 | 95.1 | 96.7 | 102.8 |
D-limonene | 39.24 ± 2.91 b | 22.56 ± 2.49 a | 24.80 ± 0.36 a | 26.23 ± 1.51 a |
Linalool oxide | 4.60 ± 0.32 b | 4.56 ± 0.07 b | 3.58 ± 0.12 a | 6.44 ± 0.80 c |
Linalool | 10.92 ± 0.31 b | 9.80 ± 0.41 b | 8.29 ± 0.46 a | 8.26 ± 0.03 a |
Phellandral | 25.50 ± 1.63 a | 25.78 ± 0.76 a | 28.24 ± 1.61 a | 28.79 ± 0.88 a |
β-damascenone | 5.85 ± 0.02 a | 5.42 ± 0.64 a | 5.02 ± 0.33 a | 5.12 ± 0.03 a |
α-ionone | 4.88 ± 0.70 b | 3.99 ± 0.45 a | 4.14 ± 0.30 a | 3.82 ± 0.27 a |
γ-ionone | 9.21 ± 0.06 b | 6.38 ± 1.11 a | 8.56 ± 0.67 b | 8.74 ± 0.74 b |
β-ionone | 10.30 ± 0.96 b | 8.71 ± 0.24 b | 6.41 ± 0.05 a | 6.75 ± 0.56 a |
α-cedrol | 5.93 ± 0.10 a | 7.88 ± 2.17 b | 7.67 ± 0.24 b | 8.60 ± 0.49 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćorković, I.; Pichler, A.; Ivić, I.; Šimunović, J.; Kopjar, M. Microencapsulation of Chokeberry Polyphenols and Volatiles: Application of Alginate and Pectin as Wall Materials. Gels 2021, 7, 231. https://doi.org/10.3390/gels7040231
Ćorković I, Pichler A, Ivić I, Šimunović J, Kopjar M. Microencapsulation of Chokeberry Polyphenols and Volatiles: Application of Alginate and Pectin as Wall Materials. Gels. 2021; 7(4):231. https://doi.org/10.3390/gels7040231
Chicago/Turabian StyleĆorković, Ina, Anita Pichler, Ivana Ivić, Josip Šimunović, and Mirela Kopjar. 2021. "Microencapsulation of Chokeberry Polyphenols and Volatiles: Application of Alginate and Pectin as Wall Materials" Gels 7, no. 4: 231. https://doi.org/10.3390/gels7040231