Probing the Effect and Mechanism of Flue Gas on the Performance of Resorcinol/Hexamethylenetetramine-Based Polymer Gel in Flue Gas Flooding Reservoir
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Gel Formulation
2.2. Effect of Flue Gas on Gelation Behavior and Gel Performance
2.3. Effect Mechanism on Gelation Performance
2.3.1. HPAM Properties
2.3.2. Cross-Linker Behavior
2.4. Effect Mechanism on Long-Term Stability
2.4.1. Long-Term Stability of HPAM
2.4.2. ORP Value
2.4.3. Long-Term Stability of Polymer Gel
3. Conclusions
- The flue gas facilitated the gelation performance of resorcinol/HMTA gel, which was beneficial to the in situ polymer gel treatment. However, it threatened the gel long-term stability, especially in high-pressure conditions;
- Owing to the composited CO2, the flue gas altered the configuration of HPAM, resulting in a rapid reduction in the Rh and initial viscosity of HPAM solution. However, CO2 expedited the decomposition rate of HMTA into formaldehyde, and, thus, promoted the cross-linking process, leading to a shorter gelation time and an enhanced gel strength;
- Flue gas increased the ORP value and induced a stronger oxidizing property of HPAM at elevated flue gas pressures due to the comprehensive effect of O2 and CO2;
- The O2 in flue gas played a leading role in the degradation of HPAM and assumed primary responsibility for the impairment of the gel long-term stability at elevated flue gas pressures. To address the adverse effects caused by flue gas and to meet the effective mobility control requirements in flue gas flooding reservoirs, it is highly desirable to develop polymer gels by adding oxygen scavengers or strengthening additives.
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation of Polymer Gel
4.2.2. Gel Rheological Properties
4.2.3. DLS Measurements
4.2.4. Formaldehyde Concentration Measurements
4.2.5. FTIR Measurements
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bender, S.; Akin, S. Flue gas injection for EOR and sequestration: Case study. J. Petrol. Sci. Eng. 2017, 157, 1033–1045. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, B.; Guo, P.; Wang, S.; Liu, H.; Liu, Y.; Zhou, D.; Zhou, B. Investigation of flue gas water-alternating gas (flue gas-WAG) injection for enhanced oil recovery and multicomponent flue gas storage in the post-waterflooding reservoir. Pet. Sci. 2021, 18, 870–882. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Li, Z.; Li, S.; Wang, Y.; Wang, J. Effects of matrix permeability and fracture on production characteristics and residual oil distribution during flue gas flooding in low permeability/tight reservoirs. J. Petrol. Sci. Eng. 2020, 195, 107813. [Google Scholar] [CrossRef]
- Sarlak, M.; Farbod, A.; Nezhad, S.; Sahraei, E. Experimental investigation of CO2 in continuous and water alternating gas injection. Pet. Sci. Technol. 2021, 39, 165–174. [Google Scholar] [CrossRef]
- Abbas, A.H.; Ajunwa, O.M.; Mazhit, B.; Martyushev, D.A.; Bou-Hamdan, K.F.; Abd Alsaheb, R.A. Evaluation of OKRA (Abelmoschus esculentus) macromolecular solution for enhanced oil recovery in Kazakhstan carbonate reservoir. Energies 2022, 15, 6827. [Google Scholar] [CrossRef]
- Martyushev, D.A.; Govindarajan, S.K. Development and study of a visco-elastic gel with controlled destruction times for killing oil wells. J. King Univ. Eng. Sci. 2022, 34, 408–415. [Google Scholar] [CrossRef]
- Galkin, S.V.; Martyushev, D.A.; Osovetsky, B.M.; Kazymov, K.P.; Song, H. Evaluation of void space of complicated potentially oil-bearing carbonate formation using X-ray tomography and electron microscopy methods. Energy Rep. 2022, 8, 6245–6257. [Google Scholar] [CrossRef]
- Bai, B.; Zhou, J.; Yin, M. A comprehensive review of polyacrylamide polymer gels for conformance control. Petrol. Explor. Dev. 2015, 42, 525–532. [Google Scholar] [CrossRef]
- Lashari, Z.A.; Kang, W.; Yang, H.; Zhang, H.; Sarsenbekuly, B. Macro-rheology and micro-rheological study of composite polymer gel at high salinity and acidic conditions for CO2 shut off treatment in harsh reservoirs for improving oil recovery. In Proceedings of the SPE/PAPG Pakistan Section Annual Technical Symposium and Exhibition, Islamabad, Pakistan, 18–20 November 2019. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, L.; Wang, C.; Li, S.; Yuan, X.; Liu, Y.; Meng, X.; Zou, J.; Wang, Q. Investigation of a high temperature gel system for application in saline oil and gas reservoirs for profile modification. J. Petrol. Sci. Eng. 2020, 195, 107852. [Google Scholar] [CrossRef]
- Guo, H.; Ge, J.; Wu, Q.; He, Z.; Wang, W.; Cao, G. Syneresis behavior of polymer gels aged in different brines from gelants. Gels 2022, 8, 166. [Google Scholar] [CrossRef]
- Han, J.; Sun, J.; Lv, K.; Yang, J.; Li, Y. Polymer Gels Used in Oil–Gas Drilling and Production Engineering. Gels 2022, 8, 637. [Google Scholar] [CrossRef]
- Seright, R.; Brattekas, B. Water shutoff and conformance improvement: An introduction. Petrol. Sci. 2021, 18, 450–478. [Google Scholar] [CrossRef]
- Sun, X.; Bai, B.; Long, Y.; Wang, Z. A comprehensive review of hydrogel performance under CO2 conditions for conformance control. J. Petrol. Sci. Eng. 2019, 185, 106662. [Google Scholar] [CrossRef]
- Aaron, D.; Tsouris, C. Separation of CO2 from Flue Gas: A Review. Sep. Sci. Technol. 2005, 40, 321–348. [Google Scholar] [CrossRef]
- Aliabadian, E.; Kamkar, M.; Chen, Z.; Sundararaj, U. Prevention of network destruction of partially hydrolyzed polyacrylamide (HPAM): Effects of salt, temperature, and fumed silica nanoparticles. Phys. Fluids 2019, 31, 013104. [Google Scholar] [CrossRef]
- Liu, J.; Fen, J.; Hu, H.; Li, C.; Yang, S.; Gu, J.; Mu, B. Decrease in viscosity of partially hydrolyzed polyacrylamide solution caused by the interaction between sulphide ion and amide group. J. Petrol. Sci. Eng. 2018, 170, 738–743. [Google Scholar] [CrossRef]
- Seright, R.S.; Campbell, A.; Mozley, P.; Han, P. Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. SPE J. 2010, 15, 341–348. [Google Scholar] [CrossRef]
- Seright, R.S.; Skjevrak, I. Effect of dissolved iron and oxygen on stability of hydrolyzed polyacrylamide polymers. SPE J. 2015, 20, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Mansour, A.M.; Al-Maamari, R.S.; Al-Hashmi, A.S.; Zaitoun, A.; Al-Sharji, H. In-situ rheology and mechanical degradation of EOR polyacrylamide solutions under moderate shear rates. J. Petrol. Sci. Eng. 2014, 115, 57–65. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Y.; Gao, Y.; Chen, D.; Yang, M. Cleavage of the main carbon chain backbone of high molecular weight polyacrylamide by aerobic and anaerobic biological treatment. Chemosphere 2017, 189, 277–283. [Google Scholar] [CrossRef]
- Gaillard, N.; Sanders, D.B.; Favero, C. Improved oil recovery using thermally and chemically protected compositions based on co- and ter-polymers contain. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar] [CrossRef]
- Abdulbaki, M.; Huh, C.; Sepehrnoori, K.; Delshad, M.; Varavei, A. A critical review on use of polymer microgels for conformance control purposes. J. Petrol. Sci. Eng. 2014, 122, 741–753. [Google Scholar] [CrossRef]
- Choi, S.K.; Sharma, M.M.; Bryant, S.L.; Chun, H. pH-Sensitive polymers for novel conformance-control and polymer-flood applications. SPE Res. Eval. Eng. 2010, 13, 926–939. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Bai, B.; Hou, J. Polymer gel systems for water management in high temperature petroleum reservoirs: A chemical review. Energy Fuels 2017, 31, 13063–13087. [Google Scholar] [CrossRef]
- Tovar, F.D.; Barrufet, M.A.; Schechter, D.S. Long term stability of acrylamide based polymers during chemically assisted CO2 WAG EOR. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar] [CrossRef]
- Pervaiz, M.; Riaz, A.; Munir, A.; Saeed, Z.; Hussain, S.; Rashid, A.; Younas, U.; Adnan, A. Synthesis and characterization of sulfonamide metal complexes as antimicrobial agents. J. Mol. Struct. 2019, 1202, 127284. [Google Scholar] [CrossRef]
- Jin, F.; Yuan, C.; Pu, W.; Zhang, Y.; Tang, S.; Dong, Y.; Zhao, T.; Li, Y. Investigation on gelation process and microstructure for partially hydrolyzed polyacrylic amide (HPAm)-Cr(III) acetate-methanal compound crosslinked weak gel. J. Sol. Gel Sci. Technol. 2015, 73, 181–191. [Google Scholar] [CrossRef]
- Sun, F.; Lin, M.; Dong, Z.; Zhu, D.; Wang, S.; Yang, J. Effect of composition of HPAM/chromium (III) acetate gels on delayed gelation time. J. Dispers. Sci. Technol. 2016, 37, 753–759. [Google Scholar] [CrossRef]
- Unomah, M.; Thach, S.; Shong, R.; App, J.; Zhang, T.; Kim, D.H.; Malik, T.; Dwarakanath, V. Performance of conformance gels under harsh conditions. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14–18 April 2018. [Google Scholar] [CrossRef]
- Jain, R.; McCool, C.S.; Green, D.W.; Willhite, G.P.; Michnick, M.J. Reaction kinetics of the uptake of chromium (III) acetate by polyacrylamide. In Proceedings of the SPE Enhanced Oil Recovery Symposium, Tulsa, OK, USA, 17–21 April 2004. [Google Scholar] [CrossRef]
- Amir, Z.; Said, I.M.; Jan, B.M. In situ organically cross-linked polymer gel for high-temperature reservoir conformance control: A Review. Polym. Adv. Technol. 2018, 30, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Gommes, C.J.; Roberts, A.P. Structure development of resorcinol-formaldehyde gels: Microphase separation or colloid aggregation. Phys. Rev. E 2008, 77, 041409. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Pu, W.; Zhao, J. Experimental investigation of the novel phenol-formaldehyde cross-linking HPAM gel system: Based on the secondary cross-linking method of organic cross-linkers and its gelation performance study after flowing through porous media. Energy Fuels 2011, 25, 727–736. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Zhang, J.; Xu, X.; Zhu, Y.; Bai, S. Comparison of gelation behavior and morphology of resorcinol-hexamethylenetetramine-HPAM gel in bulk and porous media. Transp. Porous Media 2015, 109, 377–392. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, J.; Gu, Y.; Zhao, Q.; Yang, R.; Yang, Y. Polyacrylamide gel formed by Cr(III) and phenolic resin for water control in high-temperature reservoirs. J. Petrol. Sci. Eng. 2020, 194, 107423. [Google Scholar] [CrossRef]
- Sengupta, B.; Sharma, V.P.; Udayabhanu, G. Gelation studies of an organically cross-linked polyacrylamide water shut-off gel system at different temperatures and pH. J. Petrol. Sci. Eng. 2012, 81, 145–150. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, C.; Wang, K.; Zhao, M.; Zhao, G.; Yang, S.; Yan, Z.; You, Q. New insights into the hydroquinone (HQ)-hexamethylenetetramine (HMTA) gel system for water shut-off treatment in high temperature reservoirs. J. Ind. Eng. Chem. 2016, 35, 20–28. [Google Scholar] [CrossRef]
- Wu, H.; Ge, J.; Yang, L.; Yang, Y.; Zhang, T.; Guo, H. Developments of polymer gel plug for temporary blocking in SAGD wells. J. Petrol. Sci. Eng. 2022, 208, 109650. [Google Scholar] [CrossRef]
- Zhu, D.; Hou, J.; Meng, X.; Zheng, Z.; Wei, Q.; Chen, Y.; Bai, B. Effect of different phenolic compounds on performance of organically cross-linked terpolymer gel systems at extremely high temperatures. Energy Fuels 2017, 31, 8120–8130. [Google Scholar] [CrossRef]
- Sydansk, R.D.; Southwell, G.P. More than 12 years’ experience with a successful conformance-control polymer-gel technology. SPE Prod. Fac. 1998, 15, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Levitt, D.B.; Spe, W.S.; Pope, G.A.; Jouenne, S. The effect of redox potential and metal solubility on oxidative polymer degradation. SPE Res. Eval. Eng. 2011, 14, 287–298. [Google Scholar] [CrossRef]
- Song, X.; Liu, K.; He, D.; Gao, P.; Zheng, J.; Huang, G. Studies on crosslinking mechanism between trihydroxymethyl phenol and partly hydrolyzed polyacrylamide. Acta Polym. Sin. 2009, 9, 903–908. [Google Scholar] [CrossRef]
- McCormick, C.L.; Chen, G.S.; Hutchinson, B.H. Water-soluble copolymers V. Compositional determination of random copolymers of acrylamide with sulfonated comonomers by infrared spectroscopy and C13 nuclear magnetic resonance. Appl. Polym. Sci. 2010, 27, 3103–3120. [Google Scholar] [CrossRef]
- GB/T14074-2006; Testing Methods for Wood Adhesives and Their Resins. National Standard Administration: Beijing, China, 2006. (In Chinese)
Ion Type | K+ + Na+ | Ca2+ | Mg2+ | Cl− | HCO3− | SO42− | Total Salinity |
---|---|---|---|---|---|---|---|
Concentration /(mg/L) | 1897.63 | 64.92 | 5.45 | 2525 | 850.12 | 49.7 | 5392.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, W.; Zhang, G.; Li, J.; Jiang, P.; Pei, H. Probing the Effect and Mechanism of Flue Gas on the Performance of Resorcinol/Hexamethylenetetramine-Based Polymer Gel in Flue Gas Flooding Reservoir. Gels 2022, 8, 772. https://doi.org/10.3390/gels8120772
Qiao W, Zhang G, Li J, Jiang P, Pei H. Probing the Effect and Mechanism of Flue Gas on the Performance of Resorcinol/Hexamethylenetetramine-Based Polymer Gel in Flue Gas Flooding Reservoir. Gels. 2022; 8(12):772. https://doi.org/10.3390/gels8120772
Chicago/Turabian StyleQiao, Wenli, Guicai Zhang, Jianda Li, Ping Jiang, and Haihua Pei. 2022. "Probing the Effect and Mechanism of Flue Gas on the Performance of Resorcinol/Hexamethylenetetramine-Based Polymer Gel in Flue Gas Flooding Reservoir" Gels 8, no. 12: 772. https://doi.org/10.3390/gels8120772
APA StyleQiao, W., Zhang, G., Li, J., Jiang, P., & Pei, H. (2022). Probing the Effect and Mechanism of Flue Gas on the Performance of Resorcinol/Hexamethylenetetramine-Based Polymer Gel in Flue Gas Flooding Reservoir. Gels, 8(12), 772. https://doi.org/10.3390/gels8120772