New Directions in Aesthetic Medicine: A Novel and Hybrid Filler Based on Hyaluronic Acid and Lactose Modified Chitosan
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of HACL-CTL Technology
2.2. Characterization of the Most Promising HACL-CTL Fillers
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of HACL and HACL-CTL Fillers
4.3. Oscillatory Shear-Stress Test
4.4. Enzymatic Hydrolysis
4.5. Swelling
4.6. Cohesivity
4.7. Normal Force Measurement
4.8. Degree of Modification (MoD%)
4.9. Statistical Tests
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goldie, K.; Voropai, D. Hyaluronic Acid in Dermal Fillers. In Dermal Fillers; Goldberg, D.J., Ed.; Karger: Basel, Switzerland, 2018; Volume 4, pp. 36–46. [Google Scholar] [CrossRef]
- Al-Sibani, M.; Al-Harrasi, A.; Neubert, R. Characterization of Linear and Chemically Cross-linked Hyaluronic acid using Various Analytical Techniques Including FTIR, ESI-MS, H1 NMR, and SEM. J. Biochem. Anal. Stud. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Stern, R.; Kogan, G.; Jedrzejas, M.J.; Šoltés, L. The many ways to cleave hyaluronan. Biotechnol. Adv. 2007, 25, 537–557. [Google Scholar] [CrossRef] [PubMed]
- Schanté, C.E.; Zuber, G.; Herlin, C.; Vandamme, T.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011, 85, 469–489. [Google Scholar] [CrossRef]
- Ryu, H.; Kwak, S.; Rhee, C.; Yang, G.; Yun, H.; Kang, W. Model-based prediction to evaluate residence time of hyaluronic acid based dermal fillers. Pharmaceutics 2021, 13, 133. [Google Scholar] [CrossRef] [PubMed]
- De Boulle, K.; Glogau, R.; Kono, T.; Nathan, M.; Tezel, A.; Roca-Martinez, J.X.; Paliwal, S.; Stroumpoulis, D. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol. Surg. 2013, 39, 1758–1766. [Google Scholar] [CrossRef] [Green Version]
- Fidalgo, J.; Deglesne, P.; Arroyo, R.; Sepúlveda, L.; Ranneva, E.; Deprez, P. Detection of a new reaction by-product in BDDE cross-linked autoclaved hyaluronic acid hydrogels by LC–MS analysis. Med. Devices Evid. Res. 2018, 11, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Gavard Molliard, S.; Bon Bétemps, J.; Hadjab, B.; Topchian, D.; Micheels, P.; Salomon, D. Key rheological properties of hyaluronic acid fillers: From tissue integration to product degradation. Plast Aesthetic Res. 2018, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- La Gatta, A.; De Rosa, M.; Frezza, M.A.; Catalano, C.; Meloni, M.; Schiraldi, C. Biophysical and biological characterization of a new line of hyaluronan-based dermal fillers: A scientific rationale to specific clinical indications. Mater. Sci. Eng. C 2016, 68, 565–572. [Google Scholar] [CrossRef]
- Salti, G.; Fundarò, S.P. Evaluation of the rheologic and physicochemical properties of a novel hyaluronic acid filler range with excellent three-dimensional reticulation (XTRTM) technology. Polymers 2020, 12, 1644. [Google Scholar] [CrossRef]
- Choi, M.S. Basic rheology of dermal filler. Arch. Plast Surg. 2020, 47, 301–304. [Google Scholar] [CrossRef]
- Michaud, T. Rheology of hyaluronic acid and dynamic facial rejuvenation: Topographical specificities. J. Cosmet. Dermatol. 2018, 17, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Santoro, S.; Russo, L.; Argenzio, V.; Borzacchiello, A. Rheological properties of cross-linked hyaluronic acid dermal fillers. J. Appl. BioMater. Biomech. 2011, 9, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Hwang, C.; Kim, H.; Jeong, S. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydr. Polym. 2018, 186, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Yag-Howard, C.; DeNigris, J. Novel Filler Technique: Hyaluronic acid and Calcium hydroxylappetite mixture resulting in favorable esthetic and longevity outcomes. Int. J. Women’s Dermatol. 2021, 7, 817–819. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Chen, H.; Xu, C.; Yu, D.; Xu, H.; Hu, Y. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Adv. 2020, 10, 7206–7213. [Google Scholar] [CrossRef] [PubMed]
- Vecchies, F.; Sacco, P.; Marsich, E.; Cinelli, G.; Lopez, F.; Donati, I. Binary solutions of hyaluronan and lactose-modified chitosan: The influence of experimental variables in assembling complex coacervates. Polymers 2020, 12, 897. [Google Scholar] [CrossRef]
- Marsich, E.; Borgogna, M.; Donati, I.; Mozetic, P.; Strand, B.L.; Salvador, S.G.; Vittur, F.; Paoletti, S. Alginate/lactose-modified chitosan hydrogels: A bioactive biomaterial for chondrocyte encapsulation. J. Biomed. Mater. Res. Part A 2008, 4A, 364–376. [Google Scholar] [CrossRef]
- Donati, I.; Stredanska, S.; Silvestrini, G.; Vetere, A.; Marcon, P.; Marsich, E. The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials 2005, 26, 987–998. [Google Scholar] [CrossRef]
- Marcon, P.; Marsich, E.; Vetere, A.; Mozetic, P.; Campa, C.; Donati, I.; Vittur, F.; Gamini, A.; Paoletti, S. The role of Galectin-1 in the interaction between chondrocytes and a lactose-modified chitosan. Biomaterials 2005, 26, 4975–4984. [Google Scholar] [CrossRef]
- Travan, A.; Marsich, E.; Donati, I.; Foulc, M.; Moritz, N.; Aro, H.T.; Paoletti, S. Polysaccharide-Coated Thermosets for Orthopedic Applications: From Material Characterization to In Vivo Tests. Biomacromolecules 2012, 13, 1564–1572. [Google Scholar] [CrossRef]
- Ladiè, R.; Cosentino, C.; Tagliaro, I.; Antonini, C.; Bianchini, G.; Bertini, S. Supramolecular structuring of hyaluronan-lactose-modified chitosan matrix: Towards high-performance biopolymers with excellent biodegradation. Biomolecules 2021, 11, 389. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Yi, H.; Wang, W.; Ma, X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr. Res. 2005, 340, 2403–2410. [Google Scholar] [CrossRef] [PubMed]
- Medelin, M.; Porrelli, D.; Rose, E.; Scaini, D.; Travan, A.; Antonio, M.; Cok, M.; Donati, I.; Marsich, E.; Scopa, C.; et al. Acta Biomaterialia Exploiting natural polysaccharides to enhance in vitro bio-constructs of primary neurons and progenitor cells. Acta Biomater. 2018, 73, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Marsich, E.; Travan, A.; Feresini, M.; Lapasin, R.; Paoletti, S.; Donati, I. Polysaccharide-Based Polyanion–Polycation–Polyanion Ternary Systems in the Concentrated Regime and Hydrogel Form. Macromol. Chem. Phys. 2013, 214, 1309–1320. [Google Scholar] [CrossRef]
- Donati, I.; Feresini, M.; Travan, A.; Marsich, E.; Lapasin, R.; Paoletti, S. Polysaccharide-based polyanion-polycation-polyanion ternary systems. A preliminary analysis of interpolyelectrolyte interactions in dilute solutions. Biomacromolecules 2011, 12, 4044–4056. [Google Scholar] [CrossRef]
- Donati, I.; Huag, I.J.; Scarpa, T.; Borgogna, M.; Draget, K.I.; Skjåk-Bræk, G.; Paoletti, S. Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac). Biomacromolecules 2007, 8, 957–962. [Google Scholar] [CrossRef]
- Donati, I.; Borgogna, M.; Turello, E.; Casàro, A.; Paoletti, S. Tuning supramolecular structuring at the nanoscale level: Nonstoichiometric soluble complexes in dilute mixed solutions of alginate and lactose-modified chitosan (Chitlac). Biomacromolecules 2007, 8, 1471–1479. [Google Scholar] [CrossRef]
- Salamanna, F.; Giavaresi, G.; Parrilli, A.; Martini, L.; Nicoli Aldini, N.; Abatangelo, G.; Abatangelo, G.; Frizziero, A.; Fini, M. Effects of intra-articular hyaluronic acid associated to Chitlac (arty-duo®) in a rat knee osteoarthritis model. J. Orthop. Res. 2019, 37, 867–876. [Google Scholar] [CrossRef]
- Tarricone, E.; Mattiuzzo, E.; Belluzzi, E.; Elia, R.; Benetti, A.; Venerando, R.; Vindigni, V.; Ruggieri, P.; Brun, P. Anti-Inflammatory Performance of Lactose-Modified Osteoarthritis Model. Cells 2020, 9, 1328. [Google Scholar] [CrossRef]
- Sundaram, H.; Rohrich, R.J.; Liew, S.; Sattler, G.; Talarico, S.; Trévidic, P.; Molliard, S.G. Cohesivity of hyaluronic acid fillers: Development and clinical implications of a novel assay, pilot validation with a five-point grading scale, and evaluation of six US food and drug administration-approved fillers. Plast Reconstr. Surg. 2015, 136, 678–686. [Google Scholar] [CrossRef]
- Edsman, K.L.M.; Wiebensjö, Å.M.; Risberg, A.M.; Öhrlund, J.Å. Is There a Method That Can Measure Cohesivity? Cohesion by Sensory Evaluation Compared With Other Test Methods. Dermatol. Surg. 2015, 41, S365–S372. [Google Scholar] [CrossRef] [PubMed]
- Fagien, S.; Bertucci, V.; Von Grote, E.; Mashburn, J.H. Rheologic and Physicochemical Properties Used to Differentiate Injectable Hyaluronic Acid Filler Products. Plast Reconstr. Surg. 2019, 143, 707e–720e. [Google Scholar] [CrossRef] [PubMed]
- Gavard Molliard, S.; Albert, S.; Mondon, K. Key importance of compression properties in the biophysical characteristics of hyaluronic acid soft-tissue fillers. J. Mech. Behav. BioMed. Mater. 2016, 61, 290–298. [Google Scholar] [CrossRef]
- Wang, F.; Garza, L.A.; Kang, S.; Varani, J.; Orringer, J.S.; Fisher, G.J.; Voorhees, J.J. In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin. Arch. Dermatol. 2007, 143, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.; Wang, F.; Shao, Y.; Rittié, L.; Xia, W.; Orringer, J.S.; Voorhees, J.J.; Fisher, G.J. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo. J. Investig. Dermatol. 2013, 133, 658–667. [Google Scholar] [CrossRef] [Green Version]
- Paliwal, S.; Fagien, S.; Sun, X.; Holt, T.; Kim, T.; Hee, C.K.; Van Epps, D.; Messina, D.J. Skin extracellular matrix stimulation following injection of a hyaluronic acid-based dermal filler in a rat model. Plast Reconstr. Surg. 2014, 134, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, L.G. Callegaro, Miscele di Polisaccaridi e Poliamminosaccaridi con proprietà Reologiche Migliorate. Italy Patent Application n° 102021000012737, 2021. submitted. [Google Scholar]
- Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef]
Sample | HA (mg/mL) | CTL (mg/mL) | MoD% (%) | Mw HA (kDa) | G′ (Pa) | G″ (Pa) | Elasticity (%) | tan δ |
---|---|---|---|---|---|---|---|---|
MMW-HACL-3.5 | 20 | 0 | 3.5 | 800–1500 | 27 ± 1 | 15 ± 1 | 64 ± 4 | 0.56 ± 0.04 |
MMW-HACL-7 | 20 | 0 | 7.0 | 800–1500 | 91 ± 4 | 16 ± 1 | 85 ± 6 | 0.18 ± 0.01 |
MMW-HACL-CTL-3.5 | 20 | 5 | 3.5 | 800–1500 | 35 ± 2 | 18 ± 1 | 66 ± 4 | 0.51 ± 0.04 |
MMW-HACL-CTL-7.0 | 20 | 5 | 7.0 | 800–1500 | 141 ± 7 | 22 ± 1 | 86 ± 6 | 0.16 ± 0.01 |
MMW-HACL-CTL-8.8 | 20 | 5 | 8.8 | 800–1500 | 643 ± 32 | 45 ± 2 | 93 ± 6 | 0.07 ± 0.01 |
MMW-HACL-CTL-7.0(25) | 25 | 5 | 7.0 | 800–1500 | 425 ± 21 | 54 ± 3 | 89 ± 6 | 0.13 ± 0.01 |
HMW-HACL-CTL-7.0 | 20 | 5 | 7.0 | >2000 | 374 ± 19 | 24 ± 1 | 94 ± 6 | 0.06 ± 0.01 |
Sample | HA (mg/mL) | CTL (mg/mL) | MoD% (%) | G′ (Pa) | G″ (Pa) | Elasticity (%) | tan δ |
---|---|---|---|---|---|---|---|
MMW-HACL-CTL-5.7 | 20 | 5 | 5.7 | 141 ± 7 | 22 ± 1 | 86 ± 6 | 0.16 ± 0.01 |
HMW-HACL-CTL-3.8 | 20 | 5 | 3.8 | 164 ± 8 | 37 ± 2 | 82 ± 6 | 0.22 ± 0.02 |
HMW-HACL-CTL-6.8 | 20 | 5 | 6.8 | 232 ± 11 | 34 ± 2 | 87 ± 6 | 0.15 ± 0.01 |
HMW-HACL-CTL-7.0 | 20 | 5 | 7.0 | 374 ± 19 | 24 ± 1 | 94 ± 6 | 0.06 ± 0.01 |
MKT1 | 25 | 0 | 17.7 | 179 ± 9 | 22 ± 1 | 89 ± 6 | 0.12 ± 0.01 |
MKT2 | 25 | 0 | 14.0 | 489 ± 24 | 133 ± 7 | 79 ± 6 | 0.27 ± 0.02 |
MKT3 | 25 | 0 | 22.2 | 625 ± 31 | 45 ± 2 | 93 ± 6 | 0.07 ± 0.01 |
MKT4 | 23 | 0 | 5.1 | 183 ± 9 | 55 ± 3 | 77 ± 5 | 0.30 ± 0.02 |
MKT5 | 23 | 0 | 6.0 [10] | 232 ± 11 | 52 ± 3 | 82 ± 6 | 0.22 ± 0.02 |
MKT6 | 23 | 0 | 6.8 [10] | 308 ± 15 | 40 ± 2 | 88 ± 6 | 0.13 ± 0.01 |
Sample | Swelling |
---|---|
MMW-HACL-CTL-5.7 | 184 ± 19 |
HMW-HACL-CTL-3.8 | 177 ± 12 |
HMW-HACL-CTL-6.8 | 178 ± 15 |
HMW-HACL-CTL-7.0 | 89 ± 8 |
Sample | FN (N) | G′ (Pa) |
---|---|---|
MMW-HACL-CTL-5.7 | 1.90 ± 0.05 | 141 ± 7 |
HMW-HACL-CTL-3.8 | 2.31 ± 0.07 | 164 ± 8 |
HMW-HACL-CTL-6.8 | 2.63 ± 0.13 | 232 ± 11 |
HMW-HACL-CTL-7.0 | 2.84 ± 0.03 | 374 ± 19 |
MKT1 | 0.77 ± 0.06 | 179 ± 9 |
MKT2 | 0.83 ± 0.03 | 489 ± 24 |
MKT3 | 1.53 ± 0.11 | 625 ± 31 |
MKT4 | 1.12 ± 0.08 | 183 ± 9 |
MKT5 | 1.62 ± 0.02 | 232 ± 11 |
MKT6 | 1.47 ± 0.27 | 308 ± 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daminato, E.; Bianchini, G.; Causin, V. New Directions in Aesthetic Medicine: A Novel and Hybrid Filler Based on Hyaluronic Acid and Lactose Modified Chitosan. Gels 2022, 8, 326. https://doi.org/10.3390/gels8050326
Daminato E, Bianchini G, Causin V. New Directions in Aesthetic Medicine: A Novel and Hybrid Filler Based on Hyaluronic Acid and Lactose Modified Chitosan. Gels. 2022; 8(5):326. https://doi.org/10.3390/gels8050326
Chicago/Turabian StyleDaminato, Eva, Giulio Bianchini, and Valerio Causin. 2022. "New Directions in Aesthetic Medicine: A Novel and Hybrid Filler Based on Hyaluronic Acid and Lactose Modified Chitosan" Gels 8, no. 5: 326. https://doi.org/10.3390/gels8050326
APA StyleDaminato, E., Bianchini, G., & Causin, V. (2022). New Directions in Aesthetic Medicine: A Novel and Hybrid Filler Based on Hyaluronic Acid and Lactose Modified Chitosan. Gels, 8(5), 326. https://doi.org/10.3390/gels8050326