Potential Hemostatic and Wound Healing Effects of Thermoresponsive Wound Dressing Gel Loaded with Lignosus rhinocerotis and Punica granatum Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Screening of HLRE and PPE
2.2. Tgel
2.3. TPA
2.4. Rheology
2.5. ATR-FTIR Analysis
2.6. Morphology
2.7. Swelling Properties and Biodegradation
2.8. Antibacterial Activity
2.9. Thrombin Activity
2.10. In Vitro Wound Healing Potential
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of HLRE
4.3. Preparation of PPE
4.4. Phytochemical Screening of HLRE and PPE Using GC-MS
4.5. Preparation of Thermoresponsive Gels
4.6. Incorporation of HLRE and PPE
4.7. Tgel Measurement
4.8. Texture Profile Analysis (TPA)
4.9. Rheological Analysis
4.10. FTIR Spectroscopic Analysis
4.11. Morphological Analysis
4.12. Swelling Analysis
4.13. Biodegradation Analysis
4.14. Determination of Antibacterial Activity
4.15. Thrombin Activity Assay
4.16. Wound Scratch Assay
4.17. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohorquez, M.; Koch, C.; Trygstad, T.; Pandit, N. A study of the temperature dependent micellization of pluronic F127. J. Colloid Interface Sci. 1999, 216, 34–40. [Google Scholar] [CrossRef]
- Jalaal, M.; Cottrell, G.; Balmforth, N.; Stoeber, B. On the rheology of Pluronic F127 aqueous solutions. J. Rheol. 2017, 61, 139–146. [Google Scholar] [CrossRef]
- Ban, E.; Park, M.; Jeong, S.; Kwon, T.; Kim, E.H.; Jung, K.; Kim, A. Poloxamer based thermoreversible gel for topical delivery of emodin: Influence of P407 and P188 on solubility of emodin and its application in cellular activity screening. Molecules 2017, 22, 246. [Google Scholar] [CrossRef] [Green Version]
- Katas, H.; Wen, C.Y.; Siddique, M.I.; Hussain, Z.; Mohd Fadhil, F.H. Thermoresponsive curcumin/DsiRNA nanoparticle gels for the treatment of diabetic wounds: Synthesis and drug release. Ther. Deliv. 2017, 8, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-Y.; Jalil, J.; Ng, P.Y.; Ng, S.-F. Development and formulation of Moringa oleifera standardised leaf extract film dressing for wound healing application. J. Ethnopharmacol. 2018, 12, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.-Y.; Lai, H.Y.; Rao, N.K.; Ng, S.-F. Treatment for diabetic ulcer wounds using a fern tannin optimized hydrogel formulation with antibacterial and antioxidative properties. J. Ethnopharmacol. 2016, 189, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Varshini, H.R.; Bhavani, P.D.; Goudanavar, P.S.; Naveen, N.R.; Ramesh, B.; Fattepur, S.; Shiroorkar, P.N.; Habeebuddin, M.; Meravanige, G.; et al. Optimization of process parameters for fabrication of electrospun nanofibers containing neomycin sulfate and Malva sylvestris extract for a better diabetic wound healing. Drug Deliv. 2022, 29, 3370–3383. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.H.; Zainal, Z.; Daud, F. Preliminary study on the potential of polysaccharide from indigenous Tiger’s Milk mushroom (Lignosus rhinocerus) as anti-lung cancer agent. AIP Conf. Proc. 2014, 614, 517–519. [Google Scholar] [CrossRef]
- Eik, L.F.; Naidu, M.; David, P.; Wong, K.H.; Tan, Y.S.; Sabaratnam, V. Lignosus rhinocerus (Cooke) Ryvarden: A medicinal mushroom that stimulates neurite outgrowth in PC-12 cells. Evid. Based Complement. Alternat. Med. 2012, 2012, 320308. [Google Scholar] [CrossRef] [Green Version]
- Phan, C.W.; David, P.; Naidu, M.K.H.; Sabaratnam, V. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3. BMC Complement. Altern. Med. 2013, 13, 261. [Google Scholar] [CrossRef]
- Shopana, M.; Sudhahar, D.; Anandarajagopal, K. Screening of Lignosus rhinocerus extracts as antimicrobial agents against selected human pathogens. J. Pharm. Biomed. Sci. 2012, 18, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.H.; Lai, C.K.M.; Cheung, P.C.K. Immunomodulatory activities of mushroom sclerotial polysaccharides. Food Hydrocoll. 2011, 25, 150–158. [Google Scholar] [CrossRef]
- Yap, H.Y.Y.; Chooi, Y.H.; Raih, M.F.; Fung, S.Y.; Ng, S.T.; Tan, C.S.; Tan, N.H. The genome of the Tiger Milk Mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties. BMC Genom. 2014, 15, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.S.; Lee, S.S. Utilisation of macrofungi species in Malaysia. Fungal Divers. 2004, 15, 15–22. [Google Scholar]
- Elzayat, E.M.; Auda, S.H.; Alanazi, F.K.; Al-Agamy, M.H. Evaluation of Wound Healing Activity of Henna, Pomegranate and Myrrh Herbal Ointment Blend. Saudi Pharm. J. 2018, 26, 733–738. [Google Scholar] [CrossRef]
- Soltani, R.; Haghighat, A.; Fanaei, M.; Asghari, G. Evaluation of the Effect of Green Tea Extract on the Prevention of Gingival Bleeding after Posterior Mandibular Teeth Extraction: A Randomized Controlled Trial. Evid. Based Complement. Altern. Med. eCAM 2014, 2014, 857651. [Google Scholar] [CrossRef] [Green Version]
- Lukiswanto, B.S.; Miranti, A.; Sudjarwo, S.A.; Primarizky, H.; Yuniarti, W.M. Evaluation of wound healing potential of pomegranate (Punica granatum) whole fruit extract on skin burn wound in rats (Rattus norvegicus). J. Adv. Vet. Anim. Res. 2019, 6, 202–207. [Google Scholar] [CrossRef]
- Murthy, K.N.C.; Reddy, V.K.; Veigas, J.M.; Murthy, U.M. Study on Wound Healing Activity of Punica granatum Peel. J. Med. Food 2004, 7, 256–259. [Google Scholar] [CrossRef]
- Scott, N.; Hughes, J.; Forbes-Haley, C.; East, C.; Holmes, S.; Wilson, E.; Ball, S.; Hammond, D.; Drake, D.; Hutchison, I.; et al. Elite and Professional sports facial injuries management—A consensus report. Br. J. Oral Maxillofac. Surg. 2020, 58, e254–e259. [Google Scholar] [CrossRef]
- Chang, L.; Chang, R.; Liu, X.; Ma, X.; Chen, D.; Wang, Y.; Li, W.; Qin, J. Self-healing hydrogel based on polyphosphate-conjugated pectin with hemostatic property for wound healing applications. Biomater. Adv. 2022, 139, 212974. [Google Scholar] [CrossRef]
- Hu, H.; Luo, F.; Zhang, Q.; Xu, M.; Chen, X.; Liu, Z.; Xu, H.; Wang, L.; Ye, F.; Zhang, K.; et al. Berberine coated biocomposite hemostatic film based alginate as absorbable biomaterial for wound healing. Int. J. Biol. Macromol. 2022, 209, 1731–1744. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Niezgoda, J.; Niezgoda, J.; Madetipati, N.; Gopalakrishnan, S. Advances in Hemostatic Wound Dressings: Clinical Implications and Insight. Adv. Skin Wound Care 2022, 35, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Katas, H.; Chei, S.L.; Nor Azlan, Y.H.; Buang, F.; Mh Busra, M.F. Antibacterialactivity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and Chitosan. Saudi Pharm. J. 2019, 27, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Fitzmaurice, S.D.; Sivamani, R.K.; Isseroff, R.R. Antioxidant Therapies for Wound Healing: A Clinical Guide to Commercial Available Products. Skin Pharmacol. Physiol. 2011, 24, 113–126. [Google Scholar] [CrossRef]
- Kramaric, A.; Resman, A.; Kofler, B.; Zmitek, J. Thermoreversible Gel as a Liquid Pharmaceutical Carrier for a Galenic Formulation. European Patent 1992. Available online: https://patents.google.com/patent/CA2085690A1/en (accessed on 30 October 2022).
- Kim, E.Y.; Gao, Z.G.; Park, J.S.; Li, H.; Han, K. rhEGF/HP-β- CD complex in poloxamer gel for ophthalmic delivery. Int. J. Pharm. 2002, 233, 159–167. [Google Scholar] [CrossRef]
- Choi, H.G.; Jung, J.H.; Ryu, J.M.; Yoon, S.J.; Oh, Y.K.; Kim, C.K. Development of in situ-gelling and mucoadhesive acetaminophen liquid suppository. Int. J. Pharm. 1998, 165, 33–44. [Google Scholar] [CrossRef]
- Escobar-Chávez, J.; López-Cervantes, M.; Naik, A.; Kalia, Y.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. Applications of thermo-reversible Pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci. 2006, 9, 339–358. [Google Scholar]
- Inal, O.; Yapar, E.A. Effect of mechanical properties on the release of meloxicam from poloxamer gel bases. Indian J. Pharm. Sci. 2013, 75, 700–706. [Google Scholar] [CrossRef]
- Dini, V.; Salvo, P.; Janowska, A.; Francesco, F.D.; Barbini, A.; Romanelli, M. Correlation Between Wound Temperature Obtained with an Infrared Camera and Clinical Wound Bed Score in Venous Leg Ulcers. Wounds 2015, 27, 274–278. [Google Scholar]
- Bender, D.; Tweer, S.; Werdin, F.; Rothenberger, J.; Daigeler, A.; Held, M. The acute impact of local cooling versus local heating on human skin microcirculation using laser Doppler flowmetry and tissue spectrophotometry. Burns 2020, 46, 104–109. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K.; Chen, S. Pluronic F127-Based Thermosensitive Gels for Delivery of Therapeutic Proteins and Peptides. Polym. Rev. 2014, 54, 573–597. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical per-spectives. J. Control. Release 2015, 209, 120–138. [Google Scholar] [CrossRef] [PubMed]
- Baloglu, E.; Karavana, S.Y.; Senyigit, Z.A.; Guneri, T. Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharm. Dev. Technol. 2011, 16, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Cevher, E.; Sensoy, D.; Taha, M.; Araman, A. Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan. Pharm. Sci. Tech. 2008, 9, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Hurler, J.; Engesland, A.; Poorahmary-Kermany, B.; Škalko-Basnet, N. Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. J. Appl. Polym. Sci. 2011, 125, 180–188. [Google Scholar] [CrossRef]
- Al-Shammari, B.; Al-Fariss, T.; Al-Sewailm, F.; Elleithy, R. The effect of polymer concentration and temperature on the rheological behavior of metallocene linear low-density polyethylene (mLLDPE) solutions. J. King Saud Univ. Eng. Sci. 2011, 23, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Bentley, M.V.L.; Marchetti, J.M.; Ricardo, N.; Ali-Abi, Z.; Collett, J.H. Influence of lecithin on some physical chemical properties of poloxamer gels: Rheological, microscopic and in vitro permeation studies. Int. J. Pharm. 1999, 193, 49–55. [Google Scholar] [CrossRef]
- Rarokar, N.R.; Saoji, S.D.; Khedekar, P.B. Investigation of effectiveness of some extensively used polymers on thermoreversible properties of Pluronic® tri-block copolymers. J. Drug Deliv. Sci. Technol. 2018, 44, 220–230. [Google Scholar] [CrossRef]
- Lau, B.F.; Abdullah, N.; Aminudin, N.; Lee, H.B.; Tan, P.J. Ethnomedicinal Uses, Pharmacological Activities, and Cultivation of Lignosus Spp. (Tigers Milk Mushrooms) in Malaysia- a Review. J. Ethnopharmacol. 2015, 169, 441–458. [Google Scholar] [CrossRef]
- Kesur, P.; Chauhan, M.G.; Hirenbhai, P.; Prajapati, V. Evaluation of Antimicrobial Properties of Peels and Juice Extract of Pucina Granatum (Pomegranate). Inter. J. Res. Sci. Innov. 2016, 3, 11–20. [Google Scholar]
- Dung, T.H.; Huong, L.T.; Yoo, H. Morphological Feature of Pluronic F127 and Its Application in Burn Treatment. J. Nanosci. Nanotechnol. 2018, 18, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.R.; Park, T.G. Temperature-responsive and degradable hyaluronic acid/Pluronic composite hydrogels for controlled release of human growth hormone. J. Control. Release 2002, 80, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Nor Azlan, A.Y.H.; Katas, H.; Habideen, N.H.; Mh Busra, M.F. Dual-action of thermoresponsive gels containing DsiRNA-loaded gold nanoparticles for diabetic wound therapy: Characterization, in vitro safety and healing efficacy. Saudi Pham. J. 2020, 28, 1420–1430. [Google Scholar] [CrossRef] [PubMed]
- Al-Saimar. A chemotherapeutic efficacy of some antibiotics and Punica grantum L. extracts against Propionibacterium acnes isolated from acne vulgaris cases. Med. J. Islamic World Acad. Sci. 2014, 22, 139–144. [Google Scholar] [CrossRef]
- Chalke, T.; Sharma, K.; Nagare, S.K.; Jirge, S.S. Formualtion and Evaluation of Punica Topical Gel for its Content of Gallic Acid and Anti-Microbial Study. Int. J. Drug Deliv. Technol. 2016, 6, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, C.; Gaeta, H.; Belchor, M.; Ferreira, M.; Pinho, M.; Toyama, D.; Toyama, M. Evaluation of Potential Thrombin Inhibitors from the White Mangrove (Laguncularia racemosa (L.) C.F. Gaertn.). Mar. Drugs 2015, 13, 4505–4519. [Google Scholar] [CrossRef] [Green Version]
- Sidek Ahmad, M.; Noor, Z.M.; Ariffin, Z.Z. New thrombolytic agent from endophytic fungi and Lignosus rhinocerus. Open Conf. Proc. J. 2014, 4, 95–98. [Google Scholar] [CrossRef]
- Cuccioloni, M.; Mozzicafreddo, M.; Sparapani, L.; Spina, M.; Eleuteri, A.M.; Fioretti, E.; Angeletti, M. Pomegranate fruit components modulate human thrombin. Fitoterapia 2009, 80, 301–305. [Google Scholar] [CrossRef]
- Alibeik, S.; Zhu, S.; Brash, J.L. Surface modification with PEG and hirudin for protein resistance and thrombin neutralization in blood contact. Colloids Surf. B Biointerfaces 2010, 81, 389–396. [Google Scholar] [CrossRef]
- Grada, A.; Otero-Viñas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V.J. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. J. Invest. Dermatol. 2017, 137, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Ying, L.Q.; Misni, M. Thermoresponsive Gel Mixture Carboxymethyl Cellulose and iota-Carrageenan for Topical Delivery of Hydroquinone. Polym. Sci. Ser. A 2017, 59, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanyam, N. Addition of Antioxidants and Polyethylene Glycol 4000 Enhances the Healing Property of Honey in Burns. Ann. Burns Fire Disasters 1996, 20, 137–139. [Google Scholar]
- Olszewska-Pazdrak, B.; Bergmann, J.S.; Fuller, G.M.; Carney, D.H. The role of thrombin and thrombin peptides in wound healing and tissue repair. In Thrombin Physiology and Disease; Maragoudakis, M.E., Tsopanoglou, N.E., Eds.; Springer: New York, NY, USA, 2009; pp. 115–132. [Google Scholar] [CrossRef]
- Pohl, J.; Bruhn, H.D.; Christophers, E. Thrombin and fibrin-induced growth of fibroblasts: Role in wound repair and thrombus organization. Klinische Wochenschrift 1979, 57, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ogushi, F.; Tani, K.; Ogawa, H.; Kawano, T.; Endo, T.; Izumi, K.; Sono, N.; Ueno, J.; Nishitani, H.; et al. Thrombin Promotes Fibroblast Proliferation during the Early Stages of Experimental Radiation Pneumonitis. Radiation Res. 2001, 156, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Altieri, P.; Bertolotto, M.; Fabbi, P.; Sportelli, E.; Balbi, M.; Santini, F.; Brunelli, C.; Canepa, M.; Montecucco, F.; Ameri, P. Thrombin induces protease-activated receptor 1 signaling and activation of human atrial fibroblasts and dabigatran prevents these effects. Int. J. Cardiol. 2018, 271, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Buchta, C.; Hedrich, H.C.; Macher, M.; Hocker, P.; Redl, H. Biochemical characterization of autologous fibrin sealants produced by CryoSeal and Vivostat in comparison to the homologous fibrin sealant product Tissucol/Tisseel. Biomaterials 2005, 26, 6233–6241. [Google Scholar] [CrossRef] [PubMed]
- Kant, V.; Gopal, A.; Kumar, D.; Gopalkrishnan, A.; Pathak, N.N.; Kurade, N.P.; Tandan, S.K.; Kumar, D. Topical pluronic F-127 gel application enhances cutaneous wound healing in rats. Acta Histochem. 2014, 116, 5–13. [Google Scholar] [CrossRef]
- Arafa, M.G.; El-Kased, R.F.; Elmazar, M.M. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci. Rep. 2018, 8, 13674. [Google Scholar]
- Johnathan, M.; Gan, S.H.; Wan Ezumi, M.F.; Faezahtul, A.H.; Nurul, A.A. Phytochemical profiles and inhibitory effects of Tiger Milk mushroom (Lignosus rhinocerus) extract on ovalbumin-induced airway inflammation in a rodent model of asthma. BMC Complement. Altern. Med. 2016, 16, 167. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, S.S.I.; Katas, H.; Chan, J.Y.; Ganasan, P.; Azmi, F.; Busra, M.F.M. Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan. RSC Adv. 2020, 10, 4969–4983. [Google Scholar] [CrossRef] [PubMed]
Peak Number | Retention Time | Area (%) | Identified Compounds |
---|---|---|---|
1 | 8.014 | 0.364 | Trimethylsilyl fluoride |
2 | 8.161 | 0.482 | l-Alanine, N-(trimethylsilyl)-, trimethylsilyl ester |
3 | 9.677 | 0.085 | Ethanedioic acid, bis(trimethylsilyl) ester |
4 | 10.393 | 0.249 | l-Leucine, trimethylsilyl ester |
5 | 10.778 | 0.093 | 1,1,1,3,5,5,7,7,7-Nonamethyl-3- (trimethylsiloxy)tetrasiloxane |
6 | 11.105 | 0.648 | l-Isoleucine, trimethylsilyl ester |
7 | 12.118 | 0.056 | Propanedioic acid, bis(trimethylsilyl) ester |
8 | 12.320 | 1.322 | L-Valine, N-(trimethylsilyl)-, trimethylsilyl ester |
9 | 12.727 | 0.117 | N,N-bis [2-Trimethylsiloxyethyl] ethanamine |
10 | 13.685 | 7.051 | Urea, N,N’-bis(trimethylsilyl)- |
11 | 14.012 | 0.520 | L-Leucine, N-(trimethylsilyl)-, trimethylsilyl ester |
12 | 14.173 | 26.110 | Silanol, trimethyl-, phosphate (3:1) |
13 | 14.357 | 0.176 | Diethylamine, 2,2’-bis(trimethylsiloxy)- |
14 | 14.584 | 0.968 | L-Isoleucine, N-(trimethylsilyl)-, trimethylsilyl ester |
15 | 14.647 | 0.657 | l-Threonine, O-(trimethylsilyl)-, trimethylsilyl ester |
16 | 14.834 | 0.790 | Glycine, N,N-bis(trimethylsilyl)-, trimethylsilyl ester |
17 | 14.903 | 0.264 | Methanamine, N,N-di(2-trimethylsilyloxyethyl)- |
18 | 15.260 | 0.186 | Butanedioic acid, bis(trimethylsilyl) ester |
19 | 15.616 | 1.188 | Propanoic acid, 2,3-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester |
20 | 16.353 | 0.132 | Serine tritms |
21 | 16.941 | 0.811 | N,O,O-Tris(trimethylsilyl)-L-threonine |
22 | 18.078 | 2.934 | (R*,S*)-3,4-Dihydroxybutanoic acid triTMS |
23 | 19.282 | 0.343 | Malic acid, O-(trimethylsilyl)-, bis(trimethylsilyl)ester |
24 | 19.495 | 0.091 | Threitol, 1,2,3,4-tetrakis-O-(trimethylsilyl)-, D- |
25 | 19.642 | 2.553 | 19.642 3,8-Dioxa-2,9-disiladecane, 2,2,9,9-tetramethyl-5, 6-bis[(trimethylsilyl)oxy]-, (R*,S*)- |
26 | 19.917 | 3.453 | L-Aspartic acid, N-(trimethylsilyl)- |
27 | 20.350 | 1.452 | L-Threonic acid, tris(trimethylsilyl) ether, trimethylsilyl ester |
28 | 20.728 | 0.372 | L-Threonic acid, tris(trimethylsilyl) ether, trimethylsilyl ester |
29 | 20.948 | 0.430 | 3-Pyridinecarboxylic acid, 6-[(trimethylsilyl)oxy]-, trimethylsilyl ester |
30 | 21.895 | 3.125 | Glutamine, tris(trimethylsilyl)- |
31 | 22.013 | 8.141 | Amine, N,N,N-tris((trimethylsilyloxy)ethyl)- |
32 | 22.237 | 0.278 | Benzeneacetic acid, 4-[(trimethylsilyl)oxy]-, trimethylsilyl ester |
33 | 22.347 | 0.172 | 1,3,5-Tris(trimethylsiloxy)benzene |
34 | 22.600 | 0.339 | 3,4,5-Trihydroxypentanoic acid, tetrakis(trimethylsilyl)- |
35 | 22.875 | 0.075 | 4H-1,3,5-Oxadiazine-4-carboxylic acid, 2- (dimethylamino)-6-(2-fluorophenyl)-4- (trifluoromethyl)-, ethyl ester |
36 | 23.396 | 0.090 | Arabinopyranose, tetrakis-O-(trimethylsilyl)-, à-D- |
37 | 24.934 | 3.193 | L-Glutamic acid, N-acetyl-, bis(trimethylsilyl) derive |
38 | 25.268 | 0.177 | 9H-Purine, 9-(trimethylsilyl)-6-[(trimethylsilyl)oxy]- |
39 | 25.455 | 6.844 | 1,2,3-Propanetricarboxylic acid, 2- [(trimethylsilyl)oxy]-, tris(trimethylsilyl) ester |
40 | 29.170 | 0.252 | Hexadecanoic acid, trimethylsilyl ester |
41 | 31.677 | 0.210 | 9,12-Octadecadienoic acid (Z,Z)-, trimethylsilyl ester |
42 | 35.325 | 0.530 | Uridine, 2’,3’,5’-tris-O-(trimethylsilyl)- |
Peak Number | Retention Time | Area (%) | Identified Compounds |
---|---|---|---|
1 | 6.8061 | 0.5462 | Cyclohexanone |
2 | 7.1657 | 0.8791 | 2,5-Furandione, 3-methyl- |
3 | 7.3045 | 1.2139 | 2,5-Furandione, 3-methyl- |
4 | 7.5947 | 0.3992 | 2-Imino-4-methylpentanenitrile |
5 | 7.9669 | 0.7547 | 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one |
6 | 8.2634 | 0.0797 | Allyl (3-methylbutyl) sulfide |
7 | 8.4906 | 0.0928 | Phenol |
8 | 8.7113 | 0.1481 | 1-Cyclohexene-1-methanol |
9 | 8.8817 | 0.6872 | Oxirane, (butoxymethyl)- |
10 | 9.3044 | 0.038 | 4-Oxopentyl formate |
11 | 9.8027 | 0.1825 | 2-Methyl-3-vinyl-oxirane |
12 | 10.0677 | 0.1256 | 2-Pentenoic acid, methyl ester |
13 | 10.2885 | 0.5623 | 2,5-Dimethyl-4-hydroxy-3(2H)-furanone |
14 | 10.7932 | 0.2125 | 6-Methyl-6-hepten-4-yn-3-ol |
15 | 10.932 | 0.8212 | Thymine |
16 | 11.1275 | 0.5276 | 1,3-Cyclopentanedione, 2,2-dimethyl- |
17 | 12.0108 | 0.0724 | 3(2H)-Furanone, dihydro-5-isopropyl- |
18 | 12.2127 | 0.1121 | N-(N-Allylformamide)ethyleneimine |
19 | 12.3704 | 3.9396 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- |
20 | 13.405 | 0.1022 | 1,3,3-Trichloro-2-methyl-4-pentanone |
21 | 13.6321 | 0.3758 | 4H-Pyran-4-one, 3,5-dihydroxy-2-methyl- |
22 | 13.9034 | 0.3932 | 1,3,2-Oxazaborolane, 2-butyl- |
23 | 14.0926 | 0.1731 | Diethylvinylsilane |
24 | 14.2314 | 0.1516 | Hydroquinone |
25 | 14.4396 | 0.248 | Benzofuran, 2,3-dihydro- |
26 | 14.6036 | 5.451 | 5-Hydroxymethylfurfural |
27 | 15.3039 | 0.3331 | 5-Hydroxymethylfurfural |
28 | 15.4742 | 0.423 | 1H-Pyrrole-2,5-dione |
29 | 16.2123 | 0.0489 | Ethanone, 1-(2-hydroxy-5-methylphenyl)- |
30 | 16.5215 | 0.1349 | 4-Mercaptophenol |
31 | 16.7549 | 0.2108 | 4-Mercaptophenol |
32 | 17.1334 | 0.0698 | 2,5-Furandione, 3,4-dimethyl- |
33 | 17.7769 | 0.0494 | Methyl 2-thienylacetate |
34 | 18.1238 | 0.4649 | 1-Ethyl-1-ethoxy-1-silacyclopentane |
35 | 19.2909 | 0.4163 | 1,2,4-Benzenetriol |
36 | 20.212 | 0.5949 | Sucrose |
37 | 20.3193 | 0.407 | Sulfurous acid, decyl 2-propyl ester |
38 | 20.906 | 0.1494 | Heptanoic acid |
39 | 20.9753 | 0.1092 | .alpha.-D-Glucopyranose, 4-O-.beta.-D-galactopyranosyl- |
40 | 22.01 | 0.1773 | Sucrose |
41 | 22.6282 | 0.1907 | 1,5-Anhydro-d-mannitol |
42 | 23.6691 | 0.9486 | Methyl-4-azido-4-desoxy.beta.l-arabinopyranoside |
43 | 23.7322 | 1.8149 | Polygalitol |
44 | 24.3189 | 0.1601 | d-Mannitol, 1,4-anhydro- |
45 | 24.4766 | 0.1939 | 2-O-Mesyl arabinose |
46 | 24.6091 | 0.3645 | 3-Deoxy-d-mannonic acid |
47 | 27.6057 | 0.1994 | 1,2-Cyclooctanedione |
48 | 28.5899 | 0.0721 | n-Hexadecanoic acid |
49 | 32.7851 | 0.1273 | Hexatriacontyl pentafluoropropionate |
50 | 33.2898 | 0.1952 | Hexatriacontyl pentafluoropropionate |
51 | 33.416 | 0.0933 | Octacosyl trifluoroacetate |
52 | 33.7314 | 0.3113 | Sulfurous acid, octadecyl 2-propyl ester |
53 | 34.1352 | 0.468 | Oxalic acid, isobutyl hexadecyl ester |
54 | 34.2803 | 0.2256 | 1-Hexacosene |
55 | 34.9301 | 2.2523 | Hexatriacontyl pentafluoropropionate |
56 | 35.2392 | 0.3489 | Oxalic acid, cyclobutyl pentadecyl ester |
57 | 35.6366 | 1.3339 | Oxalic acid, cyclobutyl heptadecyl ester |
58 | 35.9079 | 0.3096 | Tetracosyl heptafluorobutyrate |
59 | 36.0341 | 0.3319 | Oxalic acid, cyclobutyl heptadecyl ester |
60 | 36.2422 | 1.0202 | Oxalic acid, cyclobutyl heptadecyl ester |
61 | 36.6208 | 1.2003 | Oxalic acid, 6-ethyloct-3-yl ethyl ester |
62 | 37.6617 | 1.1687 | Heneicosane, 11-(1-ethylpropyl)- |
63 | 38.0339 | 2.4216 | Ethanol, 2-(octadecyloxy)- |
64 | 38.4818 | 1.93 | Octatriacontyl pentafluoropropionate |
65 | 38.8856 | 3.6393 | Oxalic acid, allyl octadecyl ester |
66 | 39.548 | 2.7195 | Octatriacontyl pentafluoropropionate |
67 | 40.57 | 5.5135 | Pentatriacontane |
68 | 40.8539 | 10.9949 | Pentatriacontane |
69 | 41.2702 | 2.1909 | Nonadecane |
70 | 42.513 | 12.6999 | Heptadecane, 9-octyl- |
71 | 43.0619 | 2.0224 | Dotriacontyl pentafluoropropionate |
72 | 43.4404 | 1.807 | 17-Pentatriacontene |
73 | 44.065 | 0.8617 | Oxalic acid, cyclobutyl hexadecyl ester |
74 | 44.475 | 2.504 | Ethanol, 2-(octadecyloxy)- |
75 | 44.822 | 1.2853 | Dotriacontyl heptafluorobutyrate |
76 | 45.2194 | 1.6025 | Oxirane, [(hexadecyloxy)methyl]- |
77 | 45.5349 | 1.0744 | Tetratriacontyl pentafluoropropionate |
78 | 46.1973 | 0.8266 | Hexacosyl heptafluorobutyrate |
79 | 47.5536 | 9.5266 | Heneicosane |
80 | 48.3233 | 1.1708 | Cyclohexane, 1,1’-(2-methyl-1,3-propanediyl)bis- |
1 | 6.8061 | 0.5462 | Cyclohexanone |
2 | 7.1657 | 0.8791 | 2,5-Furandione, 3-methyl- |
3 | 7.3045 | 1.2139 | 2,5-Furandione, 3-methyl- |
4 | 7.5947 | 0.3992 | 2-Imino-4-methylpentanenitrile |
5 | 7.9669 | 0.7547 | 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one |
6 | 8.2634 | 0.0797 | Allyl (3-methylbutyl) sulfide |
7 | 8.4906 | 0.0928 | Phenol |
8 | 8.7113 | 0.1481 | 1-Cyclohexene-1-methanol |
Formulation | PEG 400 (% w/w) | Starch (mg/L) | PPE (mg/mL) | HLRE (mg/mL) | Tgel (°C) |
---|---|---|---|---|---|
F1 (blank) | - | - | - | 24.3 ± 0.6 | |
F2 | 5 | - | - | 27.3 ± 0.6 | |
F3 | 10 | - | - | 30.0 ± 1.0 | |
F4 | 15 | - | - | 33.3 ± 1.2 | |
F5 | 22 | - | - | 37.0 ± 1.0 | |
F6 | - | 500 | - | 22.3 ± 0.6 | |
F7 | - | 1000 | - | 23.7 ± 0.6 | |
F8 | - | 1500 | - | 24.3 ± 0.6 | |
F9 | 1 | 1500 | - | 21.0 ± 1.7 | |
F10 | 5 | 1500 | - | 24.3 ± 0.6 | |
F11 | 10 | 1500 | - | 24.7 ± 0.6 | |
F12 | 15 | 1500 | - | 24.3 ± 0.6 | |
F13 | 20 | 1500 | - | 17.3 ± 3.1 | |
F14 | 22 | 1500 | - | 46.7 ± 1.5 | |
F15 | 22 | - | 1.00 | 0.125 | 26.7 ± 1.2 |
F16 | 22 | - | 0.50 | 0.125 | 26.2 ± 1.3 |
F17 | 22 | - | 0.25 | 0.125 | 26.2 ± 0.8 |
F18 | 22 | - | 0.125 | 0.125 | 25.7 ± 0.3 |
F19 | 22 | - | 0.06 | 0.125 | 25.8 ± 0.3 |
Sample (mg/mL) | Zone of Inhibition (mm) | |
---|---|---|
PPE | 1 | 10.1 ± 1.2 |
0.5 | 8.00 ± 0.0 | |
0.25 | - | |
0.125 | - | |
0.06 | - | |
F15–F19 | - | |
Gentamicin (Positive control) | 29.7 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faris Taufeq, F.Y.; Habideen, N.H.; Rao, L.N.; Podder, P.K.; Katas, H. Potential Hemostatic and Wound Healing Effects of Thermoresponsive Wound Dressing Gel Loaded with Lignosus rhinocerotis and Punica granatum Extracts. Gels 2023, 9, 48. https://doi.org/10.3390/gels9010048
Faris Taufeq FY, Habideen NH, Rao LN, Podder PK, Katas H. Potential Hemostatic and Wound Healing Effects of Thermoresponsive Wound Dressing Gel Loaded with Lignosus rhinocerotis and Punica granatum Extracts. Gels. 2023; 9(1):48. https://doi.org/10.3390/gels9010048
Chicago/Turabian StyleFaris Taufeq, Farha Yasmin, Nur Hamizah Habideen, Loageshwari Nagaswa Rao, Promit Kumar Podder, and Haliza Katas. 2023. "Potential Hemostatic and Wound Healing Effects of Thermoresponsive Wound Dressing Gel Loaded with Lignosus rhinocerotis and Punica granatum Extracts" Gels 9, no. 1: 48. https://doi.org/10.3390/gels9010048
APA StyleFaris Taufeq, F. Y., Habideen, N. H., Rao, L. N., Podder, P. K., & Katas, H. (2023). Potential Hemostatic and Wound Healing Effects of Thermoresponsive Wound Dressing Gel Loaded with Lignosus rhinocerotis and Punica granatum Extracts. Gels, 9(1), 48. https://doi.org/10.3390/gels9010048