State of the Art of Hydrogel Wound Dressings Developed by Ionizing Radiation
Abstract
:1. Introduction
2. Wound Dressing Hydrogel Crosslinking Using Irradiation Technology
3. Characterization of Hydrogel Wound Dressings Prepared by Ionizing Radiation
3.1. Gel Fraction and Swelling Degree
3.2. Sol–Gel Analysis
3.3. Rheology and Mechanical Properties
3.4. Network Parameters
3.5. Morphology
3.6. Moisture Retention Capability and Water Vapor Transmission Rate
3.7. Drug Release
3.8. In Vitro Biological Properties
3.8.1. Antimicrobial Studies
3.8.2. Cytotoxicity Studies
4. General Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Acrylic acid |
AM | Amoxicillin |
AgNPs | Ag nanoparticles |
BC | Bacterial cellulose |
CA | Cellulose acetate |
CIP | Ciprofloxacin hydrochloride |
CHS | Chondroitin sulfate |
CMC | Carboxymethyl cellulose |
CM-CS | Carboxymethyl-chitosan |
CPC | Cetylpyridinium chloride |
CS | Chitosan |
CL | Colistin |
DMAEM | 2-(Dimethyl amino)ethyl methacrylate |
Dv | virtual dose |
Dg | gelation dose |
E-beam | electron beam |
ELT | Elastin |
G | Radiochemical yield |
GA | Gum acacia |
GEL | Gelatin |
Gly | Glycerin |
GM | Gentamicin |
G(S) | Radiochemical yield of the scission |
G(X) | Radiochemical yield of the crosslinking |
HACC | Quaternary ammonium chitosan |
HEMA | Hydroxyethyl methacrylate |
ITA | Itaconic acid |
LAA | L-ascorbic acid |
MMA | methyl methacrylate |
MOG | Moringa oleifera gum |
MMT | Montmorillonite clay |
MRSA | Methicillin-resistant Staphylococcus aureus |
NEO | Neomycin |
PAA | Poly(acrylic acid) |
PAAM | Poly(acrylamide) |
PEGDA | Poly(ethylene glycol)diacrylate |
PEG | Poly(ethylene glycol) |
PEO | Poly(ethylene oxide) |
PG | Prodigiosin |
PGA | Polyglutamic acid |
PHEMA | Poly(2-hydroxyethyl methacrylate) |
PLGA | Poly(lactic-co-glycodic acid) |
PLST | Plasticized starch |
PVA | Polyvinyl alcohol |
PVP | Polyvinylpyrrolidone |
SA | Sodium alginate |
SF | Silk fibroin |
SSD | Silver sulfadiazine |
SD-Na | Sulfadiazine sodium |
TA | Tannic acid |
TG | Tragacanth gum |
TS | tensile strength |
ws | water soluble |
References
- Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial Anti-Oxidant Electroactive Injectable Hydrogel as Self-Healing Wound Dressing with Hemostasis and Adhesiveness for Cutaneous Wound Healing. Biomaterials 2017, 122, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Xu, L.; Xu, B.; Zhao, J.; Rong, J. Chitosan Derivative-Based Self-Healable Hydrogels with Enhanced Mechanical Properties by High-Density Dynamic Ionic Interactions. Carbohydr. Polym. 2018, 193, 259–267. [Google Scholar] [CrossRef]
- Song, P.; Wang, H. High-Performance Polymeric Materials through Hydrogen-Bond Cross-Linking. Adv. Mater. 2020, 32, 1901244. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Pizano, M.D.; Vélaz, I.; Peñas, F.J.; Zavala-Rivera, P.; Rosas-Durazo, A.J.; Maldonado-Arce, A.D.; Martínez-Barbosa, M.E. Effect of Freeze-Thawing Conditions for Preparation of Chitosan-Poly (Vinyl Alcohol) Hydrogels and Drug Release Studies. Carbohydr. Polym. 2018, 195, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Duan, L.; Gao, G. Rapidly Self-Recoverable and Fatigue-Resistant Hydrogels Toughened by Chemical Crosslinking and Hydrophobic Association. Eur. Polym. J. 2017, 89, 185–194. [Google Scholar] [CrossRef]
- Deng, A.; Yang, Y.; Du, S.; Yang, X.; Pang, S.; Wang, X.; Yang, S. Preparation of a Recombinant Collagen-Peptide (RHC)-Conjugated Chitosan Thermosensitive Hydrogel for Wound Healing. Mater. Sci. Eng. C 2021, 119, 111555. [Google Scholar] [CrossRef] [PubMed]
- Chao, G.; Deng, H.; Huang, Q.; Jia, W.; Huang, W.; Gu, Y.; Tan, H.; Fan, L.; Liu, C.; Huang, A.; et al. Preparation and Characterization of PH Sensitive Semi-Interpenetrating Network Hydrogel Based on Methacrylic Acid, Bovine Serum Albumin (BSA), and PEG. J. Polym. Res. 2006, 13, 349–355. [Google Scholar] [CrossRef]
- Pham, T.-N.; Jiang, Y.-S.; Su, C.-F.; Jan, J.-S. In Situ Formation of Silver Nanoparticles-Contained Gelatin-PEG-Dopamine Hydrogels via Enzymatic Cross-Linking Reaction for Improved Antibacterial Activities. Int. J. Biol. Macromol. 2020, 146, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Buwalda, S.J.; Boere, K.W.M.; Dijkstra, P.J.; Feijen, J.; Vermonden, T.; Hennink, W.E. Hydrogels in a Historical Perspective: From Simple Networks to Smart Materials. J Control. Release 2014, 190, 254–273. [Google Scholar] [CrossRef]
- Akibumi, D. Gel Formation of Aqueous Solution of Polyvinyl Alcohol Irradiated by Gamma Rays from Cobalt-60. J. Phys. Soc. Jpn. 1958, 13, 722–727. [Google Scholar] [CrossRef]
- Ikada, Y.; Mita, T.; Horii, F.; Sakurada, I.; Hatada, M. Preparation of Hydrogels by Radiation Technique. Radiat. Phys. Chem. 1977, 9, 633–645. [Google Scholar] [CrossRef]
- Krahl, F.; Arndt, K.-F. Synthesis of Microgels by Radiation Methods. In Chemical Design of Responsive Microgels; Pich, A., Richtering, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 95–128. ISBN 978-3-642-16379-1. [Google Scholar]
- Sakurada, I.; Ikada, Y. Effects of Gamma Radiation on Polymer in Solution.(IV): Crosslinking and Degradation of Poly (Acrylic Acid) in Aqueous Solution. Bull. Inst. Chem. Res. Kyoto Univ. 1963, 41, 103–113. [Google Scholar]
- Kaetsu, I. Immobilization of Biofunctional Substances. Radiat. Phys. Chem. 1981, 18, 343–356. [Google Scholar] [CrossRef]
- Kaetsu, I. Recent Progress on the Immobilization of Biocomponent by Radiation Polymerization and the Application to Biomedical Uses. Radiat. Phys. Chem. 1985, 25, 517–528. [Google Scholar] [CrossRef]
- Hoffman, A.S. A Review of the Use of Radiation plus Chemical and Biochemical Processing Treatments to Prepare Novel Biomaterials. Radiat. Phys. Chem. 1981, 18, 323–342. [Google Scholar] [CrossRef]
- Rosiak, J.; Burozak, K.; Pȩkala, W. Polyacrylamide Hydrogels as Sustained Release Drug Delivery Dressing Materials. Radiat. Phys. Chem. 1983, 22, 907–915. [Google Scholar] [CrossRef]
- Rosiak, J.; Rucinska-Rybus, A.; Pekala, W. Method of Manufacturing Hydrogel Dressings. U.S. Patent 4,871,490, 3 October 1989. [Google Scholar]
- Benamer, S.; Mahlous, M.; Boukrif, A.; Mansouri, B.; Youcef, S.L. Synthesis and Characterisation of Hydrogels Based on Poly(Vinyl Pyrrolidone). Nucl. Instrum. Methods Phys. Res. B 2006, 248, 284–290. [Google Scholar] [CrossRef]
- Darwis, D.; Hilmy, N.; Hardiningsih, L.; Erlinda, T. Poly(N-Vinylpyrrolidone) Hydrogels: 1.Radiation Polymerization and Crosslinking of N-Vinylpyrrolidone. Radiat. Phys. Chem. 1993, 42, 907–910. [Google Scholar] [CrossRef]
- Kaplan Can, H. Synthesis of Persulfate Containing Poly (N-Vinyl-2-Pyrrolidone) (PVP) Hydrogels in Aqueous Solutions by γ-Induced Radiation. Radiat. Phys. Chem. 2005, 72, 703–710. [Google Scholar] [CrossRef]
- Özyürek, C.; Çaykara, T.; Kantoğlu, Ö.; Güven, O. Radiation Synthesis of Poly(N-Vinyl-2-Pyrrolidone-g-Tartaric Acid) Hydrogels and Their Swelling Behaviors. Polym. Adv. Technol. 2002, 13, 87–93. [Google Scholar] [CrossRef]
- Dafader*, N.C.; Haque, M.E.; Akhtar, F. Synthesis of Hydrogel from Aqueous Solution of Poly(Vinyl Pyrrolidone) with Agar by Gamma-Rays Irradiation. Polym. Plast. Technol. Eng. 2005, 44, 243–251. [Google Scholar] [CrossRef]
- Dergunov, S.A.; Nam, I.K.; Mun, G.A.; Nurkeeva, Z.S.; Shaikhutdinov, E.M. Radiation Synthesis and Characterization of Stimuli-Sensitive Chitosan–Polyvinyl Pyrrolidone Hydrogels. Radiat. Phys. Chem. 2005, 72, 619–623. [Google Scholar] [CrossRef]
- Dergunov, S.A.; Mun, G.A. γ-Irradiated Chitosan-Polyvinyl Pyrrolidone Hydrogels as PH-Sensitive Protein Delivery System. Radiat. Phys. Chem. 2009, 78, 65–68. [Google Scholar] [CrossRef]
- Sohail, K.; Ullah Khan, I.; Shahzad, Y.; Hussain, T.; Ranjha, N. PH-Sensitive Polyvinylpyrrolidone-Acrylic Acid Hydrogels: Impact of Material Parameters on Swelling and Drug Release. Braz. J. Pharm. Sci. 2014, 50, 173–184. [Google Scholar] [CrossRef]
- Abd Alla, S.G.; Nizam El-Din, H.M.; El-Naggar, A.W.M. Structure and Swelling-Release Behaviour of Poly(Vinyl Pyrrolidone) (PVP) and Acrylic Acid (AAc) Copolymer Hydrogels Prepared by Gamma Irradiation. Eur. Polym. J. 2007, 43, 2987–2998. [Google Scholar] [CrossRef]
- Gottlieb, R.; Schmidt, T.; Arndt, K.-F. Synthesis of Temperature-Sensitive Hydrogel Blends by High-Energy Irradiation. Nucl. Instrum. Methods Phys. Res. B 2005, 236, 371–376. [Google Scholar] [CrossRef]
- Awadallah-F, A. Five Years in Vitro Study of (Poly Vinyl Alcohol/Poly Vinyl Pyrrolidone/Poly Acrylic Acid) Hydrogel to Mimic the Knee Joint Meniscus. Polym. Adv. Technol. 2014, 25, 581–587. [Google Scholar] [CrossRef]
- Razzak, M.T.; Zainuddin; Erizal; Dewi, S.P.; Lely, H.; Taty, E.; Sukirno. The Characterization of Dressing Component Materials and Radiation Formation of PVA–PVP Hydrogel. Radiat. Phys. Chem. 1999, 55, 153–165. [Google Scholar] [CrossRef]
- Himly, N.; Darwis, D.; Hardiningsih, L. Poly(n-Vinylpyrrolidone) Hydrogels: 2.Hydrogel Composites as Wound Dressing for Tropical Environment. Radiat. Phys. Chem. 1993, 42, 911–914. [Google Scholar] [CrossRef]
- Lugão, A.B.; Rogero, S.O.; Malmonge, S.M. Rheological Behaviour of Irradiated Wound Dressing Poly(Vinyl Pyrrolidone) Hydrogels. Radiat. Phys. Chem. 2002, 63, 543–546. [Google Scholar] [CrossRef]
- Pekel Bayramgil, N.; Yoshii, F.; Kume, T.; Güven, O. Radiation Crosslinking of Biodegradable Hydroxypropylmethylcellulose. Carbohyd. Polym. 2004, 55, 139–147. [Google Scholar] [CrossRef]
- Rashid, T.U.; Rahman, M.M.; Kabir, S.; Shamsuddin, S.M.; Khan, M.A. A New Approach for the Preparation of Chitosan from γ-Irradiation of Prawn Shell: Effects of Radiation on the Characteristics of Chitosan. Polym. Int. 2012, 61, 1302–1308. [Google Scholar] [CrossRef]
- Wang, M.; Xu, L.; Hu, H.; Zhai, M.; Peng, J.; Nho, Y.; Li, J.; Wei, G. Radiation Synthesis of PVP/CMC Hydrogels as Wound Dressing. Nucl. Instrum. Methods Phys. Res. B 2007, 265, 385–389. [Google Scholar] [CrossRef]
- Park, K.R.; Nho, Y.C. Preparation and Characterization by Radiation of Hydrogels of PVA and PVP Containing Aloe Vera. J. Appl. Polym. Sci. 2004, 91, 1612–1618. [Google Scholar] [CrossRef]
- Nho, Y.C.; Park, K.R. Preparation and Properties of PVA/PVP Hydrogels Containing Chitosan by Radiation. J. Appl. Polym. Sci. 2002, 85, 1787–1794. [Google Scholar] [CrossRef]
- Singh, R.; Singh, D. Radiation Synthesis of PVP/Alginate Hydrogel Containing Nanosilver as Wound Dressing. J. Mater. Sci. Mater. Med. 2012, 23, 2649–2658. [Google Scholar] [CrossRef]
- Song, Y.; Xu, L.; Xu, L.; Deng, L. Radiation Cross-Linked Gelatin/Sodium Alginate/Carboxymethylcellulose Sodium Hydrogel for the Application as Debridement Glue Paste. Polym. Bull. 2022, 79, 725–742. [Google Scholar] [CrossRef]
- Abd El-Rehim, H.A.; Hegazy, E.A.; Khalil, F.H.; Hamed, N.A. Radiation Preparation of Drug Carriers Based Polyacrylic Acid (PAAc) Using Poly(Vinyl Pyrrolidone) (PVP) as a Template Polymer. Nucl. Instrum. Methods Phys. Res. B 2007, 254, 105–112. [Google Scholar] [CrossRef]
- Kadłubowski, S.; Henke, A.; Ulański, P.; Rosiak, J.M. Hydrogels of Polyvinylpyrrolidone (PVP) and Poly(Acrylic Acid) (PAA) Synthesized by Radiation-Induced Crosslinking of Homopolymers. Radiat. Phys. Chem. 2010, 79, 261–266. [Google Scholar] [CrossRef]
- Tavakoli, S.; Klar, A.S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10, 1169. [Google Scholar] [CrossRef]
- Kofinas, P.; Athanassiou, V.; Merrill, E.W. Hydrogels Prepared by Electron Irradiation of Poly(Ethylene Oxide) in Water Solution: Unexpected Dependence of Cross-Link Density and Protein Diffusion Coefficients on Initial PEO Molecular Weight. Biomaterials 1996, 17, 1547–1550. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, E.; Nozari, S. Swelling Behavior of Acrylic Acid Hydrogels Prepared by γ-Radiation Crosslinking of Polyacrylic Acid in Aqueous Solution. Eur. Polym. J. 2000, 36, 2685–2692. [Google Scholar] [CrossRef]
- Peppas, N.A.; Merrill, E.W. Crosslinked Poly(Vinyl Alcohol) Hydrogels as Swollen Elastic Networks. J. Appl. Polym. Sci. 1977, 21, 1763–1770. [Google Scholar] [CrossRef]
- Arndt, K.-F.; Schmidt, T.; Reichelt, R. Thermo-Sensitive Poly(Methyl Vinyl Ether) Micro-Gel Formed by High Energy Radiation. Polymer 2001, 42, 6785–6791. [Google Scholar] [CrossRef]
- Raza, M.A.; Park, S.H. Irradiated Ch/GG/PVP-Based Stimuli-Responsive Hydrogels for Controlled Drug Release. J. Appl. Polym. Sci. 2020, 137, 49041. [Google Scholar] [CrossRef]
- Güven, O.; Şen, M.; Karadağ, E.; Saraydın, D. A Review on the Radiation Synthesis of Copolymeric Hydrogels for Adsorption and Separation Purposes. Radiat. Phys. Chem. 1999, 56, 381–386. [Google Scholar] [CrossRef]
- Krömmelbein, C.; Mütze, M.; Konieczny, R.; Schönherr, N.; Griebel, J.; Gerdes, W.; Mayr, S.G.; Riedel, S. Impact of High-Energy Electron Irradiation on Mechanical, Structural and Chemical Properties of Agarose Hydrogels. Carbohydr. Polym. 2021, 263, 117970. [Google Scholar] [CrossRef]
- Mohamad, N.; Buang, F.; Mat Lazim, A.; Ahmad, N.; Martin, C.; Mohd Amin, M.C.I. Characterization and Biocompatibility Evaluation of Bacterial Cellulose-Based Wound Dressing Hydrogel: Effect of Electron Beam Irradiation Doses and Concentration of Acrylic Acid. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 2553–2564. [Google Scholar] [CrossRef]
- Demeter, M.; Călina, I.; Scărișoreanu, A.; Micutz, M.; Kaya, M.A. Correlations on the Structure and Properties of Collagen Hydrogels Produced by E-Beam Crosslinking. Materials 2022, 15, 7663. [Google Scholar] [CrossRef]
- Călina, I.; Demeter, M.; Scărișoreanu, A.; Sătulu, V.; Mitu, B. One Step E-Beam Radiation Cross-Linking of Quaternary Hydrogels Dressings Based on Chitosan-Poly(Vinyl-Pyrrolidone)-Poly(Ethylene Glycol)-Poly(Acrylic Acid). Int. J. Mol. Sci. 2020, 21, 9236. [Google Scholar] [CrossRef]
- Yoshii, F.; Zhanshan, Y.; Isobe, K.; Shinozaki, K.; Makuuchi, K. Electron Beam Crosslinked PEO and PEO/PVA Hydrogels for Wound Dressing. Radiat. Phys. Chem. 1999, 55, 133–138. [Google Scholar] [CrossRef]
- Yoshii, F.; Makuuchi, K.; Darwis, D.; Iriawan, T.; Razzak, M.T.; Rosiak, J.M. Heat Resistance Poly(Vinyl Alcohol) Hydrogel. Radiat. Phys. Chem. 1995, 46, 169–174. [Google Scholar] [CrossRef]
- Wu, M.; Bao, B.; Yoshii, F.; Makuuchi, K. Irradiation of Crosslinked, Poly(Vinyl Alcohol) Blended Hydrogel for Wound Dressing. J. Radioanal. Nucl. Chem. 2001, 250, 391–395. [Google Scholar] [CrossRef]
- Lopérgolo, L.C.; Lugão, A.B.; Catalaini, L.H. Development of a Poly(N-Vinyl-2-Pyrrolidone)/Poly (Ethylene Glycol) Hydrogel Membrane Reinforced with Methyl Methacrylate-Grafted Polypropylene Fibers for Possible Use as Wound Dressing. J. Appl. Polym. Sci. 2002, 86, 662–666. [Google Scholar] [CrossRef] [Green Version]
- Lugão, A.B.; Machado, L.D.B.; Miranda, L.F.; Alvarez, M.R.; Rosiak, J.M. Study of Wound Dressing Structure and Hydration/Dehydration Properties. Radiat. Phys. Chem. 1998, 52, 319–322. [Google Scholar] [CrossRef]
- Higa, O.Z.; Rogero, S.O.; Machado, L.D.B.; Mathor, M.B.; Lugão, A.B. Biocompatibility Study for PVP Wound Dressing Obtained in Different Conditions. Radiat. Phys. Chem. 1999, 55, 705–707. [Google Scholar] [CrossRef]
- Ajji, Z.; Mirjalili, G.; Alkhatab, A.; Dada, H. Use of Electron Beam for the Production of Hydrogel Dressings. Radiat. Phys. Chem. 2008, 77, 200–202. [Google Scholar] [CrossRef]
- Abd El-Mohdy, H.L.; Hegazy, E.-S.A. Preparation of Polyvinyl Pyrrolidone-Based Hydrogels by Radiation-Induced Crosslinking with Potential Application as Wound Dressing. J. Macromol. Sci. A 2008, 45, 995–1002. [Google Scholar] [CrossRef]
- Nizam El-Din, H.M.; Ibraheim, D.M. Biological Applications of Nanocomposite Hydrogels Prepared by Gamma-Radiation Copolymerization of Acrylic Acid (AAc) onto Plasticized Starch (PLST)/Montmorillonite Clay (MMT)/Chitosan (CS) Blends. Int. J. Biol. Macromol. 2021, 192, 151–160. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, Y.; Wang, L.; Xu, L.; Zhai, M.; Wei, S. Radiation Synthesis and Characterization of Nanosilver/Gelatin/Carboxymethyl Chitosan Hydrogel. Radiat. Phys. Chem. 2012, 81, 553–560. [Google Scholar] [CrossRef]
- Leawhiran, N.; Pavasant, P.; Soontornvipart, K.; Supaphol, P. Gamma Irradiation Synthesis and Characterization of AgNP/Gelatin/PVA Hydrogels for Antibacterial Wound Dressings. J. Appl. Polym. Sci. 2014, 131, 41138. [Google Scholar] [CrossRef]
- Micic, M.; Milic, T.V.; Mitric, M.; Jokic, B.; Suljovrujic, E. Radiation Synthesis, Characterisation and Antimicrobial Application of Novel Copolymeric Silver/Poly(2-Hydroxyethyl Methacrylate/Itaconic Acid) Nanocomposite Hydrogels. Polym. Bull. 2013, 70, 3347–3357. [Google Scholar] [CrossRef]
- Khampieng, T.; Brikshavana, P.; Supaphol, P. Silver Nanoparticle-Embedded Poly(Vinyl Pyrrolidone) Hydrogel Dressing: Gamma-Ray Synthesis and Biological Evaluation. J. Biomater. Sci. Polym. Ed. 2014, 25, 826–842. [Google Scholar] [CrossRef] [PubMed]
- Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Mori, M.; Cervio, M.; Riva, F.; Liakos, I.; Athanassiou, A.; Saporito, F.; et al. Platelet Lysate Embedded Scaffolds for Skin Regeneration. Expert Opin. Drug. Deliv. 2015, 12, 525–545. [Google Scholar] [CrossRef] [PubMed]
- Choipang, C.; Chuysinuan, P.; Suwantong, O.; Ekabutr, P.; Supaphol, P. Hydrogel Wound Dressings Loaded with PLGA/Ciprofloxacin Hydrochloride Nanoparticles for Use on Pressure Ulcers. J. Drug. Deliv. Sci. Technol. 2018, 47, 106–114. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Y.; Zhang, X.; Xu, L.; Chen, X.; Wei, S. Influence of Radiation Crosslinked Carboxymethyl-Chitosan/Gelatin Hydrogel on Cutaneous Wound Healing. Mater. Sci. Eng. C 2013, 33, 4816–4824. [Google Scholar] [CrossRef]
- Fan, L.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and Characterization of Chitosan/Gelatin/PVA Hydrogel for Wound Dressings. Carbohydr. Polym. 2016, 146, 427–434. [Google Scholar] [CrossRef]
- Guo, W.; Yang, M.; Liu, S.; Zhang, X.; Zhang, B.; Chen, Y. Chitosan/Polyvinyl Alcohol/Tannic Acid Multiple Network Composite Hydrogel: Preparation and Characterization. Iran Polym. J. 2021, 30, 1159–1168. [Google Scholar] [CrossRef]
- Ghobashy, M.M.; Elbarbary, A.M.; Hegazy, D.E.; Maziad, N.A. Radiation Synthesis of PH-Sensitive 2-(Dimethylamino)Ethyl Methacrylate/ Polyethylene Oxide/ZnS Nanocomposite Hydrogel Membrane for Wound Dressing Application. J. Drug. Deliv. Sci. Technol. 2022, 73, 103399. [Google Scholar] [CrossRef]
- Del Prado Audelo, M.; Gomez Saldivar, F.; Pérez Díaz, M.; Sanchez Sanchez, R.; González Torres, M.; González Del Carmen, M.; Figueroa González, G.; Sharifi Rad, J.; Reyes Hernández, O.; Cortés, H.; et al. Radiation-Induced Graft Polymerization of Elastin onto Polyvinylpyrrolidone as a Possible Wound Dressing. Cell Mol. Biol. 2021, 67, 64–72. [Google Scholar] [CrossRef]
- Singh, B.; Rajneesh. Gamma Radiation Synthesis and Characterization of Gentamicin Loaded Polysaccharide Gum Based Hydrogel Wound Dressings. J. Drug. Deliv. Sci. Technol. 2018, 47, 200–208. [Google Scholar] [CrossRef]
- Liu, B.; Huang, W.; Yang, G.; An, Y.; Yin, Y.; Wang, N.; Jiang, B. Preparation of Gelatin/Poly (γ-Glutamic Acid) Hydrogels with Stimulated Response by Hot-Pressing Preassembly and Radiation Crosslinking. Mater. Sci. Eng. C 2020, 116, 111259. [Google Scholar] [CrossRef]
- Escutia-Guadarrama, L.; Morales, D.; Pérez-Calixto, D.; Burillo, G. Development of Polyphenol-Functionalized Gelatin-Poly(Vinylpyrrolidone) IPN for Potential Biomedical Applications. Polymers 2022, 14, 4705. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Yang, J.; Wu, H.; Hu, Z.; Yi, J.; Tong, J.; Zhu, X. Preparation and Characterization of Quaternary Ammonium Chitosan Hydrogel with Significant Antibacterial Activity. Int. J. Biol. Macromol. 2015, 79, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Moise, V.; Vasilca, S.; Baltac, A.; Pintilie, C.; Virgolici, M.; Cutrubinis, M.; Kamerzan, C.; Dragan, D.; Ene, M.; Albota, F.; et al. Physicochemical Study for Characterization of Lyophilized Collagens Irradiated with Gamma Radiation and for Optimization of Medical Device Manufacturing Process. Radiat. Phys. Chem. 2020, 170, 108658. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, A. Graft and Crosslinked Polymerization of Polysaccharide Gum to Form Hydrogel Wound Dressings for Drug Delivery Applications. Carbohydr. Res. 2020, 489, 107949. [Google Scholar] [CrossRef]
- Park, J.-S.; Kuang, J.; Gwon, H.-J.; Lim, Y.-M.; Jeong, S.-I.; Shin, Y.-M.; Seob Khil, M.; Nho, Y.-C. Synthesis and Characterization of Zinc Chloride Containing Poly(Acrylic Acid) Hydrogel by Gamma Irradiation. Radiat. Phys. Chem. 2013, 88, 60–64. [Google Scholar] [CrossRef]
- Masyruroh, S.; Lasmawati, D.; Suryani, N.; Sumarlin, L.; Nurlidar, F. Release of Ciprofloxacin from Gamma-Irradiated PEGDA-Chitosan Hydrogel. AIP Conf. Proc. 2020, 2296, 020084. [Google Scholar] [CrossRef]
- Tomić, S.L.; Mićić, M.M.; Dobić, S.N.; Filipović, J.M.; Suljovrujić, E.H. Smart Poly(2-Hydroxyethyl Methacrylate/Itaconic Acid) Hydrogels for Biomedical Application. Radiat. Phys. Chem. 2010, 79, 643–649. [Google Scholar] [CrossRef]
- Varshney, L. Role of Natural Polysaccharides in Radiation Formation of PVA–Hydrogel Wound Dressing. Nucl. Instrum. Methods Phys. Res. B 2007, 255, 343–349. [Google Scholar] [CrossRef]
- Alcântara, M.T.S.; Lincopan, N.; Santos, P.M.; Ramirez, P.A.; Brant, A.J.C.; Riella, H.G.; Lugão, A.B. Simultaneous Hydrogel Crosslinking and Silver Nanoparticle Formation by Using Ionizing Radiation to Obtain Antimicrobial Hydrogels. Radiat. Phys. Chem. 2020, 169, 108777. [Google Scholar] [CrossRef]
- Nam, S.Y.; Nho, Y.C.; Hong, S.H.; Chae, G.T.; Jang, H.S.; Suh, T.S.; Ahn, W.S.; Ryu, K.E.; Chun, H.J. Evaluations of Poly(Vinyl Alcohol)/Alginate Hydrogels Cross-Linked by γ-Ray Irradiation Technique. Macromol. Res. 2004, 12, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Mohdy, H.L. Radiation Synthesis of Nanosilver/Poly Vinyl Alcohol/Cellulose Acetate/Gelatin Hydrogels for Wound Dressing. J. Polym. Res. 2013, 20, 177. [Google Scholar] [CrossRef]
- Afshari, M.J.; Sheikh, N.; Afarideh, H. PVA/CM-Chitosan/Honey Hydrogels Prepared by Using the Combined Technique of Irradiation Followed by Freeze-Thawing. Radiat. Phys. Chem. 2015, 113, 28–35. [Google Scholar] [CrossRef]
- El Salmawi, K.M. Gamma Radiation-Induced Crosslinked PVA/Chitosan Blends for Wound Dressing. J. Macromol. Sci. A 2007, 44, 541–545. [Google Scholar] [CrossRef]
- Nacer Khodja, A.; Mahlous, M.; Tahtat, D.; Benamer, S.; Larbi Youcef, S.; Chader, H.; Mouhoub, L.; Sedgelmaci, M.; Ammi, N.; Mansouri, M.B.; et al. Evaluation of Healing Activity of PVA/Chitosan Hydrogels on Deep Second Degree Burn: Pharmacological and Toxicological Tests. Burns 2013, 39, 98–104. [Google Scholar] [CrossRef]
- Yang, X.; Yang, K.; Wu, S.; Chen, X.; Yu, F.; Li, J.; Ma, M.; Zhu, Z. Cytotoxicity and Wound Healing Properties of PVA/Ws-Chitosan/Glycerol Hydrogels Made by Irradiation Followed by Freeze–Thawing. Radiat. Phys. Chem. 2010, 79, 606–611. [Google Scholar] [CrossRef]
- Gwon, H.-J.; Lim, Y.-M.; An, S.-J.; Youn, M.-H.; Han, S.-H.; Chang, H.-N.; Nho, Y.-C. Characterization of PVA/Glycerin Hydrogels Made by γ-Irradiation for Advanced Wound Dressings. Korean J. Chem. Eng. 2009, 26, 1686–1688. [Google Scholar] [CrossRef]
- Fadl, F.; Abdel Ghaffar, A.; El-Sawy, N. Radiation Preparation and Antibacterial Activity of Poly(N-Vinyl Pyrrolidone/Chitosan/Itaconic Acid/ZnO) Nanocomposite Hydrogel for Controlled Release of Amoxicillin. Polym. Polym. Compos. 2022, 30, 1–13. [Google Scholar]
- Razzak, M.T.; Darwis, D.; Zainuddin; Sukirno. Irradiation of Polyvinyl Alcohol and Polyvinyl Pyrrolidone Blended Hydrogel for Wound Dressing. Radiat. Phys. Chem. 2001, 62, 107–113. [Google Scholar] [CrossRef]
- Eid, M.; El-Arnaouty, M.; Salah, M.; Soliman, E.-S.; Hegazy, E.-S. Radiation Synthesis and Characterization of Poly(Vinyl Alcohol)/Poly(N-Vinyl-2-Pyrrolidone) Based Hydrogels Containing Silver Nanoparticles. J. Polym. Res. 2012, 19, 1–10. [Google Scholar] [CrossRef]
- Park, K.R.; Nho, Y.C. Preparation and Characterization by Radiation of Poly(Vinyl Alcohol) and Poly(N-Vinylpyrrolidone) Hydrogels Containing Aloe Vera. J. Appl. Polym. Sci. 2003, 90, 1477–1485. [Google Scholar] [CrossRef]
- El-Arnaouty, M.B.; Eid, M.; Salah, M.; Hegazy, E.-S.A. Preparation and Characterization of Poly Vinyl Alcohol/Poly Vinyl Pyrrolidone/Clay Based Nanocomposite by Gamma Irradiation. J. Macrom. Sci. A 2012, 49, 1041–1051. [Google Scholar] [CrossRef]
- Yunoki, S.; Kohta, M.; Ohyabu, Y.; Sekiguchi, M.; Kubo, T.; Iwasaki, T. Electrostatic Immobilization of Cetylpyridinium Chloride to Poly(Vinyl Alcohol) Hydrogels for the Simple Fabrication of Wound Dressings with the Suppressed Release of Antibacterial Agents. J. Appl. Polym. Sci. 2014, 131, 40456. [Google Scholar] [CrossRef]
- Yu, H.; Xu, X.; Chen, X.; Hao, J.; Jing, X. Medicated Wound Dressings Based on Poly(Vinyl Alcohol)/Poly(N-Vinyl Pyrrolidone)/Chitosan Hydrogels. J. Appl. Polym. Sci. 2006, 101, 2453–2463. [Google Scholar] [CrossRef]
- Nho, Y.-C.; Lim, Y.-M.; Gwon, H.-J.; Choi, E.-K. Preparation and Characterization of PVA/PVP/Glycerin/Antibacterial Agent Hydrogels Using γ-Irradiation Followed by Freeze-Thawing. Korean J. Chem. Eng. 2009, 26, 1675–1678. [Google Scholar] [CrossRef]
- Park, K.R.; Nho, Y.C. Synthesis of PVA/PVP Hydrogels Having Two-Layer by Radiation and Their Physical Properties. Radiat. Phys. Chem. 2003, 67, 361–365. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Q.; Chen, X.; Yu, F.; Zhu, Z. Investigation of PVA/Ws-Chitosan Hydrogels Prepared by Combined γ-Irradiation and Freeze-Thawing. Carbohydr. Polym. 2008, 73, 401–408. [Google Scholar] [CrossRef]
- Yang, X.; Yang, K.; Yu, F.; Chen, X.; Wu, S.; Zhu, Z. Preparation of Novel Bilayer Hydrogels by Combination of Irradiation and Freeze–Thawing and Their Physical and Biological Properties. Polym. Int. 2009, 58, 1291–1298. [Google Scholar] [CrossRef]
- Singh, D.; Singh, A.; Singh, R. Polyvinyl Pyrrolidone/Carrageenan Blend Hydrogels with Nanosilver Prepared by Gamma Radiation for Use as an Antimicrobial Wound Dressing. J. Biomater. Sci. Polym. Ed. 2015, 26, 1269–1285. [Google Scholar] [CrossRef]
- Awanthi, D.; Silva, D.A.; Hettiarachchi, B.; Nayanajith, L.D.C.; Prasada, I.M.; Motha, J.T.S. Development of a PVP/Kappa-Carrageenan/PEG Hydrogel Dressing for Wound Healing Applications in Sri Lanka. J. Natl. Sci. Found. 2011, 39, 25–33. [Google Scholar] [CrossRef]
- Şen, M.; Avcı, E.N. Radiation Synthesis of Poly(N-Vinyl-2-Pyrrolidone)–κ-Carrageenan Hydrogels and Their Use in Wound Dressing Applications. I. Preliminary Laboratory Tests. J. Biomed. Mater. Res. A 2005, 74A, 187–196. [Google Scholar] [CrossRef]
- Soler, D.M.; Rodríguez, Y.; Correa, H.; Moreno, A.; Carrizales, L. Pilot Scale-up and Shelf Stability of Hydrogel Wound Dressings Obtained by Gamma Radiation. Radiat. Phys. Chem. 2012, 81, 1249–1253. [Google Scholar] [CrossRef]
- Ajji, Z.; Othman, I.; Rosiak, J.M. Production of Hydrogel Wound Dressings Using Gamma Radiation. Nucl. Instrum. Methods Phys. Res. B 2005, 229, 375–380. [Google Scholar] [CrossRef]
- Temirkhanova, G.E.; Burasheva, G.; Abilov, Z.A.; Irmukhametova, G.; Mun, G.; Beksultanov, Z.I.; Myktybayeva, Z.K.; Shnaukshta, V.S. Creation of Polymer Hydrogel Dressings with Herbal Medicinal Substance “Alkhydin” and Their Properties. Eurasian Chem. Technol. J. 2017, 19, 57. [Google Scholar] [CrossRef] [Green Version]
- Uttayarat, P.; Eamsiri, J.; Tangthong, T.; Suwanmala, P. Radiolytic Synthesis of Colloidal Silver Nanoparticles for Antibacterial Wound Dressings. Adv. Mater. Sci. Eng. 2015, 2015, 376082. [Google Scholar] [CrossRef]
- Elkenawy, N.M.; Karam, H.M.; Aboul-Magd, D.S. Development of Gamma Irradiated SSD-Embedded Hydrogel Dyed with Prodigiosin as a Smart Wound Dressing: Evaluation in a MDR Infected Burn Rat Model. Int. J. Biol. Macromol. 2022, 211, 170–182. [Google Scholar] [CrossRef]
- Singh, B.; Pal, L. Radiation Crosslinking Polymerization of Sterculia Polysaccharide–PVA–PVP for Making Hydrogel Wound Dressings. Int. J. Biol. Macromol. 2011, 48, 501–510. [Google Scholar] [CrossRef]
- Singh, B.; Varshney, L.; Francis, S.; Rajneesh. Synthesis and Characterization of Tragacanth Gum Based Hydrogels by Radiation Method for Use in Wound Dressing Application. Radiat. Phys. Chem. 2017, 135, 94–105. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Rajneesh. Application of Tragacanth Gum and Alginate in Hydrogel Wound Dressing’s Formation Using Gamma Radiation. Carbohyd. Polym. Technol. Appl. 2021, 2, 100058. [Google Scholar] [CrossRef]
- Singh, B.; Varshney, L.; Francis, S.; Rajneesh. Designing Tragacanth Gum Based Sterile Hydrogel by Radiation Method for Use in Drug Delivery and Wound Dressing Applications. Int. J. Biol. Macromol. 2016, 88, 586–602. [Google Scholar] [CrossRef] [PubMed]
- Raafat, A.I.; El-Sawy, N.M.; Badawy, N.A.; Mousa, E.A.; Mohamed, A.M. Radiation Fabrication of Xanthan-Based Wound Dressing Hydrogels Embedded ZnO Nanoparticles: In Vitro Evaluation. Int. J. Biol. Macromol. 2018, 118, 1892–1902. [Google Scholar] [CrossRef] [PubMed]
- Gulrez, S.K.H.; Al-Assaf, S.; Phillips, G.O. Hydrogels: Methods of Preparation, Characterisation and Applications. In Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications; Carpi, A., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Sen, M.; Çopuroğlu, M. A Comparative Study of Gamma Irradiation of Poly(Ethylene-Co-Vinyl Acetate) and Poly(Ethylene-Co-Vinyl Acetate)/Carbon Black Mixture. Mater. Chem. Phys. 2005, 93, 154–158. [Google Scholar] [CrossRef]
- Katayama, T.; Nakauma, M.; Todoriki, S.; Phillips, G.O.; Tada, M. Radiation-Induced Polymerization of Gum Arabic (Acacia Senegal) in Aqueous Solution. Food Hydrocoll. 2006, 20, 983–989. [Google Scholar] [CrossRef]
- Nagasawa, N.; Yagi, T.; Kume, T.; Yoshii, F. Radiation Crosslinking of Carboxymethyl Starch. Carbohydr. Polym. 2004, 58, 109–113. [Google Scholar] [CrossRef]
- Demeter, M.; Călina, I.; Vancea, C.; Şen, M.; Kaya, M.G.A.; Mănăilă, E.; Dumitru, M.; Meltzer, V. E-Beam Processing of Collagen-Poly(N-Vinyl-2-Pyrrolidone) Double-Network Superabsorbent Hydrogels: Structural and Rheological Investigations. Macromol. Res. 2019, 27, 255–267. [Google Scholar] [CrossRef]
- Mozalewska, W.; Czechowska-Biskup, R.; Olejnik, A.K.; Wach, R.A.; Ulański, P.; Rosiak, J.M. Chitosan-Containing Hydrogel Wound Dressings Prepared by Radiation Technique. Radiat. Phys. Chem. 2017, 134, 1–7. [Google Scholar] [CrossRef]
- Charlesby, A. (Ed.) Chapter 2—Radiation Units. In Atomic Radiation and Polymers; International Series of Monographs on Radiation Effects in Materials; Pergamon Press: New York, NY, USA, 1960; Volume 1, pp. 16–24. ISBN 978-1-4831-9776-0. [Google Scholar]
- Darwis, D.; Erizal; Abbas, B.; Nurlidar, F.; Putra, D.P. Radiation Processing of Polymers for Medical and Pharmaceutical Applications. Macromol. Symp. 2015, 353, 15–23. [Google Scholar] [CrossRef]
- Olejniczak, J.; Rosiak, J.; Charlesby, A. Gel/Dose Curves for Polymers Undergoing Simultaneous Crosslinking and Scission. Int. J. Radiat. Appl. Instrum. C 1991, 37, 499–504. [Google Scholar] [CrossRef]
- Wach, R.A.; Mitomo, H.; Nagasawa, N.; Yoshii, F. Radiation Crosslinking of Methylcellulose and Hydroxyethylcellulose in Concentrated Aqueous Solutions. Nucl. Instrum. Methods Phys. Res. B 2003, 211, 533–544. [Google Scholar] [CrossRef]
- Rosiak, J.M.; Janik, I.; Kadlubowski, S.; Kozicki, M.; Kujawa, P.; Stasica, P.U.; Ulanski, P. Radiation Synthesis and Modification of Polymers for Biomedical Applications; International Atomic Energy Agency (IAEA): Vienna, Austria, 2002. [Google Scholar]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (OH/O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Demeter, M.; Virgolici, M.; Vancea, C.; Scarisoreanu, A.; Kaya, M.G.A.; Meltzer, V. Network Structure Studies on γ–Irradiated Collagen–PVP Superabsorbent Hydrogels. Radiat. Phys. Chem. 2017, 131, 51–59. [Google Scholar] [CrossRef]
- Awadallah-F, A. Synergistic Effect of Poly(Acrylamide)-Incorporated Poly(L-Ascorbic Acid) Hydrogels in Controlled Release and Wound Dressings. Des. Monomers. Polym. 2014, 17, 466–480. [Google Scholar] [CrossRef] [Green Version]
- Czechowska-Biskup, R.; Rokita, B.; Ulanski, P.; Rosiak, J.M. Radiation-Induced and Sonochemical Degradation of Chitosan as a Way to Increase Its Fat-Binding Capacity. Nucl. Instrum. Methods Phys. Res. B 2005, 236, 383–390. [Google Scholar] [CrossRef]
- Rosiak, J.M.; Olejniczak, J. Medical Applications of Radiation Formed Hydrogels. Radiat. Phys. Chem. 1993, 42, 903–906. [Google Scholar] [CrossRef]
- Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A.A. Hydrogels: Experimental Characterization and Mathematical Modelling of Their Mechanical and Diffusive Behaviour. Chem. Soc. Rev. 2018, 47, 2357–2373. [Google Scholar] [CrossRef]
- Piepenbrock, M.-O.M.; Lloyd, G.O.; Clarke, N.; Steed, J.W. Metal- and Anion-Binding Supramolecular Gels. Chem. Rev. 2010, 110, 1960–2004. [Google Scholar] [CrossRef]
- Yu, G.; Yan, X.; Han, C.; Huang, F. Characterization of Supramolecular Gels. Chem. Soc. Rev. 2013, 42, 6697–6722. [Google Scholar] [CrossRef]
- Şen, M.; Hayrabolulu, H. Radiation Synthesis and Characterisation of the Network Structure of Natural/Synthetic Double-Network Superabsorbent Polymers. Radiat. Phys. Chem. 2012, 81, 1378–1382. [Google Scholar] [CrossRef]
- Medina-Cruz, D.; Saleh, B.; Vernet-Crua, A.; Ajo, A.; Roy, A.K.; Webster, T.J. Chapter 22—Drug-Delivery Nanocarriers for Skin Wound-Healing Applications. In Wound Healing, Tissue Repair, and Regeneration in Diabetes; Bagchi, D., Das, A., Roy, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 439–488. ISBN 978-0-12-816413-6. [Google Scholar]
- Singh, B.; Kumar, A. Radiation Formation of Functionalized Polysaccharide-Protein Based Skin Mimicking Semi- Inter Penetrating Network for Biomedical Application. Int. J. Biol. Macromol. 2016, 92, 1136–1150. [Google Scholar] [CrossRef]
- Urkimbayeva, P.I.; Abilova, G.; Zh B, K.; Kenessova, Z.; Yessirkepova, A.; Samenova, N.; Bekbayeva, L. Development of a Methodology for the Study of Polymer Wound Coatings for Application Characteristics. Egypt J. Chem. 2020, 64, 1957–1964. [Google Scholar] [CrossRef]
- Barba, B.J.D.; Oyama, T.G.; Taguchi, M. Simple Fabrication of Gelatin–Polyvinyl Alcohol Bilayer Hydrogel with Wound Dressing and Nonadhesive Duality. Polym. Adv. Technol. 2021, 32, 4406–4414. [Google Scholar] [CrossRef]
- Treloar, L.R.G. The Physics of Rubber Elasticity; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Canal, T.; Peppas, N.A. Correlation between Mesh Size and Equilibrium Degree of Swelling of Polymeric Networks. J. Biomed. Mater. Res. 1989, 23, 1183–1193. [Google Scholar] [CrossRef]
- Rahman, M.S.; Islam, M.M.; Islam, M.S.; Zaman, A.; Ahmed, T.; Biswas, S.; Sharmeen, S.; Rashid, T.U.; Rahman, M.M. Morphological Characterization of Hydrogels. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 819–863. ISBN 978-3-319-77830-3. [Google Scholar]
- Apkarian, R.P.; Wright, E.R. Cryo and Cryo-Etch Methods for Quality Preservation of Hydrogels Imaged at High Magnification by Low Temperature SEM. Micros Microanal. 2005, 11, 1088–1089. [Google Scholar] [CrossRef] [Green Version]
- Ngadaonye, J.; Geever, L.; Killion, J.; Higginbotham, C. Development of Novel Chitosan-Poly (N, N-Diethylacrylamide) IPN Films for Potential Wound Dressing and Biomedical Applications. J. Polym. Res. 2013, 20, 161. [Google Scholar] [CrossRef]
- Xu, H.; Adolfsson, K.; Xie, L.; Hassanzadeh, S.; Pettersson, T.; Hakkarainen, M. Zero-Dimensional and Highly Oxygenated Graphene Oxide for Multifunctional Poly(Lactic Acid) Bionanocomposites. ACS Sustain. Chem. Eng. 2016, 4, 5618–5631. [Google Scholar] [CrossRef] [Green Version]
- Lamke, L.-O.; Nilsson, G.E.; Reithner, H.L. The Evaporative Water Loss from Burns and the Water-Vapour Permeability of Grafts and Artificial Membranes Used in the Treatment of Burns. Burns 1977, 3, 159–165. [Google Scholar] [CrossRef]
- Wu, P.; Fisher, A.C.; Foo, P.P.; Queen, D.; Gaylor, J.D.S. In Vitro Assessment of Water Vapour Transmission of Synthetic Wound Dressings. Biomaterials 1995, 16, 171–175. [Google Scholar] [CrossRef]
- Yamdej, R.; Pangza, K.; Srichana, T.; Aramwit, P. Superior Physicochemical and Biological Properties of Poly(Vinyl Alcohol)/Sericin Hydrogels Fabricated by a Non-Toxic Gamma-Irradiation Technique. J. Bioact Compat. Polym. 2016, 32, 32–44. [Google Scholar] [CrossRef]
- Zafalon, A.; Santos, V.; Esposito, F.; Lincopan, N.; Rangari, V.; Lugao, A.; Parra, D. Synthesis of Polymeric Hydrogel Loaded with Antibiotic Drug for Wound Healing Applications. In The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018; pp. 165–176. [Google Scholar]
- Sun, L.; Du, Y.; Fan, L.; Chen, X.; Yang, J. Preparation, Characterization and Antimicrobial Activity of Quaternized Carboxymethyl Chitosan and Application as Pulp-Cap. Polymer 2006, 47, 1796–1804. [Google Scholar] [CrossRef]
- El-Araby, E.; Raafat, A.; Elsonbaty, S.M. Radiation Synthesis of Psyllium/Frankincense Essential Oil–Based Wound Dressing Hydrogels: Antimicrobial, Antioxidant and Wound Healing Performance. Arab J. Nucl. Sci. Appl. 2021, 54, 19–36. [Google Scholar] [CrossRef]
- Masud, R.A.; Islam, M.S.; Haque, P.; Khan, M.N.I.; Shahruzzaman, M.; Khan, M.; Takafuji, M.; Rahman, M.M. Preparation of Novel Chitosan/Poly (Ethylene Glycol)/ZnO Bionanocomposite for Wound Healing Application: Effect of Gentamicin Loading. Materialia 2020, 12, 100785. [Google Scholar] [CrossRef]
- Nho, Y.C.; Moon, S.-W.; Lee, K.-H.; Park, C.W.; Suh, T.S.; Jung, Y.J.; Ahn, W.S.; Chun, H.J. Evaluations of Poly(Vinyl Alcohol) Hydrogels Cross-Linked under γ-Ray Irradiation. J. Ind. Eng. Chem. 2005, 11, 159–164. [Google Scholar]
- Klosinski, K.; Girek, M.; Wach, R.; Czechowska-Biskup, R.; Arkuszewski, P.; Szymański, P.; Pasieka, Z. Synthesis and Potential Cytotoxicity Evaluation of Carboxymethyl Chitosan Hydrogels. Prog. Chem. Appl. Chitin. Deriv. 2017, XXII, 82. [Google Scholar] [CrossRef]
Hydrogel Composition | Radiation Crosslinking Types | Irradiation Dose | References |
---|---|---|---|
Agarose | e-beam | 5–30 kGy | [49] |
BC/AA | e-beam | 35–50 kGy | [50] |
Collagen | e-beam | 5–100 kGy | [51] |
CS/PVP/PEG/AA | e-beam | 15–25 kGy | [52] |
PEO/PVA | e-beam | 20–100 kGy | [53] |
PVA/AA | e-beam | 10–100 kGy | [54] |
PVA/PVP/Carr/silk | e-beam | 10–100 kGy | [55] |
PVP/PEG/Agar | e-beam | 20–50 kGy | [56,57,58] |
PVP/PEG/HEMA | e-beam | 20 kGy | [59] |
PVP/PEG/Starch | e-beam | 25 kGy | [60] |
AA/PLST/MMT/CS | γ-irradiation | 15 kGy | [61] |
AgNO3/GEL/CM-CS | γ-irradiation | 30 kGy | [62] |
AgNP/GEL/PVA | γ-irradiation | 30–50 kGy | [63] |
AgNPs/PHEMA | γ-irradiation | 12 kGy | [64] |
AgNPs/PVP | γ-irradiation | 25–45 kGy | [65] |
CHS/SA | γ-irradiation | 25 kGy | [66] |
CIP/PLGA/PVA | γ-irradiation | 25 kGy | [67] |
CM-CS/GEL | γ-irradiation | 30 kGy | [68] |
CS/GEL/PVA | γ-irradiation | 40 kGy | [69] |
CS/PVA/TA | γ-irradiation | 30 kGy | [70] |
DMAEM/PEO/ZnS | γ-irradiation | 10–30 kGy | [71] |
ELT/PVP | γ-irradiation | 25 kGy | [72] |
GA/TG//PVA/PVP | γ-irradiation | 27.3 kGy | [73] |
GEL/γ-PGA | γ-irradiation | 3–100 kGy | [74] |
GEL/PVP | γ-irradiation | 5–30 kGy | [75] |
HACC/PVA/PEO | γ-irradiation | 20–60 kGy | [76] |
Lyophilized collagen | γ-irradiation | 10–100 kGy | [77] |
MOG/Carbopol | γ-irradiation | 13.68–41.04 kGy | [78] |
PAA/ZnCl2 | γ-irradiation | 25–75 kGy | [79] |
PEGDA/CS | γ-irradiation | 5–25 kGy | [80] |
PHEMA/ITA | γ-irradiation | 25 kGy | [81] |
PVA/Agar/Carr | γ-irradiation | 25–30 kGy | [82] |
PVA/AgNPs; PVP/AgNPs | γ-irradiation | 25 kGy | [83] |
PVA/Alginate | γ-irradiation | 25–50 kGy | [84] |
PVA/CA/GEL/AgNPs | γ-irradiation | 15–25 kGy | [85] |
PVA/CM-CS/honey | γ-irradiation | 25–40 kGy | [86] |
PVA/CS | γ-irradiation | 20–50 kGy | [87,88] |
PVA/CS/Gly | γ-irradiation | 40 kGy | [89] |
PVA/Gly | γ-irradiation | 25 kGy | [90] |
PVP/ITA/CS/ZnO | γ-irradiation | 30 kGy | [91] |
PVA/PVP | γ-irradiation | 5–60 kGy | [92] |
PVA/PVP/AgNPs | γ-irradiation | 15–40 kGy | [93] |
PVA/PVP/aloe vera | γ-irradiation | 25–50 kGy | [94] |
PVA/PVP/clay | γ-irradiation | 10–40 kGy | [95] |
PVA/PVP/CPC | γ-irradiation | 50 kGy | [96] |
PVA/PVP/CS | γ-irradiation | 15–70 kGy | [97] |
PVA/PVP/Gly | γ-irradiation | 25 kGy | [98] |
PVA/PVP/Gly/CS | γ-irradiation | 25–60 kGy | [99] |
PVA/ws-CS | γ-irradiation | 30 kGy | [100] |
PVA/ws-CS/Gly | γ-irradiation | 30–70 kGy | [101] |
PVP/Alginate/AgNPs | γ-irradiation | 25 kGy | [38] |
PVP/Carr/AgNPs | γ-irradiation | 25 kGy | [102] |
PVP/Carr/PEG | γ-irradiation | 25 kGy | [103] |
PVP/CMC | γ-irradiation | 5–60 kGy | [35] |
PVP/k-Carr | γ-irradiation | 15–35 kGy | [104] |
PVP/PEG | γ-irradiation | 25–30 kGy | [105] |
PVP/PEG/Agar | γ-irradiation | 25 kGy | [106] |
PVP/PEG/Alkhydin | γ-irradiation | 25–75 kGy | [107] |
SF/CS/PVA/AgNPs | γ-irradiation | 20–60 kGy | [108] |
SSD/SA/PG | γ-irradiation | 2.5–120 kGy | [109] |
Sterculia gum/PVA/PVP | γ-irradiation | 8.42–50.54 kGy | [110] |
TG/PVA/PVP | γ-irradiation | 9–45.4 kGy | [111] |
TG/SA/PAAM | γ-irradiation | 34.7 kGy | [112] |
TG/SA/PVA | γ-irradiation | 9.1–36.3 kGy | [113] |
XG/PVA/ZnO | γ-irradiation | 10–30 kGy | [114] |
Hydrogel Composition | Gel Fraction (%) | Swelling Degree (%) in Water | Swelling Degree (%) in PBS | References |
---|---|---|---|---|
Agarose | - | 163 | - | [49] |
BC/AA | - | 5704–9903 | ~3000 | [50] |
CIP/PLGA/PVA | 89–91 | - | ~250 | [67] |
Collagen | 60 | - | 260 | [51] |
Collagen/PVP | 84 | 9000 | 1450 | [119] |
GE/PVA/AgNPs | 64–78 | - | 119–231 | [63] |
GE/IPN/PVP | 82–83.4 | 485–507 | - | [75] |
GEL/γ-PGA | 52.4 | ~3500 | 367 | [74] |
HACC/PVA/PEO | 68 | 3800 | - | [76] |
PAA/ZnCl2 | 78–84 | - | 5000–6000 | [79] |
PEO-PVA | 62 | 1400–2000 | - | [53] |
PEGDA/CS | 95–97 | 500–600 | [80] | |
PVA/Alginate | 80–98 | - | 700–1000 | [84] |
PVA/AgNPs | 86 | 240 | - | [83] |
PVA/CM-CS/honey | 55–57 | 1254–2551 | - | [86] |
PVA/CS | 74–88 | 50–130 | [87] | |
PVA/Gly | 88–93.5 | 250–350 | - | [90] |
PVA/PVP | 78 | 42–168 | - | [92] |
PVA/PVP/AgNPs | 86 | 1400 | - | [93] |
PVA/PVP/aloe vera | 18–35 | 2600–4600 | - | [94] |
PVA/PVP/Carr/silk | 60–79 | - | - | [55] |
PVA/PVP/clay | 70 | 210 | - | [95] |
PVA/PVP/CS | 55–90 | 450–550 | - | [97] |
PVA/PVP/Gly | 36–63 | 1190–1776 | - | [98] |
PVA/PVP/Gly/CS | 30–52 | 4500–5400 | - | [99] |
PVA/ws-CS | 61–80 | - | - | [100] |
PVP/Alginate/AgNPs | 77–82 | 2144–2697 | - | [38] |
PVP/Agar/CS/LA | 80.2–82.8 | - | - | [120] |
PVP/AgNPs | 70–80 | 2100–3000 | - | [65] |
PVP/AgNPs | 82 | 110 | - | [83] |
PVP/Carr/PEG | - | 679 | - | [103] |
PVP/CMC | 78–81 | 81–429 | - | [35] |
PVP/CS/PEG/AA | 87 | - | 1250 | [52] |
PVP/ITA/CS/ZnO | 54–66 | 1490–2607 | - | [91] |
PVP/PEG/Agar | 71 | 1250 | [59] | |
PVP/PEG/Alkhydin | 33–71 | 400–1200 | - | [106] |
PVP/PEG/HEMA | 89 | 355–385 | - | [107] |
SSD/SA/PG | - | 150 | 164.5 | [56] |
XG/PVA/ZnO | 83–89 | 1280–1950 | 550–892 | [114] |
Hydrogel | WVTR (g/m2 Day) | References |
---|---|---|
BC/AA | 2105–2666 | [50] |
CS/GEL/PVA | 472.32 ± 133.22 | [136] |
CS/GEL/PVA/PAAM | 541.81 ± 54.05 | |
CS/PVP/PEG | 272.67 | [52] |
GA/TG | 188–287 | [73] |
GEL/PVA/AgNO3 | 4200–4600 | [63] |
MOG/Carbopol | 2461.14 ± 39.16 | [78] |
PAAM/LAA | 106–185 | [128] |
PVA/CS | 40–73.35 | [87] |
PVA/PVP | 89–173.97 | [92] |
PVP/AgNPs | 783.52–940.16 | [65] |
PVP/Alginate/AgNPs | 278.44 | [38] |
PVP/Carr/AgNO3 | 481–536 | [102] |
TG/PVA/PVP | 582.23 ± 86.55 | [111] |
TG/SA/PVA | 197.39 ± 25.34 | [113] |
XG/PVA/ZnO | 164.89–184.57 | [114] |
Hydrogel | Antibacterial Agent | Inhibition Zone Diameter (mm) | References | |||
---|---|---|---|---|---|---|
S. aureus | C. albicans | P. aeruginosa | E. coli | |||
CS/PEG/ZnO | - | - | - | - | 20 | [151] |
CS/PEG/ZnO | GM | - | - | - | 30 | |
DMAEM/PEO/ZnS | CL | 15.2 | 8.5 | 13.2 | 12.5 | [71] |
DMAEM/PEO/ZnS | GM | 15.1 | 8.4 | 13.1 | 12.4 | |
DMAEM/PEO/ZnS | NEO | 15.3 | 8.5 | 13.2 | 12.5 | |
DMAEM/PEO/ZnS | AM | 29.5 | 11.3 | 21 | 15.3 | |
GEL/CM-CS | AgNO3 | - | - | - | 13.5–19.6 | [62] |
GEL/PVA | - | 15 | - | - | 15 | [63] |
GEL/PVA | AgNPs | 15–26 | - | - | 15–27 | |
PVA/CA/GEL | AgNPs | 14–23.2 | 14.2–17.3 | 11–23.7 | 9–24.9 | [85] |
PVA/CS | TA | 10.5 ± 0.3 | - | - | 10.4 ± 1.1 | [70] |
PVA/PVP/Gly | AgNO3 | 19 | - | 21 | 17 | [98] |
PVA/PVP/Gly | SSD | 20 | - | 26 | 21 | |
PVA/PVP/Gly | SD-Na | 37 | - | 43 | 41 | |
PVA/PVP/Gly | Chloramine T | 11 | - | 11 | 11 | |
PVP/Carr | AgNPs | 0.8–4.87 | - | 1.9–9.56 | 1.2–8.31 | [102] |
PVP/ITA/CS/ZnO | - | 0.4 | - | - | 0.8 | [91] |
PVP//ITA/CS/ZnO | AM | 2.8 | - | - | 2.8 | |
PVP/PEG/Agar | NEO | 22 ± 1 | - | - | - | [148] |
SF/CS/PVA | AgNPs | 1.46–1.67 | - | 1.44–1.59 | - | [108] |
Alginate | SSD | 16 ± 0.3 | - | 16 ± 0.6 | 16 | [109] |
Alginate/PG | SSD | 15 | 16 ± 0.3 | 16 ± 0.3 | 16 | |
XG/PVA | ZnO | 25–40 | - | - | 15–25 | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demeter, M.; Scărișoreanu, A.; Călina, I. State of the Art of Hydrogel Wound Dressings Developed by Ionizing Radiation. Gels 2023, 9, 55. https://doi.org/10.3390/gels9010055
Demeter M, Scărișoreanu A, Călina I. State of the Art of Hydrogel Wound Dressings Developed by Ionizing Radiation. Gels. 2023; 9(1):55. https://doi.org/10.3390/gels9010055
Chicago/Turabian StyleDemeter, Maria, Anca Scărișoreanu, and Ion Călina. 2023. "State of the Art of Hydrogel Wound Dressings Developed by Ionizing Radiation" Gels 9, no. 1: 55. https://doi.org/10.3390/gels9010055
APA StyleDemeter, M., Scărișoreanu, A., & Călina, I. (2023). State of the Art of Hydrogel Wound Dressings Developed by Ionizing Radiation. Gels, 9(1), 55. https://doi.org/10.3390/gels9010055