Polyelectrolyte-Complex-Based Hydrogel Inserts for Vaginal Delivery of Posaconazole and Probiotics
Abstract
:1. Introduction
2. Result and Discussion
2.1. Solid Dispersion of Posaconazole
2.2. Saturation Solubility
2.3. Characterization of the Polyelectrolyte Complex
2.3.1. FESEM
2.3.2. FTIR
2.3.3. DSC
2.4. In Vitro Mucoadhesive Study of PEC Using a Texture Analyzer
2.4.1. Antimicrobial Activity of PECs
2.4.2. Effect of Lyophilization on the Viability of Lactobacillus casei
2.5. Evaluation of PEC Hydrogel Inserts
2.5.1. Effect on Swelling
2.5.2. Effect on Drug Release
2.6. In Vitro Efficacy of the Formulations Using a Co-Culture Technique
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation of Solid Dispersion
4.2.2. Preparation of Polyelectrolyte Complex (PEC)
4.2.3. Formulation and Optimization of PEC-Based Hydrogel Inserts
4.2.4. Characterization of PEC
Morphological Study by FESEM
FTIR
Differential Scanning Calorimetry
In Vitro Mucoadhesive Study
In Vitro Antimicrobial Activity
Effect of Lyophilization on Viability of Lactobacillus casei
4.2.5. Characterization of PEC-Based Hydrogel Inserts
Average Weight, Hardness and Thickness
Drug Content
Swelling Behavior
In Vitro Drug Release Study
In Vitro Efficacy of Formulation using a Co-Culture Technique
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lanchares, J.L.; Hernández, M.L. Recurrent Vaginal Candidiasis Changes in Etiopathogenical Patterns. Int. J. Gynaecol. Obstet. 2000, 71 (Suppl. S1), S29–S35. [Google Scholar] [CrossRef]
- Sobel, J.D.; Faro, S.; Force, R.W.; Foxman, B.; Ledger, W.J.; Nyirjesy, P.R.; Reed, B.D.; Summers, P.R. Vulvovaginal Candidiasis: Epidemiologic, Diagnostic, and Therapeutic Considerations. Am. J. Obstet. Gynecol. 1998, 178, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Monk, B.C.; Sagatova, A.A.; Hosseini, P.; Ruma, Y.N.; Wilson, R.K.; Keniya, M.V. Fungal Lanosterol 14α-Demethylase: A Target for next-Generation Antifungal Design. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140206. [Google Scholar] [CrossRef]
- Tratrat, C. 1,2,4-Triazole: A Privileged Scaffold for the Development of Potent Antifungal Agents–A Brief Review. Curr. Top. Med. Chem. 2020, 20, 2235–2258. [Google Scholar] [CrossRef]
- Fera, M.T.; La Camera, E.; De Sarro, A. New Triazoles and Echinocandins: Mode of Action, in Vitro Activity and Mechanisms of Resistance. Expert Rev. Anti-Infect. Ther. 2009, 7, 981–998. [Google Scholar] [CrossRef]
- Dutt, K. Role of Antifungal Drugs in Combating Invasive Fungal Diseases. In High Value Fermentation Products; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 103–144. [Google Scholar]
- Groll, A.H.; Walsh, T.J. Posaconazole: Clinical Pharmacology and Potential for Management of Fungal Infections. Expert Rev. Anti-Infect. Ther. 2005, 3, 467–487. [Google Scholar] [CrossRef]
- Vazquez, J.A. Posaconazole for the Management of Mucosal Candidiasis. Future Microbiol. 2007, 2, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Deshkar, S.S.; Palve, V.K. Formulation and Development of Thermosensitive Cyclodextrin-Based In Situ Gel of Voriconazole for Vaginal Delivery. J. Drug Deliv. Sci. Technol. 2019, 49, 277–285. [Google Scholar] [CrossRef]
- Mura, P.; Maestrelli, F.; Cirri, M.; Mennini, N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar. Drugs 2022, 20, 335. [Google Scholar] [CrossRef] [PubMed]
- Puri, V.; Kaur, V.P.; Singh, A.; Singh, C. Recent Advances on Drug Delivery Applications of Mucopenetrative/Mucoadhesive Particles: A Review. J. Drug Deliv. Sci. Technol. 2022, 75, 103712. [Google Scholar] [CrossRef]
- Sankalia, M.G.; Mashru, R.C.; Sankalia, J.M.; Sutariya, V.B. Reversed Chitosan-Alginate Polyelectrolyte Complex for Stability Improvement of Alpha-Amylase: Optimization and Physicochemical Characterization. Eur. J. Pharm. Biopharm. 2007, 65, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Martău, G.A.; Mihai, M.; Vodnar, D.C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Darwesh, B.; Aldawsari, H.M.; Badr-Eldin, S.M. Optimized Chitosan/Anion Polyelectrolyte Complex Based Inserts for Vaginal Delivery of Fluconazole: In Vitro/in Vivo Evaluation. Pharmaceutics 2018, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Bigucci, F.; Abruzzo, A.; Vitali, B.; Saladini, B.; Cerchiara, T.; Gallucci, M.C.; Luppi, B. Vaginal Inserts Based on Chitosan and Carboxymethylcellulose Complexes for Local Delivery of Chlorhexidine: Preparation, Characterization and Antimicrobial Activity. Int. J. Pharm. 2015, 478, 456–463. [Google Scholar] [CrossRef]
- Zhao, F.; Hu, X.; Ying, C. Advances in Research on the Relationship between Vaginal Microbiota and Adverse Pregnancy Outcomes and Gynecological Diseases. Microorganisms 2023, 11, 991. [Google Scholar] [CrossRef]
- Mashatan, N.; Heidari, R.; Altafi, M.; Amini, A.; Ommati, M.M.; Hashemzaei, M. Probiotics in Vaginal Health. Pathog. Dis. 2023, 81, ftad012. [Google Scholar] [CrossRef]
- Chee, W.J.Y.; Chew, S.Y.; Than, L.T.L. Vaginal Microbiota and the Potential of Lactobacillus Derivatives in Maintaining Vaginal Health. Microb. Cell Fact. 2020, 19, 203. [Google Scholar] [CrossRef]
- Liu, F.; Duan, G.; Yang, H. Recent Advances in Exploiting Carrageenans as a Versatile Functional Material for Promising Biomedical Applications. Int. J. Biol. Macromol. 2023, 235, 123787. [Google Scholar] [CrossRef]
- Potaś, J.; Szymańska, E.; Wróblewska, M.; Kurowska, I.; Maciejczyk, M.; Basa, A.; Wolska, E.; Wilczewska, A.Z.; Winnicka, K. Multilayer Films Based on Chitosan/Pectin Polyelectrolyte Complexes as Novel Platforms for Buccal Administration of Clotrimazole. Pharmaceutics 2021, 13, 1588. [Google Scholar] [CrossRef]
- Bayer, I.S. Recent Advances in Mucoadhesive Interface Materials, Mucoadhesion Characterization, and Technologies. Adv. Mater. Interfaces 2022, 9, 2200211. [Google Scholar] [CrossRef]
- Fule, R.; Amin, P. Hot Melt Extruded Amorphous Solid Dispersion of Posaconazole with Improved Bioavailability: Investigating Drug-Polymer Miscibility with Advanced Characterisation. BioMed Res. Int. 2014, 2014, 146781. [Google Scholar] [CrossRef]
- Ramadhani, N.; Shabir, M.; McConville, C. Preparation and Characterisation of Kolliphor® P 188 and P 237 Solid Dispersion Oral Tablets Containing the Poorly Water-Soluble Drug Disulfiram. Int. J. Pharm. 2014, 475, 514–522. [Google Scholar] [CrossRef]
- Tekade, A.R.; Yadav, J.N. A Review on Solid Dispersion and Carriers Used Therein for Solubility Enhancement of Poorly Water-Soluble Drugs. Adv. Pharm. Bull. 2020, 10, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Kramarczyk, D.; Knapik-Kowalczuk, J.; Kurek, M.; Jamróz, W.; Jachowicz, R.; Paluch, M. Hot Melt Extruded Posaconazole-Based Amorphous Solid Dispersions—The Effect of Different Types of Polymers. Pharmaceutics 2023, 15, 799. [Google Scholar] [CrossRef]
- Santana, A.C.S.G.V.; Nadvorny, D.; da Rocha Passos, T.D.; de La Roca Soares, M.F.; Soares-Sobrinho, J.L. Influence of Cyclodextrin on Posaconazole Stability, Release and Activity: Improve the Utility of the Drug. J. Drug Deliv. Sci. Technol. 2019, 53, 101153. [Google Scholar] [CrossRef]
- Dong, W.; Su, X.; Xu, M.; Hu, M.; Sun, Y.; Zhang, P. Preparation, Characterization, and in Vitro/Vivo Evaluation of Polymer-Assisting Formulation of Atorvastatin Calcium Based on Solid Dispersion Technique. Asian J. Pharm. Sci. 2018, 13, 546–554. [Google Scholar] [CrossRef] [PubMed]
- José, L.; Lorena; Carvalho, V.; Soares, L.; Felts, M. Combining Amorphous Solid Dispersions for Improved Kinetic Solubility of Posaconazole Simultaneously Released from Soluble PVP/VA64 and an Insoluble Ammonio Methacrylate Copolymer. Eur. J. Pharm. Sci. 2019, 133, 79–85. [Google Scholar] [CrossRef]
- Davydova, V.N.; Krylova, N.V.; Iunikhina, O.V.; Volod’ko, A.V.; Pimenova, E.A.; Shchelkanov, M.Y.; Yermak, I.M. Physicochemical Properties and Antiherpetic Activity of κ-Carrageenan Complex with Chitosan. Mar. Drugs 2023, 21, 238. [Google Scholar] [CrossRef]
- Costa, D.; De Mello Ferreira, M.P.M.; De Macedo, I.L.; Cruz, M.T. New Poly-Electrolyte Complex from Pectin/Chitosan and Montmorillonite Clay. Carbohydr. Polym. 2016, 146, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Maciel, V.B.V.; Yoshida, C.M.P.; Franco, T.T. Chitosan/Pectin Polyelectrolyte Complex as a PH Indicator. Carbohydr. Polym. 2015, 132, 537–545. [Google Scholar] [CrossRef]
- Li, C.; Hein, S.; Wang, K. Chitosan-Carrageenan Polyelectrolyte Complex for the Delivery of Protein Drugs. ISRN Biomater. 2013, 2013, 629807. [Google Scholar] [CrossRef]
- Pendekal, M.S.; Tegginamat, P.K. Development and Characterization of Chitosan-Polycarbophil Interpolyelectrolyte Complex-Based 5-Fluorouracil Formulations for Buccal, Vaginal and Rectal Application. Daru 2012, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Baldassari, S.; Cirrincione, P.; Ailuno, G.; Drava, G.; Arpicco, S.; Caviglioli, G. Towards a Better Understanding of Thermally Treated Polycarbophil Matrix Tablets for Controlled Release. Int. J. Pharm. X 2021, 3, 100098. [Google Scholar] [CrossRef]
- Pandey, S.; Mishra, A.; Raval, P.; Patel, H.; Gupta, A.; Shah, D. Chitosan–Pectin Polyelectrolyte Complex as a Carrier for Colon Targeted Drug Delivery. J. Young Pharm. 2013, 5, 160–166. [Google Scholar] [CrossRef]
- Cazorla-Luna, R.; Martín-Illana, A.; Notario-Pérez, F.; Ruiz-Caro, R.; Veiga, M.-D. Naturally Occurring Polyelectrolytes and Their Use for the Development of Complex-Based Mucoadhesive Drug Delivery Systems: An Overview. Polymers 2021, 13, 2241. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, E.; Winnicka, K.; Amelian, A.; Cwalina, U. Vaginal Chitosan Tablets with Clotrimazole-Design and Evaluation of Mucoadhesive Properties Using Porcine Vaginal Mucosa, Mucin and Gelatine. Chem. Pharm. Bull. 2014, 62, 160–167. [Google Scholar] [CrossRef]
- Cazorla-Luna, R.; Notario-Pérez, F.; Martín-Illana, A.; Bedoya, L.M.; Tamayo, A.; Rubio, J.; Ruiz-Caro, R.; Veiga, M.-D. Development and in vitro/ex vivo characterization of vaginal mucoadhesive bilayer films based on ethylcellulose and biopolymers for vaginal sustained release of Tenofovir. Biomacromolecules 2020, 21, 2309–2319. [Google Scholar] [CrossRef]
- Shih, P.Y.; Liao, Y.T.; Tseng, Y.K.; Deng, F.S.; Lin, C.-H. A Potential Antifungal Effect of Chitosan Against Candida Albicans Is Mediated via the Inhibition of SAGA Complex Component Expression and the Subsequent Alteration of Cell Surface Integrity. Front. Microbiol. 2019, 10, 602. [Google Scholar] [CrossRef]
- Gupta, P.; Goel, A.; Singh, K.R.; Meher, M.K.; Gulati, K.; Poluri, K.M. Dissecting the Anti-Biofilm Potency of Kappa-Carrageenan Capped Silver Nanoparticles against Candida Species. Int. J. Biol. Macromol. 2021, 172, 30–40. [Google Scholar] [CrossRef]
- Whaley, D.; Damyar, K.; Witek, R.P.; Mendoza, A.; Alexander, M.; Lakey, J.R.T. Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplant. 2021, 30, 096368972199961. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Mosallanezhad, A. Facile and Green Rout to Prepare Magnetic and Chitosan-Crosslinked κ-Carrageenan Bionanocomposites for Removal of Methylene Blue. J. Water Proc. Eng. 2016, 10, 143–155. [Google Scholar] [CrossRef]
- Vergnaud, J.M. Liquid Transport Controlled Release Processes in Polymeric Materials: Applications to Oral Dosage Forms. Int. J. Pharm. 1993, 90, 89–94. [Google Scholar] [CrossRef]
- Chaibva, F.A.; Khamanga, S.M.M.; Walker, R.B. Swelling, Erosion and Drug Release Characteristics of Salbutamol Sulfate from Hydroxypropyl Methylcellulose-Based Matrix Tablets. Drug Dev. Ind. Pharm. 2010, 36, 1497–1510. [Google Scholar] [CrossRef] [PubMed]
- Deshkar, S.S.; Ahire, K.S.; Mahore, J.G. In Vitro and in Vivo Evaluation of Prebiotic Potential of Pectin on Vaginal Lactobacilli. J. Appl. Biol. Biotechnol. 2022, 10, 103–111. [Google Scholar]
- Deshkar, S.; Kapare, H.; Chore, S.; Thakre, A.; Mahore, J. Formulation Development and Evaluation of Mucoadhesive Tablets for Vaginal Delivery of Metronidazole. Int. J. Res. Pharm. Sci. 2020, 11, 1973–1981. [Google Scholar] [CrossRef]
- Fitaihi, R.A.; Aleanizy, F.S.; Elsamaligy, S.; Mahmoud, H.A.; Bayomi, M.A. Role of Chitosan on Controlling the Characteristics and Antifungal Activity of Bioadhesive Fluconazole Vaginal Tablets. Saudi Pharm. J. 2018, 26, 151–161. [Google Scholar] [CrossRef]
- Wittman, E.; Yar, N.; De Seta, F.; Larsen, B. In Vitro Exploration of Probiotic Bacteria Interactions with Candida Using Culture Techniques to Model Dysbiotic Conditions in Colonized Tissues. Pathogens 2021, 10, 289. [Google Scholar] [CrossRef]
PEC Samples | Viability Count of PEC before Lyophilization (Log CFU/mL) | Viability Count of PEC after Lyophilization (Log CFU/mL) | Mucoadhesion Strength (g/cm2) | Inhibition Zone (mm) |
---|---|---|---|---|
CH-CA | 8.3 ± 1.42 | 8.0 ± 0.78 | 2.9 ± 1.2 | 17.6 ± 0.57 |
CH-PE | 8.2 ± 0.68 | 7.7 ± 1.4 | 12.8 ± 0.8 | 18.3 ± 0.68 |
CH-PC | 8.4 ± 0.83 | 8.2 ± 1.12 | 2.4 ± 0.7 | 13.4 ± 0.62 |
Source | (Y1) Swelling Index | (Y2) Drug Release | ||||
---|---|---|---|---|---|---|
Sum of Squares | F Value | p-Value | Sum of Squares | F Value | p-Value | |
Prob > F | Prob > F | |||||
Model | 94,723.16 | 111.83 | 0.0013 | 1041.88 | 32.39 | 0.0082 |
A—Types of CH–anionic polymers | 55,738.48 | 329.02 | 0.0004 | 121.50 | 18.89 | 0.0225 |
B—ratio of CH:anionic polymer | 493.23 | 2.91 | 0.1865 | 45.38 | 7.05 | 0.0766 |
AB | 174.24 | 1.03 | 0.3852 | 4.62 | 0.72 | 0.4589 |
A2 | 36,549.07 | 215.75 | 0.0007 | 322.58 | 50.15 | 0.0058 |
B2 | 1768.14 | 10.44 | 0.0482 | 547.81 | 85.16 | 0.0027 |
Residual | 508.22 | 19.30 | ||||
Cor Total | 95,231.38 | 1061.18 |
Batch | Hardness (kg/cm2) | Thickness (mm) | Drug Content (%) | Average Weight (mg) | Swelling Index (%) (8 h) (Y1) | Drug Release (%) (8 h) (Y2) |
---|---|---|---|---|---|---|
F1 | 6.6 ± 0.25 | 4.6 ± 1.01 | 99.5 ± 1.42 | 630.6 ± 1.42 | 217.6 ± 1.41 | 59.0 ± 2.87 |
F2 | 6.5 ± 0.27 | 4.2 ± 2.03 | 95.4 ± 2.57 | 631.1 ± 0.68 | 196.0 ± 3.07 | 79.8 ± 3.04 |
F3 | 6.6 ± 0.31 | 4.3 ± 1.02 | 91.3 ± 3.71 | 631.2 ± 0.69 | 209.5 ± 2.32 | 64.8 ± 1.89 |
F4 | 6.6 ± 0.24 | 4.2 ± 3.01 | 93.1 ± 1.32 | 630.0 ± 1.13 | 181.8 ± 1.84 | 65.4 ± 1.94 |
F5 | 6.7 ± 0.29 | 4.1 ± 2.04 | 99.5 ± 1.42 | 630.7 ± 0.77 | 155.5 ± 1.9 | 88.2 ± 2.4 |
F6 | 6.6 ± 0.26 | 4.4 ± 1.03 | 94.6 ± 1.52 | 629.8 ± 0.89 | 169.7 ± 2.28 | 74.6 ± 3.22 |
F7 | 6.5 ± 0.21 | 4.2 ± 2.01 | 92.2 ± 2.69 | 631.0 ± 0.71 | 434.9 ± 3.46 | 53.6 ± 2.68 |
F8 | 6.5 ± 0.28 | 4.3 ± 3.02 | 97.3 ± 3.27 | 630.4 ± 1.02 | 366.1 ± 2.53 | 67.9 ± 2.86 |
F9 | 6.6 ± 0.23 | 4.1 ± 5.04 | 90.5 ± 2.38 | 629.3 ± 0.95 | 400.4 ± 3.1 | 55.1 ± 2.5 |
PEC Type | Vergnaud Model | Korsmeyer–Peppas Model | ||||
---|---|---|---|---|---|---|
R2 | K | N | R2 | K | n | |
CH-CA | 0.991 | 1.63 | 0.77 | 0.992 | 16.81 | 0.69 |
CH-PE | 0.994 | 1.42 | 0.75 | 0.993 | 21.08 | 0.72 |
CH-PC | 0.992 | 5.80 | 0.67 | 0.989 | 14.39 | 0.68 |
Levels | Independent Variables | Responses | ||
X1 | X2 | Y1 | Y2 | |
Types of Anionic Polymer | Ratio of Chitosan:Anionic Polymer | Swelling Index after 8 h | Drug Release after 8 h | |
−1 | Carrageenan | 1:2 | ||
0 | Pectin | 1:1 | ||
1 | Polycarbophil | 2:1 |
Ingredient (mg) | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 |
---|---|---|---|---|---|---|---|---|---|
CH:CA (1:2) | 250 | ||||||||
CH:CA (1:1) | 250 | ||||||||
CH: CA (2:1) | 250 | ||||||||
CH:PE (1:2) | 250 | ||||||||
CH:PE (1:1) | 250 | ||||||||
CH: PE (2:1) | 250 | ||||||||
CH: POLY (1:2) | 250 | ||||||||
CH: POLY (1:1) | 250 | ||||||||
CH: POLY (2:1) | 250 | ||||||||
Solid Dispersion | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
Magnesium Stearate | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Microcrystalline cellulose | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Sodium monocitrate | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
Talc | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deshkar, S.; Yeole, P.; Mahore, J.; Shinde, A.; Giram, P. Polyelectrolyte-Complex-Based Hydrogel Inserts for Vaginal Delivery of Posaconazole and Probiotics. Gels 2023, 9, 851. https://doi.org/10.3390/gels9110851
Deshkar S, Yeole P, Mahore J, Shinde A, Giram P. Polyelectrolyte-Complex-Based Hydrogel Inserts for Vaginal Delivery of Posaconazole and Probiotics. Gels. 2023; 9(11):851. https://doi.org/10.3390/gels9110851
Chicago/Turabian StyleDeshkar, Sanjeevani, Purva Yeole, Jayashri Mahore, Ankita Shinde, and Prabhanjan Giram. 2023. "Polyelectrolyte-Complex-Based Hydrogel Inserts for Vaginal Delivery of Posaconazole and Probiotics" Gels 9, no. 11: 851. https://doi.org/10.3390/gels9110851
APA StyleDeshkar, S., Yeole, P., Mahore, J., Shinde, A., & Giram, P. (2023). Polyelectrolyte-Complex-Based Hydrogel Inserts for Vaginal Delivery of Posaconazole and Probiotics. Gels, 9(11), 851. https://doi.org/10.3390/gels9110851