Preparation and Characterization of Silymarin Gel: A Novel Topical Mucoadhesive Formulation for Potential Applicability in Oral Pathologies
Abstract
:1. Introduction
2. Results
2.1. Characterization of Silymarin Gel Formulation
2.2. FTIR Spectral Analysis
2.3. Evaluation Parameters
2.3.1. pH
2.3.2. Homogeneity
2.3.3. Spreadability
2.3.4. Drug Content Uniformity
2.3.5. Stability
2.4. In Vitro Drug Diffusion Studies
2.5. Release Kinetics
2.6. In Vitro Antioxidant Study
2.7. Ex Vivo Permeation Study
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Preparation of Silymarin-Based Mucoadhesive Gel
5.2. Pre-Formulation Studies
5.3. Evaluation Parameters
5.3.1. Viscosity
5.3.2. pH
5.3.3. Homogeneity
5.3.4. Spreadability
5.3.5. Drug Content
5.3.6. Stability Study
5.3.7. Drug Release Study by Open-Ended Cylinder
5.3.8. Drug Release Study by Diffusion Cell Apparatus
5.3.9. Release Kinetics
5.4. In Vitro Antioxidant Studies for Prepared Gel
5.4.1. 2,2-Diphenylpicrylhydrazyl (DPPH) Free Radical Scavenging Test
5.4.2. Nitric Oxide Scavenging Assay
5.5. Ex Vivo Permeation Study
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loguercio, C.; Festi, D. Silybin and the Liver: From Basic Research to Clinical Practice. World J Gastroenterol. 2011, 17, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Federico, A.; Dallio, M.; Loguercio, C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules 2017, 22, 191. [Google Scholar] [CrossRef] [PubMed]
- Fallah, M.; Davoodvandi, A.; Nikmanzar, S.; Aghili, S.; Mirazimi, S.M.A.; Aschner, M.; Rashidian, A.; Hamblin, M.R.; Chamanara, M.; Naghsh, N.; et al. Silymarin (Milk Thistle Extract) as a Therapeutic Agent in Gastrointestinal Cancer. Biomed. Pharmacother. 2021, 142, 112024. [Google Scholar] [CrossRef] [PubMed]
- Won, D.-H.; Kim, L.-H.; Jang, B.; Yang, I.-H.; Kwon, H.-J.; Jin, B.; Oh, S.H.; Kang, J.-H.; Hong, S.-D.; Shin, J.-A.; et al. In Vitro and in Vivo Anti-Cancer Activity of Silymarin on Oral Cancer. Tumour Biol. 2018, 40, 1010428318776170. [Google Scholar] [CrossRef] [PubMed]
- Koltai, T.; Fliegel, L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J. Evid. Based Integr. Med. 2022, 27, 2515690X211068826. [Google Scholar] [CrossRef] [PubMed]
- Fini, A.; Bergamante, V.; Ceschel, G.C. Mucoadhesive Gels Designed for the Controlled Release of Chlorhexidine in the Oral Cavity. Pharmaceutics 2011, 3, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Sampatrao, K.A.; Bhalchandra, K.J.; Ravindra, J.; Manohar, P. Formulation Development and Evaluation of Silymarin Gel. Res. J. Pharm. Technol. 2011, 4, 1633–1636. [Google Scholar]
- Karbasforooshan, H.; Hosseini, S.; Elyasi, S.; Fani Pakdel, A.; Karimi, G. Topical Silymarin Administration for Prevention of Acute Radiodermatitis in Breast Cancer Patients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Phytother. Res. 2019, 33, 379–386. [Google Scholar] [CrossRef]
- Aslani, A.; Zolfaghari, B.; Davoodvandi, F. Design, Formulation and Evaluation of an Oral Gel from Punica Granatum Flower Extract for the Treatment of Recurrent Aphthous Stomatitis. Adv. Pharm. Bull. 2016, 6, 391–398. [Google Scholar] [CrossRef]
- Zarrelli, A.; Romanucci, V.; Tuccillo, C.; Federico, A.; Loguercio, C.; Gravante, R.; Di Fabio, G. New Silibinin Glyco-Conjugates: Synthesis and Evaluation of Antioxidant Properties. Bioorg. Med. Chem. Lett. 2014, 24, 5147–5149. [Google Scholar] [CrossRef]
- Boddupalli, B.M.; Mohammed, Z.N.K.; Nath, R.A.; Banji, D. Mucoadhesive Drug Delivery System: An Overview. J. Adv. Pharm. Technol. Res. 2010, 1, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Patel, P. Preformulation Studies: An Integral Part of Formulation Design; IntechOpen: London, UK, 2019; ISBN 978-1-78985-839-6. [Google Scholar]
- Nofal, A.; Ibrahim, A.-S.M.; Nofal, E.; Gamal, N.; Osman, S. Topical Silymarin versus Hydroquinone in the Treatment of Melasma: A Comparative Study. J. Cosmet. Derm. 2019, 18, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Puri, V.; Kakkar, V.; Singh, I. Formulation and Evaluation of Silymarin-Loaded Chitosan-Montmorilloite Microbeads for the Potential Treatment of Gastric Ulcers. J. Funct. Biomater. 2018, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Dunnick, J.K.; Singh, B.; Nyska, A.; Peckham, J.; Kissling, G.E.; Sanders, J.M. Investigating the Potential for Toxicity from Long-Term Use of the Herbal Products, Goldenseal and Milk Thistle. Toxicol. Pathol. 2011, 39, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Saller, R.; Brignoli, R.; Melzer, J.; Meier, R. An Updated Systematic Review with Meta-Analysis for the Clinical Evidence of Silymarin. Komplementmed 2008, 15, 9–20. [Google Scholar] [CrossRef]
- Becker-Schiebe, M.; Mengs, U.; Schaefer, M.; Bulitta, M.; Hoffmann, W. Topical Use of a Silymarin-Based Preparation to Prevent Radiodermatitis. Strahlenther. Onkol. 2011, 187, 485. [Google Scholar] [CrossRef]
- Gao, Y.; Du, L.; Li, Q.; Li, Q.; Zhu, L.; Yang, M.; Wang, X.; Zhao, B.; Ma, S. How Physical Techniques Improve the Transdermal Permeation of Therapeutics: A Review. Medicine 2022, 101, e29314. [Google Scholar] [CrossRef]
- Foglio-Bonda, P.L.; Brilli, K.; Pattarino, F.; Foglio-Bonda, A. Salivary Flow Rate and PH in Patients with Oral Pathologies. Eur. Rev. Med. Pharm. Sci. 2017, 21, 369–374. [Google Scholar]
- Lăzureanu, P.C.; Popescu, F.; Tudor, A.; Stef, L.; Negru, A.G.; Mihăilă, R. Saliva PH and Flow Rate in Patients with Periodontal Disease and Associated Cardiovascular Disease. Med. Sci. Monit. 2021, 27, e931362-1–e931362-13. [Google Scholar] [CrossRef]
- Iqbal, B.; Ali, J.; Ganguli, M.; Mishra, S.; Baboota, S. Silymarin-Loaded Nanostructured Lipid Carrier Gel for the Treatment of Skin Cancer. Nanomedicine 2019, 14, 1077–1093. [Google Scholar] [CrossRef]
- Shukla, R.; Tiwari, G.; Tiwari, R.; Rai, A.K. Formulation and Evaluation of the Topical Ethosomal Gel of Melatonin to Prevent UV Radiation. J. Cosmet. Dermatol. 2020, 19, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Shete, A.; Doijad, R. Formulation and Evaluation Pharmaceutical Aqueous Gel of Powdered Guava Leaves for Mouth Ulcer Treatment. Pharmatutor 2018, 6, 32. [Google Scholar] [CrossRef]
- Jain, N.; Verma, A.; Jain, N. Formulation and Investigation of Pilocarpine Hydrochloride Niosomal Gels for the Treatment of Glaucoma: Intraocular Pressure Measurement in White Albino Rabbits. Drug Deliv. 2020, 27, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, D.K.; Madhavan, Y.; Manimaran, A.; Kaliaraj, G.S.; Mohanraj, K.G.; Kandhasamy, N.; Amirtharaj Mosas, K.K. Efficacy of Graphene-Based Nanocomposite Gels as a Promising Wound Healing Biomaterial. Gels 2023, 9, 22. [Google Scholar] [CrossRef]
- Uhljar, L.É.; Kan, S.Y.; Radacsi, N.; Koutsos, V.; Szabó-Révész, P.; Ambrus, R. In Vitro Drug Release, Permeability, and Structural Test of Ciprofloxacin-Loaded Nanofibers. Pharmaceutics 2021, 13, 556. [Google Scholar] [CrossRef]
- Amatya, S.; Park, E.J.; Park, J.; Kim, J.; Seol, E.; Lee, H.; Choi, H.; Shin, Y.; Na, D.H. Drug Release Testing Methods of Polymeric Particulate Drug Formulations. J. Pharm. Investig. 2013, 43, 259–266. [Google Scholar] [CrossRef]
- Rahman, Z.; Zidan, A.; Khan, S.; Reddy, I.; Khan, M. Cholorpheniramine Tannate Complexes: Physicochemical, Chemometric, and Taste Masking Evaluation. Int. J. Pharm. 2012, 436, 582–592. [Google Scholar] [CrossRef]
- Lee, P.I. Kinetics of Drug Release from Hydrogel Matrices. J. Control. Release 1985, 2, 277–288. [Google Scholar] [CrossRef]
- Paarakh, M.P.; Jose, P.A.N.I.; Setty, C.M.; Peter, G. V Release Kinetics–Concepts and Applications. Int. J. Pharm. Res. Technol. 2019, 8, 12–20. [Google Scholar] [CrossRef]
- Dhana lekshmi, U.M.; Poovi, G.; Kishore, N.; Reddy, P.N. In Vitro Characterization and in Vivo Toxicity Study of Repaglinide Loaded Poly (Methyl Methacrylate) Nanoparticles. Int. J. Pharm. 2010, 396, 194–203. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus Religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
- Habu, J.B.; Ibeh, B.O. In Vitro Antioxidant Capacity and Free Radical Scavenging Evaluation of Active Metabolite Constituents of Newbouldia Laevis Ethanolic Leaf Extract. Biol. Res. 2015, 48, 16. [Google Scholar] [CrossRef] [PubMed]
- El-Nahas, A.E.; Allam, A.N.; El-Kamel, A.H. Mucoadhesive Buccal Tablets Containing Silymarin Eudragit-Loaded Nanoparticles: Formulation, Characterisation and Ex Vivo Permeation. J. Microencapsul. 2017, 34, 463–474. [Google Scholar] [CrossRef] [PubMed]
S.No | Parameters | Observation |
---|---|---|
1 | Preformulation studies | |
Organoleptic characters | Color: Yellow | |
Odor: Characteristic | ||
Taste: Bitter | ||
Melting point | 150 °C | |
Linear regression analysis | It obeys Beers-Lamberts law | |
FTIR spectroscopy | No interaction was observed | |
2 | Evaluation parameter for gel | |
Organoleptic character | Color: Pale yellow color | |
Odor: Mint odor | ||
Taste: Astringent taste | ||
pH | 6.42 | |
Viscosity | 3700 ± 0.98 to 7400 ± 0.32 cps | |
Homogeneity | No visible particles are seen | |
Spreadability | 23.75 | |
Theoretical Drug content | 32.77 ± 0.20 mg/g | |
Stability | No change in physical properties was observed | |
Drug release | Percentage cumulative drug release was found to be 2.6% and 3.25% for open-ended cylinder and diffusion cell, respectively, after 3 h | |
Release kinetics | Zero order, first order, Higuchi kinetic | |
In vitro antioxidant | Presence of antioxidant activity is confirmed | |
Ex vivo diffusion study | In 3 h, it was found to be 3.03% and coefficient range was 0.9701 |
Evaluation Parameters | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 4.2 ± 0.02 | 4.9 ± 0.04 | 5.0 ± 0.01 | 5.5 ± 0.03 | 5.7 ± 0.05 | 5.8 ± 0.04 | 6.0 ± 0.01 | 6.2 ± 0.04 | 6.3 ± 0.03 | 6.4 ± 0.01 | |
Homogeneity | good | Good | good | good | good | good | good | good | good | good | |
Spreadability | 10.73 ± 0.01 | 15.98 ± 0.03 | 18.01 ± 0.02 | 18.95 ± 0.04 | 19.73 ± 0.09 | 19.89 ± 0.01 | 20.56 ± 0.03 | 21.64 ± 0.02 | 22.05 ± 0.04 | 23.75 ± 0.03 | |
Viscosity (cpm) | 3700 ± 0.98 | 3490 ± 0.07 | 5000 ± 0.56 | 5231 ± 0.02 | 5409 ± 0.34 | 6000 ± 0.51 | 6302 ± 0.33 | 6589 ± 0.54 | 7000 ± 0.94 | 7400 ± 0.32 | |
Theoretical drug content (mg /g) | 0.2 ± 0.01 (Silymarin:0.5 g) | 0.5 ± 0.21 (Silymarin:0.5 g) | 0.87 ± 0.78 (Silymarin:0.5 g) | 0.95 ± 0.12 (Silymarin:0.5 g) | 1.9 ± 0.10 (Silymarin:0.5 g) | 10.72 ± 0.76 (Silymarin:1 g) | 12.1 ± 0.80 (Silymarin:1 g) | 17.20 ± 0.37 (Silymarin:1 g) | 29.83 ± 0.25 (Silymarin:1 g) | 32.77 ± 0.20 (Silymarin:1 g) | |
Stability (6 months at room temperature) | pH | 6.5 ± 0.03 | 6.5 ± 0.12 | 6.5 ± 0.15 | 6.6 ± 0.04 | 6.8 ± 0.21 | 6.8 ± 0.40 | 6.8 ± 0.31 | 6.9 ± 0.01 | 7.0 ± 0.04 | 7.0 ± 0.06 |
Drug content (mg /g) | 0.17 ± 0.19 | 0.23 ± 0.01 | 0.30 ± 0.83 | 0.52 ± 0.06 | 0.55 ± 0.15 | 1.9 ± 0.34 | 5.34 ± 0.57 | 9.8 ± 0.93 | 15.34 ± 0.05 | 28.00 ± 0.004 |
Zero Order | First Order | Higuchi Diffusion | Korsmeyer Peppas | |
---|---|---|---|---|
R2 | 0.9475 | 0.9475 | 0.9869 | 0.9448 |
S.NO | Time (mins) | % Cumulative Drug Release |
---|---|---|
1. | 10 | 0.057 ± 0.0 |
2. | 20 | 1.52 ± 0.03 |
3. | 30 | 2.66 ± 0.05 |
4. | 40 | 4.11 ± 0.09 |
5. | 50 | 6.05 ± 0.02 |
6. | 60 | 8.32 ± 0.06 |
7. | 90 | 11.05 ± 0.03 |
8. | 120 | 14.03 ± 0.09 |
9. | 150 | 17.56 ± 0.04 |
10. | 180 | 21.97 ±0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venugopal, D.C.; Senthilnathan, R.D.; Maanvizhi, S.; Madhavan, Y.; Sankarapandian, S.; Ramshankar, V.; Kalachaveedu, M. Preparation and Characterization of Silymarin Gel: A Novel Topical Mucoadhesive Formulation for Potential Applicability in Oral Pathologies. Gels 2023, 9, 139. https://doi.org/10.3390/gels9020139
Venugopal DC, Senthilnathan RD, Maanvizhi S, Madhavan Y, Sankarapandian S, Ramshankar V, Kalachaveedu M. Preparation and Characterization of Silymarin Gel: A Novel Topical Mucoadhesive Formulation for Potential Applicability in Oral Pathologies. Gels. 2023; 9(2):139. https://doi.org/10.3390/gels9020139
Chicago/Turabian StyleVenugopal, Divyambika Catakapatri, Reshma Devi Senthilnathan, Saba Maanvizhi, Yasasve Madhavan, Sathasivasubramanian Sankarapandian, Vijayalakshmi Ramshankar, and Mangathayaru Kalachaveedu. 2023. "Preparation and Characterization of Silymarin Gel: A Novel Topical Mucoadhesive Formulation for Potential Applicability in Oral Pathologies" Gels 9, no. 2: 139. https://doi.org/10.3390/gels9020139
APA StyleVenugopal, D. C., Senthilnathan, R. D., Maanvizhi, S., Madhavan, Y., Sankarapandian, S., Ramshankar, V., & Kalachaveedu, M. (2023). Preparation and Characterization of Silymarin Gel: A Novel Topical Mucoadhesive Formulation for Potential Applicability in Oral Pathologies. Gels, 9(2), 139. https://doi.org/10.3390/gels9020139