Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Data Collection and Pre-Treatment
4.2. Principal Component Analysis (PCA)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C. Water Scarcity Assessments in the Past, Present, and Future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, F.; Zhang, P.; Yu, G. Solar Water Evaporation toward Water Purification and Beyond. ACS Mater. Lett. 2021, 3, 1112–1129. [Google Scholar] [CrossRef]
- Piaskowski, K.; Świderska-Dąbrowska, R.; Zarzycki, P.K. Dye Removal from Water and Wastewater Using Various Physical, Chemical, and Biological Processes. J. AOAC Int. 2018, 101, 1371–1384. [Google Scholar] [CrossRef] [PubMed]
- Georgouvelas, D.; Abdelhamid, H.N.; Li, J.; Edlund, U.; Mathew, A.P. All-Cellulose Functional Membranes for Water Treatment: Adsorption of Metal Ions and Catalytic Decolorization of Dyes. Carbohydr. Polym. 2021, 264, 118044. [Google Scholar] [CrossRef]
- Nargatti, K.I.; Subhedar, A.R.; Ahankari, S.S.; Grace, A.N.; Dufresne, A. Nanocellulose-Based Aerogel Electrodes for Supercapacitors: A Review. Carbohydr. Polym. 2022, 297, 120039. [Google Scholar] [CrossRef]
- Paul, J.; Ahankari, S.S. Nanocellulose-Based Aerogels for Water Purification: A Review. Carbohydr. Polym. 2023, 309, 120677. [Google Scholar] [CrossRef]
- Biru, E.I.; Necolau, M.I.; Zainea, A.; Iovu, H. Graphene Oxide–Protein-Based Scaffolds for Tissue Engineering: Recent Advances and Applications. Polymers 2022, 14, 1032. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Adnan, A.S.; Yahya, E.B.; Olaiya, N.G.; Safrida, S.; Hossain, M.S.; Balakrishnan, V.; Gopakumar, D.A.; Abdullah, C.K.; Oyekanmi, A.A.; et al. A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers 2020, 12, 1759. [Google Scholar] [CrossRef]
- Lovskaya, D.; Menshutina, N.; Mochalova, M.; Nosov, A.; Grebenyuk, A. Chitosan-based aerogel particles as highly effective local hemostatic agents. production process and in vivo evaluations. Polymers 2020, 12, 2055. [Google Scholar] [CrossRef]
- Yang, X.-C.; Gao, S.; Fu, S.-Q.; Yao, X.; Jiao, Z.; Zhao, J.-T.; Zhang, Z.-J.; Cheng, L.-L. Aerogel Assembled by Two Types of Carbon Nanoparticles for Efficient Removal of Heavy Metal Ions. Gels 2022, 8, 459. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, I.; Schueneman, G.T.; El-Giar, E.M.; Hassan, E.B. Amino-Functionalized Cellulose Nanofiber/Lignosulfonate New Aerogel Adsorbent for the Removal of Dyes and Heavy Metals from Wastewater. Gels 2023, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Pang, H.; Lu, Y.; Li, Z.; Kang, H.; Wang, M.; Zhang, S.; Li, J. Wood-Inspired Nanocellulose Aerogel Adsorbents with Excellent Selective Pollutants Capture, Superfast Adsorption, and Easy Regeneration. J. Hazard. Mater. 2021, 415, 125612. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.; Xu, Z.; Liang, P.; Zhang, J.; Christie, P.; Liu, H.; Wu, S.; Liu, X. Three-Dimensional Macroscopic Aminosilylated Nanocellulose Aerogels as Sustainable Bio-Adsorbents for the Effective Removal of Heavy Metal Ions. Int. J. Biol. Macromol. 2021, 190, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Song, Y.; Zhao, F.; Spinney, S.; da Silva Bernardes, J.; Tam, K.C. Compressible Cellulose Nanofibril (CNF) Based Aerogels Produced via a Bio-Inspired Strategy for Heavy Metal Ion and Dye Removal. Carbohydr. Polym. 2019, 208, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I. Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons: Chichester, UK, 2005. [Google Scholar]
- Tang, C.; Brodie, P.; Li, Y.; Grishkewich, N.J.; Brunsting, M.; Tam, K.C. Shape Recoverable and Mechanically Robust Cellulose Aerogel Beads for Efficient Removal of Copper Ions. Chem. Eng. J. 2020, 392, 124821. [Google Scholar] [CrossRef]
- Li, J.; Tan, S.; Xu, Z. Anisotropic Nanocellulose Aerogel Loaded with Modified Uio-66 as Efficient Adsorbent for Heavy Metal Ions Removal. Nanomaterials 2020, 10, 1114. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, J.; Shi, Y.; Pei, C. Wettability-Switchable Bacterial Cellulose/Polyhemiaminal Nanofiber Aerogels for Continuous and Effective Oil/Water Separation. Cellulose 2018, 25, 2987–2996. [Google Scholar] [CrossRef]
- Mo, L.; Pang, H.; Tan, Y.; Zhang, S.; Li, J. 3D Multi-Wall Perforated Nanocellulose-Based Polyethylenimine Aerogels for Ultrahigh Efficient and Reversible Removal of Cu (II) Ions from Water. Chem. Eng. J. 2019, 378, 122157. [Google Scholar] [CrossRef]
- Ferreira-Neto, E.P.; Ullah, S.; Da Silva, T.C.; Domeneguetti, R.R.; Perissinotto, A.P.; De Vicente, F.S.; Rodrigues-Filho, U.P.; Ribeiro, S.J. Bacterial Nanocellulose/MoS2 Hybrid Aerogels as Bifunctional Adsorbent/Photocatalyst Membranes for in-Flow Water Decontamination. ACS Appl. Mater. Interfaces 2020, 12, 41627–41643. [Google Scholar] [CrossRef]
- Zhang, X.; Elsayed, I.; Navarathna, C.; Schueneman, G.T.; Hassan, E.B. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification. ACS Appl. Mater. Interfaces 2019, 11, 46714–46725. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Zhang, S.; Qi, F.; Huang, A. Highly Stable Cellulose Nanofiber/Polyacrylamide Aerogel via in-Situ Physical/Chemical Double Crosslinking for Highly Efficient Cu (II) Ions Removal. Int. J. Biol. Macromol. 2022, 209, 1922–1932. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zuo, W.; Tian, Y.; Kong, L.; Cai, G.; Zhang, H.; Li, L.; Zhang, J. Flexible Brushite/Nanofibrillated Cellulose Aerogels for Efficient and Selective Removal of Copper (II). Chem. Eng. J. 2022, 450, 138262. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, K.; Luo, X.; Luo, S. Highly Efficient and Robust Monolith of a Metal–Organic Framework Hybrid Aerogel for the Removal of Antimony from Water. ACS ES&T Eng. 2022, 3, 45–56. [Google Scholar]
- Niu, C.; Zhang, N.; Hu, C.; Zhang, C.; Zhang, H.; Xing, Y. Preparation of a Novel Citric Acid-Crosslinked Zn-MOF/Chitosan Composite and Application in Adsorption of Chromium (VI) and Methyl Orange from Aqueous Solution. Carbohydr. Polym. 2021, 258, 117644. [Google Scholar] [CrossRef]
- Guo, D.-M.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R.; Yang, D.-J. Efficient Removal of Pb (II), Cr (VI) and Organic Dyes by Polydopamine Modified Chitosan Aerogels. Carbohydr. Polym. 2018, 202, 306–314. [Google Scholar] [CrossRef]
- Fan, S.; Chen, J.; Fan, C.; Chen, G.; Liu, S.; Zhou, H.; Liu, R.; Zhang, Y.; Hu, H.; Huang, Z. Fabrication of a CO2-Responsive Chitosan Aerogel as an Effective Adsorbent for the Adsorption and Desorption of Heavy Metal Ions. J. Hazard. Mater. 2021, 416, 126225. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Fu, Z.; Lu, L.; Cheng, J.; Fei, Y. A ‘Top Modification’ Strategy for Enhancing the Ability of a Chitosan Aerogel to Efficiently Capture Heavy Metal Ions. J. Colloid Interface Sci. 2021, 594, 141–149. [Google Scholar] [CrossRef]
- Gao, C.; Dong, Z.; Hao, X.; Yao, Y.; Guo, S. Preparation of Reduced Graphene Oxide Aerogel and Its Adsorption for Pb (II). ACS Omega 2020, 5, 9903–9911. [Google Scholar] [CrossRef]
- Atkins, P.; Atkins, P.W.; de Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Murshid, N.; Mouhtady, O.; Abu-Samha, M.; Obeid, E.; Kharboutly, Y.; Chaouk, H.; Halwani, J.; Younes, K. Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis. Gels 2022, 8, 702. [Google Scholar] [CrossRef]
- Mouhtady, O.; Obeid, E.; Abu-samha, M.; Younes, K.; Murshid, N. Evaluation of the Adsorption Efficiency of Graphene Oxide Hydrogels in Wastewater Dye Removal: Application of Principal Component Analysis. Gels 2022, 8, 447. [Google Scholar] [CrossRef] [PubMed]
- Younes, K.; Laduranty, J.; Descostes, M.; Grasset, L. Molecular Biomarkers Study of an Ombrotrophic Peatland Impacted by an Anthropogenic Clay Deposit. Org. Geochem. 2017, 105, 20–32. [Google Scholar] [CrossRef]
- Younes, K.; Grasset, L. Analysis of Molecular Proxies of a Peat Core by Thermally Assisted Hydrolysis and Methylation-Gas Chromatography Combined with Multivariate Analysis. J. Anal. Appl. Pyrolysis 2017, 124, 726–732. [Google Scholar] [CrossRef]
- Korichi, W.; Ibrahimi, M.; Loqman, S.; Ouhdouch, Y.; Younes, K.; Lemée, L. Assessment of Actinobacteria Use in the Elimination of Multidrug-Resistant Bacteria of Ibn Tofail Hospital Wastewater (Marrakesh, Morocco): A Chemometric Data Analysis Approach. Environ. Sci. Pollut. Res. 2021, 28, 26840–26848. [Google Scholar] [CrossRef] [PubMed]
- Younes, K.; Grasset, L. The Application of DFRC Method for the Analysis of Carbohydrates in a Peat Bog: Validation and Comparison with Conventional Chemical and Thermochemical Degradation Techniques. Chem. Geol. 2020, 545, 119644. [Google Scholar] [CrossRef]
Sl. No. | Aerogel Composition | Physical/Chemical Parameters | Adsorption Parameters | Ref | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Density (mg/cm3) | Porosity (%) | BET Surface Area (m2/g) | Time to Reach Equilibrium (min) | pH | Adsorption Capacity (mg/g) | Removal Efficiency (%) | Number of Reuse/Regenerations | Removal Efficiency (%) after Regenerations | |||
Nanocellulose (NC)-based Aerogels | |||||||||||
1 | TCTGAs | 7 | 99.5 | - | 2 | 5.5 | 485.4 | 100 | 5 | 90 | [13] |
2 | TO-CNF-Si-NH2 | 12.4 | 99 | 144.3 | - | 5 | 99 | 95.6 | - | 87.2 | [14] |
3 | PDA-CNF-PEI | 25 | 98.5 | - | 720 | 5 | 103.5 | - | 4 | 91 | [15] |
4 | CGP | - | - | - | 600 | 5.6 | 163.4 | - | 5 | - | [17] |
5 | U-EDTACCA | 5 | 99 | - | 7200 | 5 | 104 | 91 | 5 | 88 | [18] |
6 | CNF/PEI | - | - | 42.5 | 120 | 5 | 357.1 | - | 3 | 90 | [19] |
7 | TO-CNF/TMPTAP/PEI | - | - | - | 1200 | 5.5 | 485.4 | - | 4 | - | [20] |
8 | BNC/MoS2 | - | - | 117 | 120 | 5.3 | - | 88 | 6 | 10 | [21] |
9 | BHA | 8.2 | 99.4 | 54 | 180 | 10 | 217 | - | 5 | 2 | [22] |
10 | TO-CNF-TMPTAP-APAM | 14.4 | 99.1 | - | 1560 | 6 | 240 | - | 10 | - | [23] |
11 | BRU/PNFCA | - | 91.6 | 1.03 | 1380 | 4.75 | 332.7 | 83.4 | 8 | 83 | [24] |
12 | MOF/CNC-CMC | 8 | - | 125 | 2 | 6 | 575 | 97 | 2 | - | [25] |
Chitosan (CS)-based Aerogels | |||||||||||
1 | ZnBDC/CSC | - | - | 16.3 | 25 | 5 | 225 | 94 | 5 | 84 | [26] |
2 | CS-PDA | - | - | 77.3 | 96 | 2 | 374.5 | - | 8 | [27] | |
3 | CPA | 43 | - | 5.9 | 360 | 6 | 163.7 | - | 6 | 70 | [28] |
4 | E-CS | 38.3 | 97.4 | - | 240 | 5 | 108.1 | 95 | 3 | 91 | [29] |
Graphene (G)-based Aerogels | |||||||||||
1 | rGO | 12.2 | - | 136.7 | 50 | 5.5 | 58 | - | 4 | 90 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, K.; Kharboutly, Y.; Antar, M.; Chaouk, H.; Obeid, E.; Mouhtady, O.; Abu-samha, M.; Halwani, J.; Murshid, N. Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach. Gels 2023, 9, 304. https://doi.org/10.3390/gels9040304
Younes K, Kharboutly Y, Antar M, Chaouk H, Obeid E, Mouhtady O, Abu-samha M, Halwani J, Murshid N. Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach. Gels. 2023; 9(4):304. https://doi.org/10.3390/gels9040304
Chicago/Turabian StyleYounes, Khaled, Yahya Kharboutly, Mayssara Antar, Hamdi Chaouk, Emil Obeid, Omar Mouhtady, Mahmoud Abu-samha, Jalal Halwani, and Nimer Murshid. 2023. "Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach" Gels 9, no. 4: 304. https://doi.org/10.3390/gels9040304
APA StyleYounes, K., Kharboutly, Y., Antar, M., Chaouk, H., Obeid, E., Mouhtady, O., Abu-samha, M., Halwani, J., & Murshid, N. (2023). Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach. Gels, 9(4), 304. https://doi.org/10.3390/gels9040304