Development of Blended Biopolymer-Based Photocatalytic Hydrogel Beads for Adsorption and Photodegradation of Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Biopolymer/TiO2 Hydrogel Beads
2.2. Dye Removal of Biopolymer/TiO2 Hydrogel Beads through Adsorption and Photodegradation
2.3. Preparation and Dye Removal of Cellulose/TiO2 Hydrogel Microbeads
2.4. Preparation and Dye Removal of Cellulose/TiO2 Magnetic Hydrogel Microbeads
2.5. Preparation and Dye Removal of Biopolymer/TiO2 Magnetic Hydrogel Microbeads
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Biopolymer/TiO2 Hydrogel Beads
4.3. Preparation of Biopolymer/TiO2 Hydrogel Microbeads
4.4. Characterization of Biopolymer/TiO2 Hydrogel Beads
4.5. Adsorption and Photodegradation of Dyes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Chen, G.; Bahnemann, D.W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121. [Google Scholar] [CrossRef]
- Amir, M.N.I.; Julkapli, N.M.; Hamid, S.B.A. Effective adsorption and photodegradation of methyl orange by TiO2-chitosan supported glass plate photocatalysis. Mater. Technol. 2017, 32, 256–264. [Google Scholar] [CrossRef]
- Khataee, A.R.; Kasiri, M.B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. J. Mol. Catal. A-Chem. 2010, 328, 8–26. [Google Scholar] [CrossRef]
- Nawi, M.A.; Jawad, A.H.; Sabar, S.; Ngah, W.S.W. Immobilized bilayer TiO2/chitosan system for the removal of phenol under irradiation by a 45 watt compact fluorescent lamp. Desalination 2011, 280, 288–296. [Google Scholar] [CrossRef]
- Hosseini, N.; Toosi, M.R. Combined adsorption process and photocatalytic degradation of some commercial herbicides over N-doped TiO2 particles supported on recyclable magnetic hexagonal mesoporous silica. Sep. Sci. Technol. 2019, 54, 1697–1709. [Google Scholar] [CrossRef]
- Fiorenza, R.; Mauro, A.D.; Cantarella, M.; Iaria, C.; Scalisi, E.M.; Brundo, M.V.; Gulino, A.; Spitaleri, L.; Nicotra, G.; Dattilo, S.; et al. Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts. Chem. Eng. J. 2020, 379, 122309. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.C. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef]
- Deng, J.; Liang, W. Fang J Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications. ACS Appl. Mater. Interfaces 2016, 8, 3928–3932. [Google Scholar] [CrossRef]
- Jo, S.; Park, S.; Oh, Y.; Hong, J.; Kim, H.J.; Kim, K.J.; Oh, K.K.; Lee, S.H. Development of cellulose hydrogel microspheres for lipase immobilization. Biotechnol. Bioprocess Eng. 2019, 24, 145–154. [Google Scholar] [CrossRef]
- Park, S.; Oh, Y.; Jung, D.; Lee, S.H. Effect of cellulose solvents on the characteristics of cellulose/Fe2O3 hydrogel microspheres as enzyme supports. Polymers 2020, 12, 1869. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr. Polym. 2011, 84, 40–53. [Google Scholar] [CrossRef]
- Wendler, F.; Persin, Z.; Stana-Kleinschek, K.; Reischl, M.; Ribitsch, V.; Bohn, A.; Fink, H.-P.; Meister, F. Morphology of polysaccharide blend fibers shaped from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Cellulose 2011, 18, 1165–1178. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, H. Preparation and characterization of cellulose composite hydrogels from tea residue and carbohydrate additives. Carbohydr. Polym. 2016, 147, 226–233. [Google Scholar] [CrossRef]
- Park, S.; Oh, Y.; Yun, J.; Yoo, E.; Jung, D.; Park, K.S.; Oh, K.K.; Lee, S.H. Characterization of blended cellulose/biopolymer films prepared using ionic liquid. Cellulose 2020, 27, 5101–5119. [Google Scholar] [CrossRef]
- Kim, M.H.; An, S.; Won, K.; Kim, H.J.; Lee, S.H. Entrapment of enzymes into cellulose–biopolymer composite hydrogel beads using biocompatible ionic liquid. J. Mol. Catal. B-Enzym. 2012, 75, 68–72. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.H.; Won, K.; Choi, J.W.; Kim, Y.H.; Kim, H.J.; Yang, Y.; Lee, S.H. Wood mimetic hydrogel beads for enzyme immobilization. Carbohydr. Polym. 2015, 115, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Kaneko, Y.; Kadokawa, J. Novel gelling systems of κ-, ι- and λ-carrageenans and their composite gels with cellulose using ionic liquid. Macromol. Biosci. 2009, 9, 376–382. [Google Scholar] [CrossRef]
- Idris, A.; Vijayaraghavan, R.; Rana, U.A.; Patti, A.F.; MacFarlane, D.R. Dissolution and regeneration of wool keratin in ionic liquids. Green Chem. 2014, 16, 2857–2864. [Google Scholar] [CrossRef]
- Simmons, T.J.; Lee, S.H.; Miao, J.; Miyauchi, M.; Park, T.; Bale, S.S.; Pangule, R.; Bult, J.; Martin, J.G.; Dordick, J.S.; et al. Preparation of synthetic wood composites using ionic liquids. Wood Sci. Technol. 2011, 45, 719–733. [Google Scholar] [CrossRef]
- Wang, J.; Wei, L.; Ma, Y.; Li, K.; Li, M.; Yu, Y.; Wang, L.; Qiu, H. Collagen cellulose hydrogel beads reconstituted from ionic liquid solution for Cu(II) adsorption. Carbohydr. Polym. 2013, 98, 736–743. [Google Scholar] [CrossRef]
- Silva, S.S.; Santos, T.C.; Cerqueira, M.T.; Marques, A.P.; Reys, L.L.; Silva, T.H.; Caridade, S.G.; Mano, J.F.; Reis, R.L. The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chem. 2012, 14, 1463–1470. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, D.; Song, X.; Zhao, Y.; Wang, Y.; Rao, L.; Fu, L.; Wang, Z.; Yang, X.; Li, Y.; et al. Recent progress of cellulose-based hydrogel photocatalysts and their applications. Gels 2022, 8, 270. [Google Scholar] [CrossRef] [PubMed]
- Amaly, N.; El-Moghazy, A.Y.; Nitin, N.; Sun, G.; Pandey, P.K. Synergistic adsorption-photocatalytic degradation of tetracycline by microcrystalline cellulose composite aerogel dopped with montmorillonite hosted methylene blue. Chem. Eng. J. 2022, 430, 133077. [Google Scholar] [CrossRef]
- Yue, Y.; Shen, S.; Cheng, W.; Han, G.; Wu, Q.; Jiang, J. Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128035. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Hu, Y.; Chen, A.; Zhou, L.; Gao, H.; Liu, Y.; Liu, S. Study on photocatalytic antibacterial and sustained-release properties of cellulose/TiO2/b-CD composite hydrogel. J. Nanomater. 2019, 2019, 2326042. [Google Scholar] [CrossRef]
- Jo, S.; Oh, Y.; Park, S.; Kan, E.; Lee, S.H. Cellulose/carrageenan/TiO2 nanocomposite for adsorption and photodegradation of cationic dye. Biotechnol. Bioprocess Eng. 2017, 22, 734–738. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Salleh, W.N.W.; Jaafar, J.; Ismail, A.F.; Mutalib, M.A.; Jamil, S.M. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst. Carbohydr. Polym. 2015, 133, 429–437. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, Z.; Wang, D.; Kang, J.; Qi, H. Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels. RSC Adv. 2020, 10, 23936. [Google Scholar] [CrossRef]
- Wittmar, A.S.M.; Fu, Q.; Ulbricht, M. Photocatalytic and magnetic porous cellulose macrospheres for water purification. Cellulose 2019, 26, 4563–4578. [Google Scholar] [CrossRef]
- Sun, X.; Wang, K.; Shu, Y.; Zou, F.; Zhang, B.; Sun, G.; Uyama, H.; Wang, X. One-pot route towards active TiO2 doped hierarchically porous cellulose: Highly efficient photocatalysts for methylene blue degradation. Materials 2017, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.-L.; Wang, M.-L.; Shi, S.-C.; Ren, J.-X.; Huang, H.-D.; Lin, W.; Li, Z.-M. In-situ constructing robust cellulose nanocomposite hydrogel network with well-dispersed dual catalysts for the efficient, stable and recyclable photo-Fenton degradation. Cellulose 2022, 29, 1929–1942. [Google Scholar] [CrossRef]
- Zheng, A.L.T.; Sabidi, S.; Ohno, T.; Maeda, T.; Andou, Y. Cu2O/TiO2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. Chemosphere 2022, 286, 131731. [Google Scholar] [CrossRef] [PubMed]
- Gennari, A.; Führ, A.J.; Volpato, G.; de Souza, C.F.V. Magnetic cellulose: Versatile support for enzyme immobilization-A Review. Carbohydr. Polym. 2020, 246, 116646. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Oh, Y.; Yun, J.; Yoo, E.; Jung, D.; Oh, K.K.; Lee, S.H. Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption. Cellulose 2020, 27, 2757–2773. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Li, B.; Jiang, Y.; Yu, G.; Mu, X. Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J. Mater. Chem. 2012, 22, 15085–15091. [Google Scholar] [CrossRef]
- Xue, F.; Chen, Q.; Li, Y.; Liu, E.; Li, D. Immobilized lysozyme onto 1,2,3,4-butanetetracarboxylic (BTCA)-modified magnetic cellulose microsphere for improving bio-catalytic stability and activities. Enzyme Microb. Technol. 2019, 131, 109425. [Google Scholar] [CrossRef]
- Ren, X.; Chen, C.; Nagatsu, M.; Wang, W. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011, 170, 395–410. [Google Scholar] [CrossRef]
- Lam, S.M.; Sin, J.C.; Abdullah, A.Z.; Mohamed, A.R. Photocatalytic TiO2/carbon nanotube nanocomposites for environmental applications: An overview and recent developments. Fuller. Nanotub. 2014, 22, 471–509. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, S.; Kim, S.H.; Kim, J.H.; Yu, H.; Kim, H.J.; Yang, Y.; Kan, E.; Kim, Y.H.; Lee, S.H. Biocompatible cellulose nanocrystals as supports to immobilize lipase. J. Mol. Catal. B-Enzym. 2015, 122, 170–178. [Google Scholar] [CrossRef]
- Fatimah, I.; Purwiandono, G.; Hidayat, A.; Sagadevan, S.; Kamari, A. Mechanistic insight into the adsorption and photocatalytic activity of a magnetically separable γ-Fe2O3/Montmorillonite nanocomposite for rhodamine B removal. Chem. Phys. Lett. 2022, 792, 139410. [Google Scholar] [CrossRef]
Biopolymers | Adsorption | Photodegradation | Dye Removal (%) a |
---|---|---|---|
qe (mg/g) a | k (×10−3/min) a | ||
Cellulose | 1.40 ± 0.06 | 1.17 ± 0.06 | 40.1 |
Cellulose/CNT | 6.79 ± 0.04 | 1.22 ± 0.13 | 41.6 |
Cellulose/Chitosan | 0.17 ± 0.07 | 1.05 ± 0.04 | 19.6 |
Cellulose/Carrageenan | 9.74 ± 0.06 | 0.98 ± 0.05 | 67.4 |
Biopolymers | Adsorption | Photodegradation | Dye Removal (%) a |
---|---|---|---|
qe (mg/g) a | k (×10−3/min) a | ||
Cellulose | 0.20 ± 0.05 | 1.85 ± 0.09 | 54.8 |
Cellulose/CNT | 1.63 ± 0.03 | 0.36 ± 0.11 | 38.6 |
Cellulose/Chitosan | 0.96 ± 0.15 | 1.40 ± 0.10 | 58.0 |
Cellulose/Carrageenan | 0.10 ± 0.05 | 1.70 ± 0.12 | 45.4 |
TiO2 (%):Fe2O3 (%) | Adsorption | Photodegradation | Dye Removal (%) a |
---|---|---|---|
qe (mg/g) a | k (×10−3/min) a | ||
0.5:0 | 6.41 ± 0.11 | 3.23 ± 0.31 | 95.0 |
0.5:0.1 | 3.85 ± 0.56 | 1.30 ± 0.22 | 56.0 |
0.5:0.5 | 1.62 ± 0.15 | 1.36 ± 0.07 | 47.7 |
0.5:0.75 | 2.90 ± 0.18 | 0.67 ± 0.10 | 34.8 |
0.5:1.0 | 7.84 ± 0.14 | 0.33 ± 0.03 | 59.3 |
TiO2 (%):Fe2O3 (%) | Mean Diameter (μm) | Adsorption | Photodegradation | Dye Removal (%) a | |
---|---|---|---|---|---|
qe (mg/g) a | k (×10−3/min) a | k/mg TiO2 (×10−3/min/mg) a | |||
0.5:0.5 | 22.3 ± 0.2 | 1.62 ± 0.15 | 1.36 ± 0.07 | 2.18 ± 0.11 | 47.7 |
2.0:0.5 | 25.9 ± 0.1 | 4.93 ± 0.21 | 1.49 ± 0.15 | 0.71 ± 0.07 | 66.8 |
3.5:0.5 | 34.6 ± 0.2 | 4.97 ± 0.42 | 2.18 ± 0.01 | 0.69 ± 0.00 | 77.4 |
5.0:0.5 | 37.7 ± 0.2 | 2.75 ± 0.29 | 1.88 ± 0.03 | 0.47 ± 0.01 | 59.5 |
7.0:0.5 | 52.6 ± 0.0 | 2.32 ± 0.20 | 1.23 ± 0.15 | 0.25 ± 0.03 | 48.1 |
Biopolymers | Adsorption | Photodegradation | Dye Removal (%) a |
---|---|---|---|
qe (mg/g) a | k (10−3/min) a | ||
Cellulose | 1.62 ± 0.15 | 1.36 ± 0.07 | 47.7 |
Cellulose/CNT | 10.34 ± 0.09 | 0.68 ± 0.04 | 65.4 |
Cellulose/Chitosan | 1.51 ± 0.13 | 0.26 ± 0.17 | 32.0 |
Cellulose/Carrageenan | 9.46 ± 0.06 | 0.53 ± 0.09 | 74.8 |
Biopolymers | Adsorption | Photodegradation | Dye Removal (%) a |
---|---|---|---|
qe (mg/g) a | k (10−3/min) a | ||
Cellulose | 0.57 ± 0.15 | 1.28 ± 0.07 | 42.6 |
Cellulose/CNT | 3.87 ± 0.12 | 0.62 ± 0.10 | 30.2 |
Cellulose/Chitosan | 2.55 ± 0.35 | 1.58 ± 0.05 | 57.3 |
Cellulose/Carrageenan | 0.10 ± 0.05 | 1.52 ± 0.10 | 48.3 |
Catalysts | Form | Dye (Concentration) | Time (h) | Dye Removal (%) | Ref. |
---|---|---|---|---|---|
Cellulose/TiO2 | Microbeads | MB (10 mg/L) | 6 | 95 | this study |
Cellulose/TiO2 | Microbeads | MO (10 mg/L) | 6 | 83 | this study |
Cellulose/TiO2 | Microbeads | RB (10 mg/L) | 6 | 85 | this study |
Cellulose/carrageenan/TiO2 | Hydrogel film | MB (60 mg/L) | 5 | 83 | [26] |
Cellulose/N-doped TiO2 | Hydrogel film | MB (40 mg/L) | 6 | 96 | [27] |
Cellulose/GO/TiO2 | Hydrogel film | MB (10 mg/L) | 2 | 93 | [28] |
Cellulose/TiO2/Fe3O4 | Macrospheres | RB (12 mg/L) | 1 | 24 | [29] |
Cellulose/TiO2 | Monolith | MB (12 mg/L) | 0.7 | 99 | [30] |
Cellulose/CMC/TiO2/Fe3O4 | Monolith | MB (20 mg/L) | 1 | 98 | [31] |
Cellulose/Cu2O/TiO2/rGO | Monolith | MO (20 mg/L) | 2 | 85 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weon, S.H.; Han, J.; Choi, Y.-K.; Park, S.; Lee, S.H. Development of Blended Biopolymer-Based Photocatalytic Hydrogel Beads for Adsorption and Photodegradation of Dyes. Gels 2023, 9, 630. https://doi.org/10.3390/gels9080630
Weon SH, Han J, Choi Y-K, Park S, Lee SH. Development of Blended Biopolymer-Based Photocatalytic Hydrogel Beads for Adsorption and Photodegradation of Dyes. Gels. 2023; 9(8):630. https://doi.org/10.3390/gels9080630
Chicago/Turabian StyleWeon, Seung Hyeon, Jiwoo Han, Yong-Keun Choi, Saerom Park, and Sang Hyun Lee. 2023. "Development of Blended Biopolymer-Based Photocatalytic Hydrogel Beads for Adsorption and Photodegradation of Dyes" Gels 9, no. 8: 630. https://doi.org/10.3390/gels9080630
APA StyleWeon, S. H., Han, J., Choi, Y. -K., Park, S., & Lee, S. H. (2023). Development of Blended Biopolymer-Based Photocatalytic Hydrogel Beads for Adsorption and Photodegradation of Dyes. Gels, 9(8), 630. https://doi.org/10.3390/gels9080630