Comparative Study of In Situ Gel Formulation Based on the Physico-Chemical Aspect: Systematic Review
Abstract
:1. Introduction
- pH-Triggered In Situ Gel
- pH sensitive polymers: Some polymers have pH sensitive properties, where they change from liquid to gel form when a change in pH occurs. For example, polymers such as polyacrylate, alginate, or methyl cellulose can form a gel when the pH of the solution reaches a certain threshold. Changes in pH can cause changes in the bonds between polymers, leading to gel formation.
- Changes in environmental pH: Some in situ gels can form gels in response to changes in environmental pH. For example, in the acidic environment of the stomach, in situ drug gels containing acidic polymers will experience a decrease in pH and form a gel, which allows the release of the drugs contained in them.
- Temperature-Triggered In Situ Gel
- Sol-gel transition: Some polymers can undergo sol-gel transition when temperature changes occur. At a certain temperature, polymers in liquid solution form a stable gel network. For example, poly(N-isopropyl acrylamide acid) (PNIPAAm) is one of the most commonly used polymers in temperature-sensitive in situ gel systems. PNIPAAm can form a gel at temperatures above a certain “gelling temperature” called the Critical Point of Solution (LCST).
- Gel formation by changes in ambient temperature: Some in situ gels can form when subjected to environmental temperature changes. For example, in injection applications, in situ gels may form when the polymer solution injected into the body experiences a temperature drop due to lower body temperature, thus forming a stable gel.
- Ion Activated In Situ Gel
- Formation of ionic bonds: Some polymers can form gels through the formation of ionic bonds with certain ions. For example, gelatin is a polymer often used in in situ gel systems, in which calcium ions are used to form stable cross-links between gelatin chains, thereby forming a strong gel.
- Control of viscosity by ions: The addition of certain ions to a polymer solution can affect the viscosity of the solution and aid in gel formation. For example, the addition of sodium or calcium ions to an alginate solution can increase viscosity and form a stable alginate [7].
2. Materials and Methods
3. Discussion
3.1. Temperature Triggered
3.2. pH Triggered
3.3. Ion Strength Triggered
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarada, K.; Firoz, S.; Padmini, K. In-situ gelling system. Int. J. Curr. Pharma Rev. Res. 2014, 15, 76–90. [Google Scholar]
- Kaur, P.; Garg, T.; Rath, G.; Goyal, A.K. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane. Artif. Cells Nanomed. Biotech. 2016, 44, 1167–1176. [Google Scholar] [CrossRef]
- Gupta, H.; Velpandian, T.; Jain, S. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery. J. Drug Target. 2010, 18, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Matanović, M.R.; Kristl, J.; Grabnar, P.A. Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int. J. Pharm. 2014, 472, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Israr, S.; Nesalin, J.; Mani, T.T. A novel approach of ophthalmic drug delivery: In situ gel. J. Pharm. Res. 2015, 4, 121–124. [Google Scholar]
- Amaliyar, P.R.; Chaudhary, S. In situ gel forming a novel approach for sustained ophthalmic drug delivery. Int. J. Pharm. Sci. Bio Sci. 2014, 3, 502–524. [Google Scholar]
- Rajoria, G.; Gupta, A. In situ gelling system: A novel approach for ocular drug delivery. Am. J. Pharmtech Res. 2012, 2, 2249–3387. [Google Scholar]
- Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Caramella, C.M.; Ferrari, F. Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics 2020, 12, 859. [Google Scholar] [CrossRef]
- Jain, D.; Kumar, V.; Singh, S.; Mullertz, A.; Shalom, D.B. Newer trends in in situ gelling systems for controlled ocular drug delivery. J. Anal. Pharm. Res. 2016, 2, 98–111. [Google Scholar] [CrossRef] [Green Version]
- Meshram, S.; Thorat, S. Ocular in Situ gels: Development, evaluation and advancements. Sch. Acad. J. Pharm. 2015, 4, 340–346. [Google Scholar]
- Kouchak, M. In Situ Gelling Systems for Drug Delivery. Jundishapur J. Nat. Pharm. Prod. 2014, 9, e20126. [Google Scholar] [CrossRef] [Green Version]
- Vijaya Rani, K.R.; Rajan, S.; Bhupathyraaj, M.; Priya, R.K.; Halligudi, N.; Al-Ghazali, M.A.; Sridhar, S.B.; Shareef, J.; Thomas, S.; Desai, S.M.; et al. The Effect of Polymers on Drug Release Kinetics in Nanoemulsion In Situ Gel Formulation. Polymers 2022, 14, 427. [Google Scholar] [CrossRef] [PubMed]
- Polat, H.K.; Unai, S. Development of In Situ Gel Formulation Containing Bisphosphonate-Loaded Plga Microspheres For Bone Regeneration In Maxillofacial Surgery Applications; Formulations, In Vitro Characterization And Release Kinetic Studies. J. Fac. Pharm. Ank. Univ. 2022, 46, 993–1008. [Google Scholar] [CrossRef]
- Gambhire, S.; Bhalerao, K.; Singh, S. In situ hydrogel: Different approaches to ocular drug delivery. Int. J. Pharm. Pharm. Sci. 2013, 5, 27–36. [Google Scholar]
- Saini, R.; Saini, S.; Singh, G.; Banerjee, A. In situ gels- a new trends in ophthalmic drug delivery systems. Int. J. Pharma Sci. Res. 2015, 6, 886–890. [Google Scholar]
- Lin, C.; Metters, A.T. Hydrogels in controlled release formulations: Network design and mathematical modelling. Adv. Drug Deliv. Rev. 2006, 58, 1379–1408. [Google Scholar] [CrossRef]
- Shen, T.; Yang, Z. In vivo and in vitro Evaluation of in situ Gel Formulation of Pemirolast Potassium in Allergic Conjunctivitis. Drug Des. Dev. Ther. 2021, 15, 2099–2107. [Google Scholar] [CrossRef]
- Balu, A.; Johnson, T.; Sundara, R.; Seetharaman, S. Optimization and Evaluation of Temperature Triggered in situ Gel Formulation using Design of Experiments (DoE) and HET-CAM Test. J. Nanomed. 2020, 3, 1031. [Google Scholar]
- Hussain, M. Temperature Triggered In-Situ Gelling System for Ocular Antiviral Drug. Int. J. Pharma Sci. Res. 2021, 12, 281–291. [Google Scholar]
- Kurniawansyah, I.S.; Rudiana, T.; Sopyan, I.; Ramoko, H.; Wahab, H.A.; Subarnas, A. In Situ Ophthalmic Gel Forming Systems of Poloxamer 407 and Hydroxypropyl Methyl Cellulose Mixtures for Sustained Ocular Delivery of Chloramphenicol: Optimization Study by Factorial Design. Heliyon 2020, 6, e05365. [Google Scholar] [CrossRef]
- MHRI. Indonesian Pharmacopeia, 5th ed.; Ministry of Health of the Republic of Indonesia: Jakarta, Indonesia, 2014. [Google Scholar]
- Kurniawansyah, I.S.; Sopyan, I.; Wardhana, Y.W.; Gunasekaran, M. Formulation and Evaluation of Chlorampenicol Hydrogel Optalmic Preparation. J. Young Pharm. 2018, 10, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Jain, N.; Gulati, N.; Nagaich, U. Nanoparticles laden in situ gelling system for ocular drug targeting. J. Adv. Pharm. Technol. Res. 2013, 4, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, H.; Jain, S.; Mathur, R.; Mishra, P.; Mishra, A.K.; Velpandian, T. Sustained Ocular Drug Delivery from a Temperature and pH Triggered Novel In Situ Gel System. Drug Deliv. 2008, 14, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Vyas, S.P. Carbopol/Chitosan Based pH Triggered In Situ Gelling System for Ocular Delivery of Timolol Maleate. Sci. Pharm. 2010, 78, 956–976. [Google Scholar] [CrossRef] [Green Version]
- Bharath, S.; Karuppaiah, A.; Siram, K.; Hariharan, S.; Santhanam, R.; Veintramuthu, S. Development and evaluation of a pH triggered in situ ocular gel of brimonidine tartrate. J. Res. Pharm. 2020, 24, 416–424. [Google Scholar] [CrossRef]
- Santhosh, S.S.; Marathon, S.; Nazeer, N.; Dharan, S.S. Formulation and Assessment of pH Triggered In Situ Ocular Gel using Selected Fluoroquinolone Antibiotic. Int. Pharm. Sci. Res. 2020, 12, 1262–1270. [Google Scholar]
- Zhu, L.; Ao, J.; Li, P. A novel in situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: In vitro and in vivo evaluation. Drug Des. Dev. Ther. 2015, 9, 3943–3949. [Google Scholar]
- Sun, J.; Zhou, J. A Novel ocular delivery of brinzolamide based on gellan gum: In vitro and in vivo evaluation. Drug Des. Dev. Ther. 2018, 12, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.N.; Srinivasa, U. Design and Evaluation of Ion Activated In Situ Ophthalmic Gel of Moxifloxacin Hydrochloride and Ketorolac Tromethamine Combination using Carboxymethylated Tamarind Kernel Powder. Saudi J. Med. Phar Sci. 2017, 3, 1–8. [Google Scholar]
- Calfors, J.; Edsman, K.; Petersson, R.; Jornving, K. Rheological Evaluation of Gelrite® In Situ Gels for Ophthalmic Use. Eur. J. Pharm. Sci. 1998, 6, 113–119. [Google Scholar] [CrossRef]
- Deasy, P.B.; Quigley, K.J. Rheological Evaluation of Deacetylated Gellan Gum (Gerlite) for Pharmaceutical Use. Int. J. Pharm. 1991, 73, 117–123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurniawansyah, I.S.; Rusdiana, T.; Sopyan, I.; Desy Arya, I.F.; Wahab, H.A.; Nurzanah, D. Comparative Study of In Situ Gel Formulation Based on the Physico-Chemical Aspect: Systematic Review. Gels 2023, 9, 645. https://doi.org/10.3390/gels9080645
Kurniawansyah IS, Rusdiana T, Sopyan I, Desy Arya IF, Wahab HA, Nurzanah D. Comparative Study of In Situ Gel Formulation Based on the Physico-Chemical Aspect: Systematic Review. Gels. 2023; 9(8):645. https://doi.org/10.3390/gels9080645
Chicago/Turabian StyleKurniawansyah, Insan Sunan, Taofik Rusdiana, Iyan Sopyan, Insi Farisa Desy Arya, Habibah A. Wahab, and Dela Nurzanah. 2023. "Comparative Study of In Situ Gel Formulation Based on the Physico-Chemical Aspect: Systematic Review" Gels 9, no. 8: 645. https://doi.org/10.3390/gels9080645
APA StyleKurniawansyah, I. S., Rusdiana, T., Sopyan, I., Desy Arya, I. F., Wahab, H. A., & Nurzanah, D. (2023). Comparative Study of In Situ Gel Formulation Based on the Physico-Chemical Aspect: Systematic Review. Gels, 9(8), 645. https://doi.org/10.3390/gels9080645