Numerical Investigation of Concave-to-Convex Blade Profile Transformation in Vertical Axis Wind Turbines for Enhanced Performance Under Low Reynolds Number Conditions
Abstract
1. Introduction
2. Research Methodology
2.1. Geometric Parametrization and Blade Configuration Strategy
2.2. Meshing and Domain Construction
2.3. Boundary Conditions and Operating Parameters
2.4. Parametric Sweep Implementation
2.5. Frozen Rotor Model
2.6. Consistency and Numerical Stability of the Solution
2.7. Numerical Solver Settings and Validation
3. Numerical Investigation
3.1. Velocity Field and Wake Structure
3.2. Pressure Field Analysis
3.3. Vorticity and Rotational Performance
4. Results and Discussion
4.1. Aerodynamic Performance of Blade Configurations
4.2. Power Coefficient and Torque Coefficient Analysis
4.3. Flow Field and Pressure Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VAWT | Vertical Axis Wind Turbine |
HAWT | Horizontal Axis Wind Turbine |
CFD | Computational Fluid Dynamics |
Re | Reynolds Number |
Cl/Cd | Lift-to-Drag Ratio |
Cp | Power Coefficient |
Ct | Torque Coefficient |
TSR | Tip Speed Ratio |
RD | Transformation Depth |
CoP | Pressure Coefficient |
URANS | Unsteady Reynolds-Averaged Navier–Stokes |
SST | Shear Stress Transport |
References
- Arunvinthan, S.; Nadaraja Pillai, S.; Cao, S. Aerodynamic characteristics of variously modified leading-edge protuberanced (LEP) wind turbine blades under various turbulent intensities. J. Wind Eng. Ind. Aerodyn. 2020, 202, 104188. [Google Scholar] [CrossRef]
- Mohamed, O.S.; Ibrahim, A.A.; Etman, A.K.; Abdelfatah, A.A.; Elbaz, A.M.R. Numerical investigation of Darrieus wind turbine with slotted airfoil blades. Energy Convers. Manag. X 2020, 5, 100026. [Google Scholar] [CrossRef]
- Su, J.; Chen, Y.; Han, Z.; Zhou, D.; Bao, Y.; Zhao, Y. Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines. Appl. Energy 2020, 260, 114326. [Google Scholar] [CrossRef]
- Chrysochoidis-Antsos, N.; Amoros, A.V.; van Bussel, G.J.W.; Mertens, S.M.; van Wijk, A.J.M. Wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers—An experimental study. J. Wind Eng. Ind. Aerodyn. 2020, 203, 104206. [Google Scholar] [CrossRef]
- Siddiqui, M.S.; Khalid, M.H.; Zahoor, R.; Butt, F.S.; Saeed, M.; Badar, A.W. A numerical investigation to analyze effect of turbulence and ground clearance on the performance of a roof top vertical–axis wind turbine. Renew. Energy 2021, 164, 978–989. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Li, Y.; Chang, M.; Xu, J. Aerodynamic performance of a low-Reynolds UAV with leading-edge protuberances inspired by humpback whale flippers. Chin. J. Aeronaut. 2021, 34, 415–424. [Google Scholar] [CrossRef]
- Yan, Y.; Avital, E.; Williams, J.; Cui, J. Aerodynamic performance improvements of a vertical axis wind turbine by leading-edge protuberance. J. Wind Eng. Ind. Aerodyn. 2021, 211, 104535. [Google Scholar] [CrossRef]
- Chen, W.H.; Ocreto, J.B.; Wang, J.S.; Hoang, A.T.; Liou, J.H.; Hwang, C.J.; Chong, W.T. Two-stage optimization of three and four straight-bladed vertical axis wind turbines (SB-VAWT) based on Taguchi approach. E Prime Adv. Electr. Eng. Electron. Energy 2021, 1, 100025. [Google Scholar] [CrossRef]
- Tirandaz, M.R.; Rezaeiha, A. Effect of airfoil shape on power performance of vertical axis wind turbines in dynamic stall: Symmetric Airfoils. Renew. Energy 2021, 173, 422–441. [Google Scholar] [CrossRef]
- Hansen, J.T.; Mahak, M.; Tzanakis, I. Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approach. Renew. Energy 2021, 171, 1371–1381. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Balduzzi, F.; Goude, A. Effect of pitch angle on power and hydrodynamics of a vertical axis turbine. Ocean Eng. 2021, 238, 109335. [Google Scholar] [CrossRef]
- Francis, M.F.; Ajayi, O.O.; Ojo, J.O. Development of a novel airfoil for low wind speed vertical axis wind turbine using QBlade simulation tool. Fuel Commun. 2021, 9, 100028. [Google Scholar] [CrossRef]
- Kumar, S.; Narayanan, S. Airfoil thickness effects on flow and acoustic characteristics. Alexandria Eng. J. 2022, 61, 4679–4699. [Google Scholar] [CrossRef]
- Lu, B.; Zanj, A. Development of an integrated system design tool for helical Vertical Axis Wind Turbines (VAWT-X). Energy Rep. 2022, 8, 8499–8510. [Google Scholar] [CrossRef]
- Tian, W.; Bian, J.; Yang, G.; Ni, X.; Mao, Z. Influence of a passive upstream deflector on the performance of the Savonius wind turbine. Energy Rep. 2022, 8, 7488–7499. [Google Scholar] [CrossRef]
- Santamaría, L.; Argüelles Díaz, K.M.; Galdo Vega, M.; González Pérez, J.; Velarde-Suárez, S.; Fernández Oro, J.M. Performance assessment of vertical axis wind turbines (VAWT) through control volume theory. Sustain. Energy Technol. Assess. 2022, 54, 102811. [Google Scholar] [CrossRef]
- Gonçalves, A.N.C.; Pereira, J.M.C.; Sousa, J.M.M. Passive control of dynamic stall in a H-Darrieus Vertical Axis Wind Turbine using blade leading-edge protuberances. Appl. Energy 2022, 324, 119700. [Google Scholar] [CrossRef]
- Santamaría, L.; Fernández Oro, J.M.; Argüelles Díaz, K.M.; Meana-Fernández, A.; Pereiras, B.; Velarde-Suárez, S. Novel methodology for performance characterization of vertical axis wind turbines (VAWT) prototypes through active driving mode. Energy Convers. Manag. 2022, 258, 115530. [Google Scholar] [CrossRef]
- Elsakka, M.M.; Ingham, D.B.; Ma, L.; Pourkashanian, M.; Moustafa, G.H.; Elhenawy, Y. Response Surface Optimisation of Vertical Axis Wind Turbine at low wind speeds. Energy Rep. 2022, 8, 10868–10880. [Google Scholar] [CrossRef]
- Teksin, S.; Azginoglu, N.; Akansu, S.O. Structure estimation of vertical axis wind turbine using artificial neural network. Alexandria Eng. J. 2022, 61, 305–314. [Google Scholar] [CrossRef]
- Botero, N.; Ratkovich, N.; Lain, S.; Lopez Mejia, O.D. Synthetic jets as a flow control device for performance enhancement of vertical axis hydrokinetic turbines: A 3D computational study. Heliyon 2022, 8, e10017. [Google Scholar] [CrossRef] [PubMed]
- Maalouly, M.; Souaiby, M.; ElCheikh, A.; Issa, J.S.; Elkhoury, M. Transient analysis of H-type Vertical Axis Wind Turbines using CFD. Energy Rep. 2022, 8, 4570–4588. [Google Scholar] [CrossRef]
- Jooss, Y.; Rønning, E.B.; Hearst, R.J.; Bracchi, T. Influence of position and wind direction on the performance of a roof mounted vertical axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2022, 230, 105177. [Google Scholar] [CrossRef]
- Venkatesan, S.P.; Venkatesh, S.; Kumar, M.S.; Selvan, S.; Sai, Y. Analysis of the blade profile of the Savonius wind turbine using computational fluid dynamics. Int. J. Ambient Energy 2022, 43, 142–148. [Google Scholar] [CrossRef]
- Eltayesh, A.; Castellani, F.; Natili, F.; Burlando, M.; Khedr, A. Aerodynamic upgrades of a Darrieus vertical axis small wind turbine. Energy Sustain. Dev. 2023, 73, 126–143. [Google Scholar] [CrossRef]
- Hamid, H.; Abd El Maksoud, R.M. A comparative examination of the aerodynamic performance of various seashell-shaped wind turbines. Heliyon 2023, 9, e17036. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, P.; Najafi, G.; Ghobadian, B.; Jafari, A.; Mamat, R.; Ghazali, M.F. CFD-Study of the H-Rotor Darrius wind turbine performance in Drag-Lift and lift Regime: Impact of Type, thickness and chord length of blades. Alexandria Eng. J. 2023, 67, 51–64. [Google Scholar] [CrossRef]
- Geng, F.; Suiker, A.S.J.; Rezaeiha, A.; Montazeri, H.; Blocken, B. A computational framework for the life-time prediction of vertical-axis wind turbines: CFD simulations and high-cycle fatigue modeling. Int. J. Solids Struct. 2023, 284, 112504. [Google Scholar] [CrossRef]
- Zidane, I.F.; Ali, H.M.; Swadener, G.; Eldrainy, Y.A.; Shehata, A.I. Effect of upstream deflector utilization on H-Darrieus wind turbine performance: An optimization study. Alexandria Eng. J. 2023, 63, 175–189. [Google Scholar] [CrossRef]
- Yosry, A.G.; Álvarez, E.Á.; Valdés, R.E.; Pandal, A.; Marigorta, E.B. Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations. Renew. Energy 2023, 203, 788–801. [Google Scholar] [CrossRef]
- Benmoussa, A.; Páscoa, J.C. Enhancement of a cycloidal self-pitch vertical axis wind turbine performance through DBD plasma actuators at low tip speed ratio. Int. J. Thermofluids 2023, 17, 100258. [Google Scholar] [CrossRef]
- Anggara, B.; Tjahjana, D.D.D.P.; Budiana, E. Numerical Study of Effect of High Efficiency Vortex Addition on Darrieus H Rotor Wind Turbine Performance. Procedia Struct. Integr. 2023, 47, 675–684. [Google Scholar] [CrossRef]
- Gemayel, D.; Abdelwahab, M.; Ghazal, T.; Aboshosha, H. Modelling of vertical axis wind turbine using large eddy simulations. Results Eng. 2023, 18, 101226. [Google Scholar] [CrossRef]
- Rizk, M.; Nasr, K. Computational fluid dynamics investigations over conventional and modified Savonius wind turbines. Heliyon 2023, 9, e16876. [Google Scholar] [CrossRef]
- Shubham, S.; Naik, K.; Sachar, S.; Ianakiev, A. Performance analysis of low Reynolds number vertical axis wind turbines using low-fidelity and mid-fidelity methods and wind conditions in the city of Nottingham. Energy 2023, 279, 127904. [Google Scholar] [CrossRef]
- Singh, E.; Roy, S.; Yam, K.S.; Law, M.C. Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions. Energy 2023, 277, 127739. [Google Scholar] [CrossRef]
- Abdolahifar, A.; Azizi, M.; Zanj, A. Flow structure and performance analysis of Darrieus vertical axis turbines with swept blades: A critical case study on V-shaped blades. Ocean Eng. 2023, 280, 114857. [Google Scholar] [CrossRef]
- Ogrodnik, N.; Sudasinghe, A.; Heiber, E.; abo el Ella, H.; Fereidooni, A.; Matida, E.; Kaya, T. Pseudo three-dimensional numerical investigation of legacy vertical axis wind turbine configurations. Energy Convers. Manag. X 2023, 17, 100338. [Google Scholar] [CrossRef]
- Marzec, L.; Buliński, Z.; Krysiński, T.; Tumidajski, J. Structural optimisation of H-Rotor wind turbine blade based on one-way Fluid Structure Interaction approach. Renew. Energy 2023, 216, 118957. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Feng, F.; Tagawa, K. A review on numerical simulation based on CFD technology of aerodynamic characteristics of straight-bladed vertical axis wind turbines. Energy Rep. 2023, 9, 4360–4379. [Google Scholar] [CrossRef]
- Al Noman, A.; Tasneem, Z.; Abhi, S.H.; Badal, F.R.; Rafsanzane, M.; Islam, M.R.; Alam, F. Savonius wind turbine blade design and performance evaluation using ANN-based virtual clone: A new approach. Heliyon 2023, 9, e15672. [Google Scholar] [CrossRef]
- Seifi Davari, H.; Botez, R.M.; Seify Davari, M.; Chowdhury, H.; Hosseinzadeh, H. Blade height impact on self-starting torque for Darrieus vertical axis wind turbines. Energy Convers. Manag. X 2024, 24, 100814. [Google Scholar] [CrossRef]
- Eltayeb, W.A.; Somlal, J. Performance enhancement of Darrieus wind turbines using Plain Flap and Gurney Flap configurations: A CFD analysis. Results Eng. 2024, 24, 103400. [Google Scholar] [CrossRef]
- Eboibi, O.; Eboibi, B.E.O.; Danao, L.A.M. Solidity effects and azimuth angles on flow field aerodynamics and performance of vertical axis wind turbines at low Reynolds number. Sci. Afr. 2024, 24, e02215. [Google Scholar] [CrossRef]
- Campos Rubio, C.V.; Kchaou, M.; de Faria, P.E.; Campos Rubio, J.C.; Alqurashi, F. Development of wind turbines for urban environment using innovative design thinking methodology. J. Eng. Res. 2024. [Google Scholar] [CrossRef]
- Silva, P.A.S.F.; Tsoutsanis, P.; Vaz, J.R.P.; Macias, M.M. A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver. Energy 2024, 294, 130929. [Google Scholar] [CrossRef]
- Iddou, H.; Bouda, N.N.; Zereg, K. Computational fluid dynamics study on the efficiency of straight-bladed vertical axis wind turbine. Int. J. Thermofluids 2024, 22, 100672. [Google Scholar] [CrossRef]
- Seifi Davari, H.; Botez, R.M.; Seify Davari, M.; Chowdhury, H.; Hosseinzadeh, H. Numerical and experimental investigation of Darrieus vertical axis wind turbines to enhance self-starting at low wind speeds. Results Eng. 2024, 24, 103240. [Google Scholar] [CrossRef]
- Jebelli, A.; Lotfi, N.; Zare, M.S.; Yagoub, M.C.E. A comprehensive review of effective parameters to improve the performance of the Savonius turbine using a computational model and comparison with practical results. Water Energy Nexus 2024, 7, 266–274. [Google Scholar] [CrossRef]
- Javaid, M.T.; ul Hassan, S.S. Power performance optimization of twin vertical axis wind turbine for farm applications. Wind Energy Eng. Res. 2024, 2, 100005. [Google Scholar] [CrossRef]
- Sanaye, S.; Farvizi, A. Optimizing a vertical axis wind turbine with helical blades: Application of 3D CFD and Taguchi method. Energy Rep. 2024, 12, 2527–2547. [Google Scholar] [CrossRef]
- Fatahian, E.; Mishra, R.; Jackson, F.F.; Fatahian, H. Optimization and analysis of self-starting capabilities of vertical axis wind turbine pairs: A CFD-Taguchi approach. Ocean Eng. 2024, 302, 117614. [Google Scholar] [CrossRef]
- Teklemariyem, D.A.; Yimer, E.T.; Ancha, V.R.; Zeru, B.A. Parametric study of an empty diffuser geometric parameters and shape for a wind turbine using CFD analysis. Heliyon 2024, 10, e26782. [Google Scholar] [CrossRef]
- Redchyts, D.; Fernandez-Gamiz, U.; Tarasov, S.; Portal-Porras, K.; Tarasov, A.; Moiseienko, S. Comparison of aerodynamics of vertical-axis wind turbine with single and combine Darrieus and Savonius rotors. Results Eng. 2024, 24, 103202. [Google Scholar] [CrossRef]
- Chen, W.H.; Wang, Y.S.; Chang, M.H.; Show, P.L.; Hoang, A.T. Operation parameter interaction and optimization of vertical axis wind turbine analyzed by Taguchi method with modified additive model and ANOVA. Energy Rep. 2024, 11, 5189–5200. [Google Scholar] [CrossRef]
- Vahidi, D.; Porté-Agel, F. Potential of Wake Scaling Techniques for Vertical-Axis Wind Turbine Wake Prediction. Energies 2024, 17, 4527. [Google Scholar] [CrossRef]
- Abdolahifar, A.; Zanj, A. Addressing VAWT Aerodynamic Challenges as the Key to Unlocking Their Potential in the Wind Energy Sector. Energies 2024, 17, 5052. [Google Scholar] [CrossRef]
- Asim, T.; Osame, P. Startup Dynamics of Drag-Based Multibladed Vertical Axis Wind Turbine. Eng. Proc. 2024, 71, 1005. [Google Scholar] [CrossRef]
- Michna, J.; Rogowski, K. A Refined Approach for Angle of Attack Estimation and Dynamic Force Hysteresis in H-Type Darrieus Wind Turbines. Energies 2024, 17, 6264. [Google Scholar] [CrossRef]
- El Maani, R.; Radi, B.; El Hami, A. Numerical Study and Optimization-Based Sensitivity Analysis of a Vertical-Axis Wind Turbine. Energies 2024, 17, 6300. [Google Scholar] [CrossRef]
- Ghafoorian, F.; Enayati, E.; Mirmotahari, S.R.; Wan, H. Self-Starting Improvement and Performance Enhancement in Darrieus VAWTs Using Auxiliary Blades and Deflectors. Machines 2024, 12, 0806. [Google Scholar] [CrossRef]
- Bang, C.S.; Rana, Z.A.; Prince, S.A. CFD Analysis on Novel Vertical Axis Wind Turbine (VAWT). Machines 2024, 12, 800. [Google Scholar] [CrossRef]
- Mălăel, I.; Strătilă, S. High-Precision Numerical Investigation of a VAWT Starting Process. Processes 2024, 12, 2263. [Google Scholar] [CrossRef]
- Aboujaoude, H.; Polidori, G.; Beaumont, F.; Murer, S.; Toumi, Y.; Bogard, F. Comparative Study of Deflector Configurations under Variable Vertical Angle of Incidence and Wind Speed through Transient 3D CFD Modeling of Savonius Turbine. Computation 2024, 12, 204. [Google Scholar] [CrossRef]
- Altan, G.; Altan, B.D. Effect of Blade Gap Ratio on Turbine Performance in Drag-Based Vertical-Axis Wind Turbines. Processes 2024, 12, 2215. [Google Scholar] [CrossRef]
- Cacciali, L.; Hansen, M.O.L.; Rogowski, K. Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines. Energies 2024, 17, 4847. [Google Scholar] [CrossRef]
- Yue, N.; Yang, C.; Li, S. The Influence of Reduced Frequency on H-VAWT Aerodynamic Performance and Flow Field Near Blades. Energies 2024, 17, 4760. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, Y.; Qian, Z.; Wang, J.; Zhu, Y.; Yang, Y.; Wang, Y.; Wu, G. Research on Aerodynamic Performance of Asynchronous-Hybrid Dual-Rotor Vertical-Axis Wind Turbines. Energies 2024, 17, 4424. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y.; Qian, Z.; Wang, J.; Zhu, Y.; Chen, X.; Zhang, W.; Wang, Y.; Wu, G.; Chen, S. A Study on the Effect of Turbulence Intensity on Dual Vertical-Axis Wind Turbine Aerodynamic Performance. Energies 2024, 17, 4124. [Google Scholar] [CrossRef]
- Hammad, M.A.; Mahmoud, A.M.; Abdelrhman, A.M.; Sarip, S. Performance Enhancement of H-Type Darrieus VAWT Using a Hybrid Method of Blade Pitch Angle Regulation. Energies 2024, 17, 4044. [Google Scholar] [CrossRef]
- Chitura, A.G.; Mukumba, P.; Lethole, N. Enhancing the Performance of Savonius Wind Turbines: A Review of Advances Using Multiple Parameters. Energies 2024, 17, 3708. [Google Scholar] [CrossRef]
- Escudero Romero, A.; Blasetti, A.P.; Acosta-López, J.G.; Gómez-García, M.Á.; de Lasa, H. Vorticity and Its Relationship to Vortex Separation, Dynamic Stall, and Performance, in an H-Darrieus Vertical-Axis Wind Turbine Using CFD Simulations. Processes 2024, 12, 1556. [Google Scholar] [CrossRef]
- Gurusamy, M.K.; P M, D.M.; R R, R.; S, V. Numerical simulation and optimization of sweep angle and depth variation studies for enhanced performance of Savonius turbine. J. Mech. Eng. Autom. Control Syst. 2025. [Google Scholar] [CrossRef]
- Oliveira, T.D.; Tofaneli, L.A.; Santos, A.Á.B. Aerodynamic optimization of small diffuser Augmented Wind Turbines: A differential evolution approach. Energy Convers. Manag. X 2025, 26, 100891. [Google Scholar] [CrossRef]
- Arrieta-Gomez, M.; Vélez-García, S.; Hincapié Zuluaga, D.; Tejada, J.C.; Sanin-Villa, D. Efficiency optimization of a hybrid Savonius-Darrieus hydrokinetic turbine via regression modeling and CFD-based design of experiments. Results Eng. 2025, 27, 105751. [Google Scholar] [CrossRef]
- Gupta, A.; Ali, U.; Abderrahmane, H.A.; Janajreh, I. Blade pitching in vertical axis wind turbines: A double multiple stream tube theoretical approach to performance enhancement. Heliyon 2025, 11, e42101. [Google Scholar] [CrossRef] [PubMed]
- Ghafoorian, F.; Mirmotahari, S.R.; Eydizadeh, M.; Mehrpooya, M. A systematic investigation on the hybrid Darrieus-Savonius vertical axis wind turbine aerodynamic performance and self-starting capability improvement by installing a curtain. Next Energy 2025, 6, 100203. [Google Scholar] [CrossRef]
- Liu, Q.; Bashir, M.; Huang, H.; Miao, W.; Xu, Z.; Yue, M.; Li, C. Nature-inspired innovative platform designs for optimized performance of Floating vertical Axis wind turbines. Appl. Energy 2025, 380, 125120. [Google Scholar] [CrossRef]
- Mohamed, O.S.; Melani, P.F.; Soraperra, G.; Brighenti, A.; Ferrara, G.; Betti, V.; Balduzzi, F.; Bianchini, A. Development of a computationally efficient CFD model for vertical-axis hydrokinetic turbines: A critical assessment. Ocean Eng. 2025, 324, 120692. [Google Scholar] [CrossRef]
- Rusli, C.C.; Kong, K.K.; Khoo, S.Y.; Long, S.X.; Chong, W.T. Performance enhancement of cross-axis-wind-turbine: Design and CFD analysis of an omni-directional flow concentrator. Alexandria Eng. J. 2025, 127, 500–521. [Google Scholar] [CrossRef]
- Nugraha, A.D.; Garingging, R.A.; Wiranata, A.; Sitanggang, A.C.; Supriyanto, E.; Tanbar, F.; Muflikhun, M.A. Comparison of ‘Rose, Aeroleaf, and Tulip’ vertical axis wind turbines (VAWTs) and their characteristics for alternative electricity generation in urban and rural areas. Results Eng. 2025, 25, 103885. [Google Scholar] [CrossRef]
- Rogowski, K.; Michna, J.; Mikkelsen, R.F.; Ferreira, C.S. Impact of zigzag tape on blade loads and aerodynamic wake in a vertical axis wind turbine: A Delft VAWT case study. Energy 2025, 321, 135344. [Google Scholar] [CrossRef]
- Abdolahifar, A.; Montazeri, H.; Zanj, A. Towards enhanced startup performance of Darrieus vertical-axis wind turbines: Key flow features at moderate tip speed ratios. Renew. Energy 2025, 256, 123778. [Google Scholar] [CrossRef]
- Sridhar, S. Performance enhancement of Ducted Wind Turbines under yawed flow using optimized tubercled ducts: An investigative study. Energy Convers. Manag. 2025, 333, 119764. [Google Scholar] [CrossRef]
- Shen, W.; Xie, T.; Ge, L.; Yin, J.; Sun, Z. Determination of angle of attack and dynamic stall loop in the complex vortical flow of a vertical axis wind turbine. Theor. Appl. Mech. Lett. 2025, 15, 100560. [Google Scholar] [CrossRef]
- Priyadumkol, J.; Muangput, B.; Namchanthra, S.; Zin, T.; Phengpom, T.; Chookaew, W.; Suvanjumrat, C.; Promtong, M. CFD modelling of vertical-axis wind turbines using transient dynamic mesh towards lateral vortices capturing and Strouhal number. Energy Convers. Manag. X 2025, 26, 101022. [Google Scholar] [CrossRef]
- Kalassov, N.; Baizhuma, Z.; Manatbayev, R.; Yershina, A.; Isataev, M.; Kalassova, A.; Seidulla, Z.; Bektibay, B.; Amir, B. Integrated Approach to Aerodynamic Optimization of Darrieus Wind Turbine Based on the Taguchi Method and Computational Fluid Dynamics (CFD). Appl. Sci. 2025, 15, 5739. [Google Scholar] [CrossRef]
- Leithead, W.E.; Amiri, A.M.K.; Camciuc, A.; Morgan, L.; Carroll, J.; Feuchtwang, J. X-Rotor, an Innovative Offshore Wind Turbine to Reduce Cost of Energy. Energies 2025, 18, 2549. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, G.; Li, Q. Effects of a J-Shaped Blade on the Performance of a Vertical-Axis Wind Turbine Using the Improved Delayed Detached Eddy Simulation Method. Machines 2025, 13, 403. [Google Scholar] [CrossRef]
- Ghafoorian, F.; Hosseini Rad, S.; Moghimi, M. Enhancing Self-Starting Capability and Efficiency of Hybrid Darrieus–Savonius Vertical Axis Wind Turbines with a Dual-Shaft Configuration. Machines 2025, 13, 87. [Google Scholar] [CrossRef]
- Asim, T.; Amber, I.; Singh, D.; Siddiqui, M.S. Numerical Investigations on the Effects of Inertia on the Startup Dynamics of a Multibladed Savonius Wind Turbine. Energies 2025, 18, 1638. [Google Scholar] [CrossRef]
- Ridho, M.H.; Prabowo. Validate CFD Simulation of H-Darrieus Vertical Axis Wind Turbine (VAWT) with Experimental Data. Eng. Proc. 2025, 84, 53. [Google Scholar] [CrossRef]
- Elbeji, T.; Ben Amira, W.; Souaissa, K.; Ghiss, M.; Bentaher, H.; Ben Fredj, N. Three-Dimensional Aeroelastic Investigation of a Novel Convex Bladed H-Darrieus Wind Turbine Based on a Two-Way Coupled Computational Fluid Dynamics and Finite Element Analysis Approach. Fluids 2025, 10, 17. [Google Scholar] [CrossRef]
- Nunez, E.E.; García González, D.; López, O.D.; Casas Rodríguez, J.P.; Laín, S. Fluid–Structure Interaction of a Darrieus-Type Hydrokinetic Turbine Modified with Winglets. J. Mar. Sci. Eng. 2025, 13, 548. [Google Scholar] [CrossRef]
- Hara, Y.; Moral, M.S.; Ide, A.; Jodai, Y. Fast Simulation of the Flow Field in a VAWT Wind Farm Using the Numerical Data Obtained by CFD Analysis for a Single Rotor. Energies 2025, 18, 220. [Google Scholar] [CrossRef]
- Moreno, M.; Trejo-Zúñiga, I.; Terrazas, J.; Díaz-Ponce, A.; Pérez-Terrazo, A. Hybridization of a Micro-Scale Savonius Rotor Using a Helical Darrieus Rotor. Fluids 2025, 10, 63. [Google Scholar] [CrossRef]
- Lisowski, F.; Augustyn, M. Analytical and Computational Fluid Dynamics Methods for Determining the Torque and Power of a Vertical-Axis Wind Turbine with a Carousel Rotor. Appl. Sci. 2025, 15, 208. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z. Airfoil Optimization Design of Vertical-Axis Wind Turbine Based on Kriging Surrogate Model and MIGA. Energies 2025, 18, 927. [Google Scholar] [CrossRef]
- Ghafoorian, F.; Wan, H. Impact of Passive Modifications on the Efficiency of Darrieus Vertical Axis Wind Turbines Utilizing the Kline-Fogleman Blade Design at the Trailing Edge. Energies 2025, 18, 718. [Google Scholar] [CrossRef]
- Fazylova, A.; Alipbayev, K.; Iliev, T.; Kaliyeva, N. Adaptive Control of the Aerodynamic Flaps of the Savonius Rotor Under Variable Wind Loads. Appl. Sci. 2025, 15, 6096. [Google Scholar] [CrossRef]
- Chen, S.; Song, C.; Qian, Z.; Wu, A.; Zhu, Y.; Xia, J.; Wang, J.; Yang, Y.; Chen, X.; Yuan, Y.; et al. Improvement of Modified Rotor on Aerodynamic Performance of Hybrid Vertical Axis Wind Turbine. Energies 2025, 18, 3357. [Google Scholar] [CrossRef]
- Ali, S.; Park, H.; Lee, D. Structural Optimization of Vertical Axis Wind Turbine (VAWT): A Multi-Variable Study for Enhanced Deflection and Fatigue Performance. J. Mar. Sci. Eng. 2025, 13, 19. [Google Scholar] [CrossRef]
Mesh Type | Number of Elements | Cl/Cd |
---|---|---|
Extremely Coarse | 5775 | 9.7436 |
Extra Coarse | 7197 | 7.6576 |
Coarser | 15,133 | 5.7249 |
Coarse | 47,258 | 4.2408 |
Normal | 137,057 | 1.8834 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramanian, V.; Ponnappa, V.S.; Gurusamy, M.K.; Karthikeyan, K.R. Numerical Investigation of Concave-to-Convex Blade Profile Transformation in Vertical Axis Wind Turbines for Enhanced Performance Under Low Reynolds Number Conditions. Fluids 2025, 10, 221. https://doi.org/10.3390/fluids10090221
Subramanian V, Ponnappa VS, Gurusamy MK, Karthikeyan KR. Numerical Investigation of Concave-to-Convex Blade Profile Transformation in Vertical Axis Wind Turbines for Enhanced Performance Under Low Reynolds Number Conditions. Fluids. 2025; 10(9):221. https://doi.org/10.3390/fluids10090221
Chicago/Turabian StyleSubramanian, Venkatesh, Venkatesan Sorakka Ponnappa, Madhan Kumar Gurusamy, and Kadhavoor R. Karthikeyan. 2025. "Numerical Investigation of Concave-to-Convex Blade Profile Transformation in Vertical Axis Wind Turbines for Enhanced Performance Under Low Reynolds Number Conditions" Fluids 10, no. 9: 221. https://doi.org/10.3390/fluids10090221
APA StyleSubramanian, V., Ponnappa, V. S., Gurusamy, M. K., & Karthikeyan, K. R. (2025). Numerical Investigation of Concave-to-Convex Blade Profile Transformation in Vertical Axis Wind Turbines for Enhanced Performance Under Low Reynolds Number Conditions. Fluids, 10(9), 221. https://doi.org/10.3390/fluids10090221