Compressing Magnetic Fields by the Electromagnetic Implosion of a Hollow Lithium Cylinder: Experimental Test Beds Simulated with OpenFOAM
Abstract
1. Introduction
2. Methodology
2.1. Governing Equations
2.2. Modelling Electromagnetic Coils in OpenFOAM
2.2.1. Implementation of the Electromagnetic Coils Model
2.2.2. Verification of the Electromagnetic Coils Model
2.3. Modelling the External RLC Circuit in OpenFOAM
2.3.1. Implementation of the External RLC Circuit Model
- At the beginning of the simulation, calculate the value in Equation (14) using the vector field (Equation (13), Figure 5). At , set the initial poloidal flux distribution in the domain to (including at the coil), current , full flux , and the capacitor charge based on the initial capacitor voltage .
- 2.
- 3.
- 4.
- Assign the updated value of to the mesh cells comprising the coil.
- 5.
- Advance in time the poloidal flux scalar field in vacuum using Equation (4), with vacuum resistivity :
- 6.
- Advance in time the total flux using Equation (10) as:
- 7.
- Advance in time the electric charge of the capacitor bank using Equation (18):
- 8.
- Go to 1 at the next time step.
2.3.2. Verification Tests of the RLC Circuit Model
3. Results
3.1. Implosion of a Solid Lithium Ring
3.1.1. Experimental Apparatus
3.1.2. Numerical Setup and Implosion Dynamics
3.1.3. Comparison with Experimental Data
3.2. Compressing Toroidal Flux by the Electromagnetic Implosion of a Hollow Lithium Cylinder onto a Centre Shaft
3.2.1. Experimental Setup
3.2.2. Numerical Setup
3.2.3. Liner Trajectory
3.2.4. Toroidal Flux Compression
3.2.5. Effect of Magnetic Diffusivity of the Liner
4. Summary and Conclusions
- Two experimental test beds for the electromagnetic implosion of solid lithium rings and hollow cylinders were successfully simulated using the in-house “mhdCompressibleInterFoam” solver developed in OpenFOAM, with the highly deformable solid lithium modelled as a high-viscosity liquid. The simulated trajectories and liner shapes showed good agreement with the experimental results.
- The trapping and compression of the toroidal magnetic flux enclosed between the liner and the centre shaft, achieved in the Prototype 0 experiment, were successfully replicated in simulations. Simulation results provide an upper bound for the compression of toroidal flux by assuming instantaneous electrical contact between the liner and the centre shaft, whereas experimental results indicate that it takes time to establish good electrical contact, which leads to a slower rate of flux compression at early stages. The Prototype 0 experiment demonstrated toroidal field amplification by a factor of , and simulations reproduced this within a relative error margin of .
- When metal liners are imploded by electromagnetic means, the implosion trajectory is sensitive to the magnetic diffusivity of the liner. Therefore, careful choice of liner magnetic diffusivity is essential for accurate prediction of implosion trajectories.
- When metal liners are imploded by electromagnetic means, a portion of the driving magnetic field soaks through the liner; the amount depends on the implosion speed and the magnetic diffusivity of the liner. As the liner approaches the centre shaft, it compresses the soaked-through magnetic field. This compressed field can be sufficiently strong to alter the shape of the liner, slow its motion, and, under certain conditions, delay or prevent contact between the liner and the centre shaft.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MTF | Magnetized Target Fusion |
MHD | Magnetohydrodynamics |
Appendix A. Governing Equations for “mhdCompressibleInterFoam” Solver
Appendix B. Analytical Solution for RLC Circuit
Appendix C. Supplementary Plots
References
- Miller, R.L.; Krakowski, R.A. Assessment of the Slowly-Imploding Liner (LINUS) Fusion Reactor Concept. In Proceedings of the 4th ANS Topical Meeting on the Technology of Nuclear Fusion, King of Prussia, PA, USA, 14–17 October 1980. [Google Scholar]
- Turchi, P.J.; Cooper, A.L.; Ford, R.D.; Jenkins, D.J.; Burton, R.L. Review of the Liner Implosion Program. In MegaGauss Physics and Technology; Plenum Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Kirkpatrick, R.C.; Lindemuth, I.R.; Ward, M.S. Magnetized Target Fusion: An Overview. Fusion Technol. 1997, 27, 201–214. [Google Scholar] [CrossRef]
- Siemon, R.E.; Lindemuth, I.R.; Schoenberg, K.F. Why Magnetized Target Fusion Offers a Low-Cost Development Path for Fusion Energy. Comments Plasma Phys. Control. Fusion 1999, 18, 363–386. [Google Scholar]
- Wurden, G.A.; Hsu, S.C.; Intrator, T.P.; Grabowski, T.C.; Degnan, J.H.; Domonkos, M.; Turchi, P.J.; Campbell, E.M.; Sinars, D.B.; Herrmann, M.C.; et al. Magneto-Inertial Fusion. J. Fusion Energy 2016, 35, 69–77. [Google Scholar] [CrossRef]
- Statham, G.; White, S.; Adams, R.B.; Thio, Y.C.F.; Alexander, R.; Fincher, S.; Philips, A.; Polsgrove, T. Engineering of the Magnetized Target Fusion Propulsion System. In Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, USA, 20–23 July 2023. [Google Scholar]
- Intrator, T.; Zhang, S.Y.; Furno, I.; Hsu, S.C.; Sanchez, P.G.; Taccetti, J.M.; Tuszewski, M.; Waganaar, W.J.; Wurden, G.A.; Degnan, J.H.; et al. A High Density Field Reversed Configuration (FRC) Target for Magnetized Target Fusion: First Internal Profile Measurements of a High Density FRC. Phys. Plasmas 2004, 11, 2580–2585. [Google Scholar] [CrossRef]
- Degnan, J.H.; Amdahl, D.J.; Domonkos, M.; Grabowski, C.; Ruden, E.L.; White, W.M.; Wurden, G.A.; Intrator, T.P.; Sears, J.A.; Weber, T.; et al. Recent Magneto-Inertial Fusion Experiments on FRCHX. In Proceedings of the 24th IAEA Fusion Energy Conference, San Diego, CA, USA, 8–13 October 2012. [Google Scholar]
- Grabowski, C.; Degnan, J.H.; Domonkos, M.; Amdahl, D.; Ruden, E.L.; Wurden, G.A.; Weber, T.E. The Field-reversed Configuration Heating Experiment on Shiva Star In Proceedings of IEEE International Conference on Plasma Science, Banff, AB, Canada, 19–23 June 2016.
- Howard, S.J.; Reynolds, M.; Froese, A.; Zindler, R.; Hildebrand, M.; Mossman, A.; Donaldson, M.; Tyler, T.; Froese, D.; Eyrich, C.; et al. Measurement of Spherical Tokamak Plasma Compression in the PCS-16 Magnetized Target Fusion Experiment. Nucl. Fusion 2024, 65, 016029. [Google Scholar] [CrossRef]
- Mangione, N.S.; Wu, H.; Preston, C.; Lee, A.M.D.; Entezami, S.; Ségas, R.; Forysinski, P.W.; Suponitsky, V. Shape Manipulation of a Rotating Liquid Liner Imploded by Arrays of Pneumatic Pistons: Experimental and Numerical Study. Fusion Eng. Des. 2024, 198, 114087. [Google Scholar] [CrossRef]
- Laberge, M. Magnetized Target Fusion with a Spherical Tokamak. J. Fusion Energy 2018, 38, 199–203. [Google Scholar] [CrossRef]
- Turchi, P.J. Progress and Issues with Pulsed Magnetic Fusion. Phys. Plasmas 2025, 32, 022507. [Google Scholar] [CrossRef]
- Wurzel, S.E.; Hsu, S.C. Continuing Progress Toward Fusion Energy Breakeven and Gain as Measured Against the Lawson Criteria. arXiv 2025, arXiv:2505.03834v3. [Google Scholar] [CrossRef]
- Froese, A.; Reynolds, M.; Suponitsky, V.; Dick, J.-S.; Segas, R.; Khalzov, I.V.; Sirmas, N.; Ross, D.; Roberts, D.; Brennan, D. Expected MHD Stability and Error Field Penetration in LM26 Magnetized Target Fusion Experiment at General Fusion. In Proceedings of the 66th Annual Meeting of the APS Division of Plasma Physics, Atlanta, GA, USA, 7–11 October 2024; Available online: https://meetings.aps.org/Meeting/DPP24/Session/PP12.68 (accessed on 18 August 2025).
- OpenFOAM. The OpenFOAM Foundation. Available online: https://cfd.direct (accessed on 18 August 2025).
- Suponitsky, V.; Barsky, S.; Froese, A. Richtmyer–Meshkov Instability of a Liquid-gas Interface Driven by a Cylindrical Imploding Pressure Wave. Comp Fluids 2014, 89, 1–19. [Google Scholar] [CrossRef]
- Suponitsky, V.; Avital, E.J.; Plant, D.; Munjiza, A. Pressure Wave in Liquid Generated by Pneumatic Pistons and Its Interaction with a Free Surface. Int. J. Appl. Mech. 2017, 9, 1750037. [Google Scholar] [CrossRef]
- Avital, E.J.; Suponitsky, V.; Khalzov, I.V.; Zimmermann, J.; Plant, D. On the Hydrodynamic Stability of an Imploding Rotating Circular Cylindrical Liquid Liner. Fluid Dyn. Res. 2020, 52, 055505. [Google Scholar] [CrossRef]
- Suponitsky, V.; Khalzov, I.V.; Avital, E.J. Magnetohydrodynamics Solver for a Two-Phase Free Surface Flow Developed in OpenFOAM. Fluids 2022, 7, 210. [Google Scholar] [CrossRef]
- Ryakhovskiy, A.I.; Schmidt, A.A. MHD Supersonic Flow Control: OpenFOAM simulation. Trudy ISP RAS 2016, 28, 197–206. [Google Scholar] [CrossRef]
- Garrido González, D.; Suárez Cambra, D.; Futatani, S. Non-linear MHD Simulations of Magnetically Confined Plasma using OpenFOAM. In Proceedings of the 7th BSC Severo Ochoa Doctoral Symposium, Barcelona, Spain, 5 May 2020; pp. 61–62. Available online: https://upcommons.upc.edu/handle/2117/331029 (accessed on 18 August 2025).
- Blishchik, A.; van der Lans, M.; Kenjeres, S. An Extensive Numerical Benchmark of the Various Magnetohydrodynamic Flows. Int. J. Heat Fluid Flow 2021, 90, 108800. [Google Scholar] [CrossRef]
- Suárez Cambra, D.; Khodak, A.; Mas de les Valls, E.; Batet, L. A Formal Verification and Validation of a Low Magnetic Reynolds Number MHD Code for Fusion Applications. IEEE Trans. Plasma Sci. 2022, 50, 4206–4212. [Google Scholar] [CrossRef]
- Aslani, K.E.; Sarris, I.E.; Tzirtzilakis, E. On the Development of OpenFOAM Solvers for Simulating MHD Micropolar Fluid Flows with or without the Effect of Micromagnetorotation. arXiv 2025, arXiv:2504.14543. [Google Scholar] [CrossRef]
- Wynne, B.; Saenz, F.; Al-Salami, J.; Xu, Y.; Sun, Z.; Hu, C.; Hanada, K.; Kolemen, E. FreeMHD: Validation and Verification of the Open-source, Multi-domain, Multi-phase Solver for Electrically Conductive Flows. Phys. Plasmas 2025, 32, 013907. [Google Scholar] [CrossRef]
- Boronski, P.; Tuckerman, L.S. Magnetohydrodynamics in a Finite Cylinder: Poloidal-Toroidal Decomposition. In Proceedings of the European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, 5–8 September 2006. [Google Scholar]
- Boronski, P. A Method Based on Poloidal-toroidal Potentials Applied to the von Kármán flow in a Finite Cylinder Geometry. Ph.D. Thesis, Ecole Polytechnique, Orsay, France, 2005. Available online: https://pastel.archives-ouvertes.fr/tel-00162594/document (accessed on 18 August 2025).
- Dunlea, C.; Khalzov, I.V. A Globally Conservative Finite Element MHD Code and Its Application to the Study of Compact Torus Formation, Levitation and Magnetic Compression. arXiv 2019, arXiv:1907.13283. [Google Scholar]
- Meeker, D.C. Finite Element Method Magnetics, User’s Manual, Version 4.2. 2018. Available online: http://www.femm.info/wiki/HomePage (accessed on 18 August 2025).
- Greenshields, C.J.; Weller, H.G. Notes on Computational Fluid Dynamics: General Principles, CFD Direct. 2022. Available online: https://doc.cfd.direct/notes/cfd-general-principles/ (accessed on 18 August 2025).
- Dick, J.-S.; Sirmas, N.; Bernard, S.; Santos, L.; Forysinski, P. Electromagnetic Lithium Ring Compression for Magnetized Target Fusion Application: Trajectories. In Proceedings of the ASME Pressure Vessels & Piping Conference, Bellevue, WA, USA, 29 July–2 August 2024. [Google Scholar]
- Tait, P.G. Report on Some of the Physical Properties of Fresh Water and of Sea Water; Report on the Scientific Results of the Voyage of the H.M.S. Challenger during the Years 1873-76: Physics and Chemistry, 1; Johnson Reprint Corporation: New York, NY, USA, 1965; Available online: https://books.google.ca/books?id=zMgUAQAAIAAJ (accessed on 18 August 2025).
- Itoh, Y.; Kanagawa, T.; Miyazaki, K.; Fujii-E, Y. Cavitation in Cylindrical Liquid Metal Shell Imploded for Axial Magnetic Flux Compression. J. Nucl. Sci. Technol. 1982, 19, 1–10. [Google Scholar] [CrossRef]
- Chi, T.C. Electrical Resistivity of Alkali Elements. J. Phys. Chem. Ref. Data 1979, 8, 339–438. [Google Scholar] [CrossRef]
- Schaeffer, A.J.; Talmadge, W.B.; Temple, S.R.; Deemyad, S. High Pressure Melting of Lithium. Phys. Rev. Lett. 2012, 109, 185702. [Google Scholar] [CrossRef] [PubMed]
- Jerabek, P.; Burrows, A.; Schwerdtfeger, P. Solving a Problem with a Single Parameter: A Smooth bcc To fcc Phase Transition for Metallic Lithium. Chem. Commun. 2022, 58, 13369–13372. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Miao, Y.; Sexsmith, M.; Hartono, S.; Preston, C.; Tsai, B.; Sirmas, N. Strain-rate-dependant Parameters of Lithium as a Plasma Facing Material for Magnetized Target Fusion Application. In Proceedings of the ASME Pressure Vessels & Piping Conference, Bellevue, WA, USA, 29 July–2 August 2024. [Google Scholar]
- Brennan, D.; Froese, A.; Reynolds, M.; Barsky, S.; Wang, Z.; Delage, M.; Laberge, M. Stable Compression of a Spherical Tokamak Plasma. Nucl. Fusion 2020, 60, 046027. [Google Scholar] [CrossRef]
- Brennan, D.; Froese, A.; Reynolds, M.; Barsky, S.; Wen, A.; Delage, M.; Laberge, M. A stable Corridor for Toroidal Plasma Compression. Nucl. Fusion 2021, 61, 046027. [Google Scholar] [CrossRef]
- Dick, J.-S.; Sirmas, N.; Bernard, S.; Miao, Y.; Santos, L.; Hobbis, J.; Preston, C.; Lee, A.; Cameron, S.; Forysinski, P. Simulation of Electromagnetic Lithium Cylinder Compression for Applications in Magnetized Target Fusion. In Proceedings of the ASME Pressure Vessels & Piping Conference, Montreal, QC, Canada, 20–25 July 2025. [Google Scholar]
- Ferziger, J.H.; Perić, M. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1997; ISBN 3-540-59434-5. [Google Scholar]
Test | Coil Geometry | Parameters 1 |
---|---|---|
One coil | ; | , , |
Test | Circuit Parameters |
---|---|
OpenFOAM 1 | |
(not an input, calculated in simulation) | |
Analytical Equation (20) | Diode off: |
Analytical Equation (21) 2 | Diode on: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suponitsky, V.; Khalzov, I.V.; Roberts, D.M.; Forysinski, P.W. Compressing Magnetic Fields by the Electromagnetic Implosion of a Hollow Lithium Cylinder: Experimental Test Beds Simulated with OpenFOAM. Fluids 2025, 10, 222. https://doi.org/10.3390/fluids10090222
Suponitsky V, Khalzov IV, Roberts DM, Forysinski PW. Compressing Magnetic Fields by the Electromagnetic Implosion of a Hollow Lithium Cylinder: Experimental Test Beds Simulated with OpenFOAM. Fluids. 2025; 10(9):222. https://doi.org/10.3390/fluids10090222
Chicago/Turabian StyleSuponitsky, Victoria, Ivan V. Khalzov, David M. Roberts, and Piotr W. Forysinski. 2025. "Compressing Magnetic Fields by the Electromagnetic Implosion of a Hollow Lithium Cylinder: Experimental Test Beds Simulated with OpenFOAM" Fluids 10, no. 9: 222. https://doi.org/10.3390/fluids10090222
APA StyleSuponitsky, V., Khalzov, I. V., Roberts, D. M., & Forysinski, P. W. (2025). Compressing Magnetic Fields by the Electromagnetic Implosion of a Hollow Lithium Cylinder: Experimental Test Beds Simulated with OpenFOAM. Fluids, 10(9), 222. https://doi.org/10.3390/fluids10090222