Investigation of Non-Linear Rheological Characteristics of Barite-Free Drilling Fluids
Abstract
:1. Introduction
1.1. Review of the Current Trends in the Field of Research
1.2. Rheological Models of Modern Drilling Fluids
1.3. Aims and Tasks of the Research
- Parametric study of the base solution used in the Arctic shelf of the Russian Federation (at high pressures in the reservoir);
- Improving the formulation of the base solution by its treatment with PHPA of various molecular weights;
- Evaluation of technological parameters of the obtained drilling fluids;
- Choice of rheological model for the flow of drilling fluids;
- Substantiation of the optimal rheological model for the developed compositions of high density drilling fluids.
2. Materials and Methods
2.1. Justification on Choice of the Research Object
2.2. Equipment and Experiment
3. Results and Discussion
3.1. Parameters of the Investigated Drilling Fluids
3.2. Selection of a Rheological Model for the Drilling Mud
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ECD | Equivalent Circulating Density; |
WBM | Water-based Mud; |
OBM | Oil-based Mud; |
DP | Drill Pipe; |
BHA | Bottom Hole Assembly; |
MPR | Mechanical Penetration Rate; |
PHPA | Partially Hydrolyzed Polyacrylamide; |
HPAM | Hydrolized Polyacrylamide; |
PV | Plastic Viscosity; |
PAC | Polyanionic cellulose; |
YP | Yield Point. |
DSS | Dynamic shear stress |
SSS | Static shear stress |
List of symbols | |
ρ | fluids density, g/cm3; |
shear stress, Pa; | |
yield point, Pa; | |
plastic viscosity, mPa∙s; | |
shear rate, s−1; | |
K | consistency index, Pa∙sn; |
n | Power Law index. |
References
- Akpan, E.U.; Enyi, G.C.; Nasr, G.G. Enhancing the performance of xanthan gum in water-based mud systems using an environmentally friendly biopolymer. J. Petrol. Explor. Prod. Technol. 2020, 10, 1933–1948. [Google Scholar] [CrossRef] [Green Version]
- Nutskova, M.V.; Rudiaeva, E.Y.; Kuchin, V.N.; Yakovlev, A.A. Investigating of compositions for lost circulation control. In Proceedings of the 6th Youth Forum of the World Petroleum Council—Future Leaders Forum, Saint Petersburg, Russia, 23–28 June 2019; pp. 394–398. [Google Scholar]
- Strizhenok, A.V.; Korelskiy, D.S. Improvement of the system of industrial environmental monitoring of atmospheric air in the area of anthropogenic arrays impact. J. Phys. Conf. Ser. 2019, 1384, 012052. [Google Scholar] [CrossRef]
- Tananykhin, D.; Palyanitsina, A.; Rahman, A. Analysis of Production Logging and Well Testing Data to Improve the Development System for Reservoirs with Complex Geological Structure Procedia. Environ. Sci. Eng. Manag. 2020, 7, 629–648. [Google Scholar]
- Alcázar, L.A.; Cortés, I.R. Drilling fluids for deepwater fields: An overview. In Recent Insights in Petroleum Science and Engineering; Zoveidavianpoor, M., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Ilinova, A.; Chanysheva, A. Algorithm for assessing the prospects of offshore oil and gas projects in the Arctic. Energy Rep. 2020, 6, 504–509. [Google Scholar] [CrossRef]
- Hui, Z.; Chesnee, D.; Jay, D.; Bill, S.; Ryan, S.; Tim, B.; Rob, V.; David, C. Hydraulic Modeling Helps Designing Ultralow ECD Nonaqueous Fluids to Meet Narrow ECD Windows. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 12–15 November 2018. [Google Scholar] [CrossRef]
- Nutskova, M.; Kupavykh, K.; Sidorov, D.; Lundaev, V. Research of oil-based drilling fluids to improve the quality of wells completion. IOP Conf. Ser. Mater. Sci. Eng. 2019, 666, 012065. [Google Scholar] [CrossRef] [Green Version]
- Mardashov, D.V.; Rogachev, M.K.; Zeigman, Y.V.; Mukhametshin, V.V. Well Killing Technology before Workover Operation in Complicated Conditions. Energies 2021, 14, 654. [Google Scholar] [CrossRef]
- Mohamed, A.; Al-Afnan, S.; Elkatatny, S.; Hussein, I. Prevention of Barite Sag in Water-Based Drilling Fluids by A Urea-Based Additive for Drilling Deep Formations. Sustainability 2020, 12, 2719. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.T.; Rogachev, M.K.; Aleksandrov, A.N. A new approach to improving efficiency of gas-lift wells in the conditions of the formation of organic wax deposits in the Dragon field. J. Pet. Explor. Prod. Technol. 2020, 10, 3663–3672. [Google Scholar] [CrossRef]
- Drilling Fluids Engineering Manual; Mi Swaco: Houston, TX, USA, 2009; p. 992.
- Champeau, M.; Wei, X.; Jackson, P.; Sui, C.; Zhang, J.; Okhrimenko, A. Alternative High Density Brines. In Proceedings of the SPE Offshore Europe Conference and Exhibition, Aberdeen, UK, 3 September 2019. [Google Scholar] [CrossRef]
- Howard, S.K. Formate Brines for Drilling and Completion: State of the Art. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 22–25 October 1995. [Google Scholar]
- Ryabtsev, P.; Khomutov, A.; Korolev, V. The First Experience of Formate Based Drilling Fluids Application in Russia. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 15–17 October 2018. [Google Scholar] [CrossRef]
- Byrne, M.; Patey, I.; Liz, G.; Downs, J.; Turner, J. Formate Brines: A Comprehensive Evaluation of Their Formation Damage Control Properties Under Realistic Reservoir Conditions. In Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LA, USA, 21 February 2002. [Google Scholar] [CrossRef]
- Howard, S.; Downs, J. Formate Fluids Optimize Production Rate. In Proceedings of the AADE 2005 National Technical Conference and Exhibition, Houston, TX, USA, 5–7 April 2005. [Google Scholar]
- Gao, C.H. A Survey of Field Experiences with Formate Drilling Fluid. Society of Petroleum Engineers. SPE Drill Complet. 2019, 34, 450–457. [Google Scholar] [CrossRef]
- Berg, P.C.; Pederson, E.S.; Lauritsen, A. Drilling and Completing High-Angle Wells in High-Density, Cesium Formate Brine the Kvitebjorn Experience. SPE Drill Complet. 2009, 24, 15–24. [Google Scholar] [CrossRef]
- Clark, R.K. Polyacrylamide/Potassium-Chloride Mud for Drilling Water Sensitive Shales. J. Pet. Technol. 1976, 28, 719–727. [Google Scholar] [CrossRef]
- Jain, R.; Mahto, V. Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water based drilling fluid system. J. Pet. Sci. Eng. 2015, 133, 612–621. [Google Scholar] [CrossRef]
- Pashkevich, M.; Alekseenko, A.V.; Petrova, T. Application of polymeric materials for abating the environmental impact of mine wastes. J. Phys. Conf. Ser. 2019, 1384, 012039. [Google Scholar] [CrossRef]
- Mahto, V.; Sharma, V. Rheological study of a water based oil well drilling fluid. J. Pet. Sci. Eng. 2004, 45, 123–128. [Google Scholar] [CrossRef]
- Hamed, S.B.; Belhadri, M. Rheological properties of biopolymers drilling fluids. J. Pet. Sci. Eng. 2009, 67, 84–90. [Google Scholar] [CrossRef]
- Liu, T.; Leusheva, E.; Morenov, V.; Li, L.; Jiang, G.; Fang, C.; Zhang, L.; Zheng, S.; Yu, Y. Influence of Polymer Reagents in the Drilling Fluids on the Efficiency of Deviated and Horizontal Wells Drilling. Energies 2020, 13, 4704. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Hyperbolic rheological model with shear stress limit for acrylamide polymer modified bentonite drilling muds. J. Pet. Sci. Eng. 2014, 122, 38–47. [Google Scholar] [CrossRef]
- Blinov, P.A.; Dvoynikov, M.V. Rheological and Filtration Parameters of the Polymer Salt Drilling Fluids Based on Xanthan Gum. J. Eng. Appl. Sci. 2019, 15, 694–697. [Google Scholar] [CrossRef]
- Moradi, S.S.T.; Nikolaev, N.; Chudinova, I. Geomechanical Analysis of Wellbore Stability in High-pressure, High-temperature Formations. In Proceedings of the Eage Conference & Exhibition, Paris, France, 12–15 June 2017. [Google Scholar] [CrossRef]
- Kupavykh, K.S.; Kupavykh, A.S.; Morenov, V.A. Analysis of Implementation Effectiveness of Two Working Fluids Characterized by Different Viscoelastic Characteristics at Hydrodynamic Impact on the Borehole Bottom Zone. Sci. Technol. 2019, 18, 164–170. [Google Scholar] [CrossRef]
- Bui, B.T.; Tutuncu, A.N. A Generalized Rheological Model for Drilling Fluids Using Cubic Splines. SPE Drill Complet. 2014. [Google Scholar] [CrossRef]
- Litvinenko, V.S.; Nikolaev, N.I. Development of the weighted biopolimer drilling mud for workover. J. Min. Inst. 2012, 199, 375. [Google Scholar]
- Raupov, I.R.; Shagiakhmetov, A.M. The results of the complex rheological studies of the cross-linked polymer composition and the grounding of its injection volume. Int. J. Civ. Eng. Technol. 2019, 10, 493–509. [Google Scholar]
- API RP 13D. Rheology and Hydraulics of Oil-Well Drilling Fluids; Norm of American Petroleum Institute: Washington, DC, USA, 2006. [Google Scholar]
- Kelessidis, V.C.; Maglione, R.; Tsamantaki, C.; Aspirtakis, Y. Optimal determination of rheological parameters for Hersche—Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling. J. Pet. Sci. Eng. 2006, 53, 203–224. [Google Scholar] [CrossRef]
- Myslyuk, M.A. On the interpretation of drilling fluids rotational viscometry data. Neft. Khozyaystvo Oil Ind. 2018, 2018, 50–53. [Google Scholar] [CrossRef]
- Adewale, J.; Lucky, A.P.; Abioye, P.; Oluwabunmi, A.P.; Elehinafe, F.; Boluwaji, E.F. Selecting the most appropriate model for rheological characterization of syntheticbased drilling mud. IJAER 2017, 18, 7614–7629. [Google Scholar]
- Dvoynikov, M.V.; Kuchin, V.N.; Mintzaev, M.S. Development of viscoelastic systems and technologies for isolating water-bearing horizons with abnormal formation pressures during oil and gas wells drilling. J. Min. Inst. 2021, 247, 57–65. [Google Scholar] [CrossRef]
- Winiowski, R.; Skrzypaszek, K.; Maachowski, T. Selection of a Suitable Rheological Model for Drilling Fluid Using Applied Numerical Methods. Energies 2020, 13, 3192. [Google Scholar] [CrossRef]
- Hemphill, T.; Pileharvi, A.; Campos, W. Yield power law model more accurately predicts drilling fluid rheology. Oil Gas J. 1993, 91, 34. [Google Scholar]
- Grigoriev, B.S.; Eliseev, A.A.; Pogarskaya, T.A.; Toropov, E.E. Mathematical modeling of rock crushing and multiphase flow of drilling fluid in well dilling. J. Min. Inst. 2019, 235, 16–23. [Google Scholar] [CrossRef]
- Howard, S.K.; Downs, J.D. Formate Brines for HPHT Well Control—New Insights into the Role and Importance of the Carbonate/Bicarbonate Additive Package; Society of Petroleum Engineers: The Woodlands, TX, USA, 2009. [Google Scholar] [CrossRef]
- Bishop, S.R. The Experimental Investigation of Formation Damage due to Induced Flocculation of Clays within a Sandstone Pore Structure by a High Salinity Brine. In Proceedings of the 1997 SPE European Formation Damage Conference, The Hague, The Netherlands, 2–3 June 1997. [Google Scholar] [CrossRef]
- Davarpanah, A.; Mirshekari, B. Effect of formate fluids on the shale stabilization of shale layers. Energy Rep. 2019, 5, 987–992. [Google Scholar] [CrossRef]
- API RP 13B-1. Recommended Practice for Field Testing Water-based Drilling Fluids/Note, 2nd ed.; American Petroleum Institute: Washington, DC, USA, 2000.
Salt | Formula | Solubility (% on Weight) | Density, g/cm3 |
---|---|---|---|
Sodium chloride | NaCl | 26 | 1.20 |
Potassium chloride | KCl | 24 | 1.16 |
Calcium chloride | CaCl2 | 40 | 1.41 |
Sodium bromide | NaBr | 46 | 1.52 |
Potassium bromide | KBr | 56 | 1.81 |
Calcium bromide | CaBr2 | 57 | 1.83 |
Zinc bromide | ZnBr2 | 78 | 2.52 |
Sodium formate | HCOONa | 49 | 1.32 |
Potassium formate | HCOOK | 76 | 1.59 |
Caesium formate | HCOOCs | 81 | 2.29 |
Component | Function | Concentration |
---|---|---|
HCOONa/sodium formate (dry) | Mud base | 800 g/L |
HCOOK/potassium formate (liquid) | Mud base, inhibitor | 30% (ρ = 1.57 g/cm3) |
K2CO3/potassium carbonate | Buffer pH | 20 g/L |
Xanthan gum | Viscosifier | 4 g/L |
Starch | Filtration reducer | 10 g/L |
HPAM | Filtration reducer HT | 4 g/L |
CaCO3 MEX-CARB F | Bridging agent | 50 g/L |
CaCO3 MEX-CARB M | Bridging agent | 20 g/L |
CaCO3 MEX-CARB VF | Bridging agent | 10 g/L |
Property | Sample 1 (HPAM) | Sample 2 (PHPA 12) | Sample 3 (PHPA 15) | Sample 4 (PHPA 20) | Sample 5 (PHPA 27) |
---|---|---|---|---|---|
Density, g/cm3 | 1.45 | 1.45 | 1.45 | 1.45 | 1.45 |
Specific viscosity, s/quarter | 45 | 40 | 40 | 41 | 42 |
Plastic viscosity, mPa∙s | 19 | 16 | 16 | 16 | 16 |
YP, Pa | 5.3 | 5.3 | 6.7 | 8.1 | 9.6 |
Gel (10 s/10 min), Pa | 2.4/3.8 | 2.4/3.8 | 2.4/3.8 | 2.4/3.8 | 2.4/3.8 |
Filtration, mL/30 min | 3.8 | 3 | 2.7 | 2.6 | 2.2 |
Model | Regression Equation | R2 | τy, Pa | ηp, mPa·s | n | K, Pa·sn |
---|---|---|---|---|---|---|
Parameters of the basic drilling mud 1 | ||||||
Bingham-Shvedov | y = 0.0226x + 2.9606 | 0.9785 | 2.977 | 23.3 | ||
Ostwald-de-Waele | y = 0.7156x0.4936 | 0.9883 | 1.396 | 9.56 | 0.499 | 0.705 |
Herschel-Bulkley | y = 0.531 + 0.1857x0.707 | 0.9993 | 1.279 | 18.53 | 0.722 | 0.163 |
Parameters of the drilling mud 2 (PHPA MM = 12 mln) | ||||||
Bingham-Shvedov | y = 0.0196x + 2.886 | 0.9784 | 2.884 | 19.59 | ||
Ostwald-de-Waele | y = 0.7545x0.4667 | 0.9874 | 1.432 | 6.55 | 0.467 | 0.755 |
Herschel–Bulkley | y = 1.43 + 0.1412x0.718 | 0.9992 | 1.432 | 14.43 | 0.718 | 0.141 |
Parameters of the drilling mud 3 (PHPA MM = 15 mln) | ||||||
Bingham-Shvedov | y = 0.021x + 3.437 | 0.9587 | 3.437 | 21.13 | ||
Ostwald-de-Waele | y = 0.7352x0.4901 | 0.9957 | 1.396 | 9.5 | 0.490 | 0.735 |
Herschel–Bulkley | y = 0.979 + 0.3132x0.616 | 0.9991 | 0.979 | 13.62 | 0.616 | 0.313 |
Parameters of the drilling mud 4 (PHPA MM = 20 mln) | ||||||
Bingham-Shvedov | y = 0.0224x + 3.9841 | 0.9363 | 3.9841 | 22.4 | ||
Ostwald-de-Waele | y = 0.7171x0.511 | 0.9976 | 0.378 | 12.83 | 0.511 | 0.717 |
Herschel–Bulkley | y = 0.723 + 0.541x0.548 | 0.9994 | 0.704 | 14.84 | 0.591 | 0.404 |
Parameters of the drilling mud 5 (PHPA MM = 27 mln) | ||||||
Bingham-Shvedov | y = 0.0245x + 3.6045 | 0.9523 | 3.6045 | 24.53 | ||
Ostwald-de-Waele | y = 0.6869x0.5209 | 0.9945 | 0.287 | 13.81 | 0.521 | 0.687 |
Herschel–Bulkley | y = 0.294 + 0.439x0.564 | 0.9992 | 0.294 | 16.13 | 0.564 | 0.439 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leusheva, E.; Brovkina, N.; Morenov, V. Investigation of Non-Linear Rheological Characteristics of Barite-Free Drilling Fluids. Fluids 2021, 6, 327. https://doi.org/10.3390/fluids6090327
Leusheva E, Brovkina N, Morenov V. Investigation of Non-Linear Rheological Characteristics of Barite-Free Drilling Fluids. Fluids. 2021; 6(9):327. https://doi.org/10.3390/fluids6090327
Chicago/Turabian StyleLeusheva, Ekaterina, Nataliia Brovkina, and Valentin Morenov. 2021. "Investigation of Non-Linear Rheological Characteristics of Barite-Free Drilling Fluids" Fluids 6, no. 9: 327. https://doi.org/10.3390/fluids6090327
APA StyleLeusheva, E., Brovkina, N., & Morenov, V. (2021). Investigation of Non-Linear Rheological Characteristics of Barite-Free Drilling Fluids. Fluids, 6(9), 327. https://doi.org/10.3390/fluids6090327