Hybrid CFD PINN FSI Simulation in Coronary Artery Trees
Abstract
:1. Introduction
2. Mathematical Formulations and Numerical Methods
2.1. Governing Partial Differential Equations (PDEs)
Implications for Coronary Artery Studies
2.2. The Design of the Physics-Informed Neural Network (PINN)
2.3. Neural Network
2.4. 3D CFD FSI Method
2.5. Modeling Arterial Deformation
2.6. Fluid-Structure Interaction (FSI) Modelling
2.7. Hybrid CFD PINN FSI Method
- Initial Condition Setup: The 1D PINN is trained using a dataset that combines synthetic data from CFD simulations with real clinical data. This training allows the PINN to predict hemodynamic parameters such as pressure, flow rates, and vessel geometry.
- Boundary Condition Transfer: Once trained, the PINN provides realistic outlet conditions for each vessel in the arterial network. These conditions include parameters such as pressure and flow rates, which are crucial for accurate simulations in the 3D FSI model.
- 3D FSI Simulation: The 3D CFD/FSI model uses the outlet conditions from the PINN to simulate blood flow and arterial wall interactions. This model captures complex dynamics, including how changes in geometry affect hemodynamic behavior.
- Iterative Feedback Loop: After running the FSI simulation, results are analyzed to refine the boundary conditions provided by the PINN. This feedback loop allows for the continuous improvement of both models, ensuring that they remain aligned with physiological realities.
- The training phase of the 1D PINN.
- The transfer of initial conditions to the 3D FSI model.
- The iterative feedback process between the two models.
2.8. Mesh Independent Study
- S1 and S2 are the solutions from two successive grid levels.
- r is the grid refinement ratio.
- p is the apparent order of convergence.
- Grid Refinement Ratio (r): A common choice is 2, indicating that each successive grid has half the cell size of the previous one. For instance, if the first grid has a cell size of one unit, the second grid would have a cell size of 0.5 units.
- Order of Convergence (p): Typical values for p might range from 1.5 to 2 for second-order methods. For example, in some studies, p has been reported as approximately 1.84 or 1.81.
3. Results
3.1. 1D Artery Tree Validation
3.2. 3D Real Coronary Artery Tree Model Validation
- 1.
- 1D PINN Training (CPU vs. GPU):
- CPU Training: The 1D PINN training on a CPU takes approximately 4 h, with error percentages for the models CT209, CHN13, and CHN03 being 3.9%, 4.6%, and 3.2%, respectively. This indicates varying degrees of accuracy across different models, with CT209 showing the lowest error.
- GPU Training: In contrast, training on a GPU significantly reduces the time to just 1 h, showcasing the efficiency gains that can be achieved with appropriate hardware. This highlights the importance of computational resources in handling complex neural network training.
- 2.
- 1D PINN Prediction:
- The prediction phase for the 1D PINN is remarkably quick, taking only 5 s. This rapid prediction capability is crucial for clinical applications where timely decision making is essential.
- 3.
- FSI Transient (CPU):
- The FSI transient simulation on a CPU takes 30 h, with error percentages of 5.1%, 3.7%, and 3.9% for CT209, CHN13, and CHN03, respectively. The longer computational time reflects the complexity of simulating fluid–structure interactions in a detailed 3D environment.
- The relatively low error rates for both the PINN training and FSI simulations suggest that the models are effective in capturing hemodynamic behaviors.
- The variations in error across different models may point to differences in anatomical complexity or parameter settings that could be explored further to improve accuracy.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)?gad_source=1&gclid=CjwKCAjwoPOwBhAeEiwAJuXRhzC91fkkvSSroIMgBuzBt7BWvhkjLNgYIlo8OzlpUYmBvC5hrIDODhoC4roQAvD_BwE (accessed on 15 April 2024).
- Thygesen, K.; Alpert, J.S.; White, H.D.; on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Circulation 2007, 116, 2634–2653. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Deng, X.; Fan, Y. Interplay between artificial intelligence and biomechanics modeling in the cardiovascular disease prediction. Biomedicines 2022, 10, 2157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mao, B.; Che, Y.; Kang, J.; Luo, M.; Qiao, A.; Liu, Y.; Anzai, H.; Ohta, M.; Guo, Y.; et al. Physics-informed neural networks (PINNs) for 4D hemodynamics prediction: An investigation of optimal framework based on vascular morphology. Comput. Biol. Med. 2023, 164, 107287. [Google Scholar] [CrossRef]
- Arzani, A.; Wang, J.-X.; Sacks, M.S.; Shadden, S.C. Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond. Ann. Biomed. Eng. 2022, 50, 615–627. [Google Scholar] [CrossRef]
- Moradi, H.; Al-Hourani, A.; Concilia, G.; Khoshmanesh, F.; Nezami, F.R.; Needham, S.; Baratchi, S.; Khoshmanesh, K. Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning. Biophys. Rev. 2023, 15, 19–33. [Google Scholar] [CrossRef]
- Farajtabar, M.; Larimi, M.M.; Biglarian, M.; Sabour, D.; Miansari, M. Machine Learning Identification Framework of Hemodynamics of Blood Flow in Patient-Specific Coronary Arteries with Abnormality. J. Cardiovasc. Transl. Res. 2023, 16, 722–737. [Google Scholar] [CrossRef]
- Taebi, A. Deep learning for computational hemodynamics: A brief review of recent advances. Fluids 2022, 7, 197. [Google Scholar] [CrossRef]
- Sarabian, M.; Babaee, H.; Laksari, K. Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging. IEEE Trans. Med. Imaging 2022, 41, 2285–2303. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, S.; Hur, N.; Jeong, S.-K. A fluid-structure interaction analysis on hemodynamics in carotid artery based on patient-specific clinical data. J. Mech. Sci. Technol. 2012, 26, 3821–3831. [Google Scholar] [CrossRef]
- Pillai, G.M.; Jayakumar, J.S.; Kumar, R.A. Fluid–Structure Interaction Analysis in an Atherosclerosis Carotid Artery. In Advances in Thermofluids and Renewable Energy; Springer: Singapore, 2022; pp. 23–35. [Google Scholar]
- Ma, D. Quantitative Hemodynamics Using Magnetic Resonance Imaging, Computational Fluid Dynamics and Physics-informed Neural Network. Ph.D. Thesis, University Goettingen Repository, Göttingen, Germany, 2023. [Google Scholar]
- Alzhanov, N.; Ng, E.Y.K.; Zhao, Y. Three-Dimensional Physics-Informed Neural Network Simulation in Coronary Artery Trees. Fluids 2024, 9, 153. [Google Scholar] [CrossRef]
- Birken, P.; Linders, V. Conservation properties of iterative methods for implicit discretizations of conservation laws. J. Sci. Comput. 2022, 92, 60. [Google Scholar] [CrossRef]
- Ta, H.T.; Truong, N.P.; Whittaker, A.K.; Davis, T.P.; Peter, K. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opin. Drug Deliv. 2018, 15, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Reymond, P.; Bohraus, Y.; Perren, F.; Lazeyras, F.; Stergiopulos, N. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am. J. Physiol. Circ. Physiol. 2011, 301, H1173–H1182. [Google Scholar] [CrossRef] [PubMed]
- Reymond, P.; Merenda, F.; Perren, F.; Rüfenacht, D.; Stergiopulos, N. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Circ. Physiol. 2009, 297, H208–H222. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, S.J.; Franke, V.; Peiró, J.; Parker, K. One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 2003, 47, 217–250. [Google Scholar] [CrossRef]
- Sherwin, S.J.; Formaggia, L.; Peiró, J.; Franke, V. Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 2003, 43, 673–700. [Google Scholar] [CrossRef]
- Formaggia, L.; Quarteroni, A.M.; Veneziani, A. (Eds.) Cardiovascular Mathematics, 2009th ed.; Springer: Milan, Italy, 2009. [Google Scholar]
- Matthys, K.S.; Alastruey, J.; Peiró, J.; Khir, A.W.; Segers, P.; Verdonck, P.R.; Parker, K.H.; Sherwin, S.J. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 2007, 40, 3476–3486. [Google Scholar] [CrossRef]
- Olufsen, M.S. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Circ. Physiol. 1999, 276, H257–H268. [Google Scholar] [CrossRef]
- Jung, J.; Lyczkowski, R.W.; Panchal, C.B.; Hassanein, A. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J. Biomech. 2006, 39, 2064–2073. [Google Scholar] [CrossRef]
- Cho, Y.I.; Kensey, K.R. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 1991, 28, 241–262. [Google Scholar] [CrossRef]
- Morris, P.D.; Narracott, A.; von Tengg-Kobligk, H.; Soto, D.A.S.; Hsiao, S.; Lungu, A.; Evans, P.; Bressloff, N.W.; Lawford, P.V.; Hose, D.R. Computational fluid dynamics modelling in cardiovascular medicine. Heart 2016, 102, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Yang, C.; Kobayashi, S.; Ku, D.N. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. J. Biomech. Eng. 2004, 126, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Yang, C.; Zheng, J.; Woodard, P.K.; Sicard, G.A.; Saffitz, J.E.; Yuan, C. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann. Biomed. Eng. 2004, 32, 947–960. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Kassab, G.S. Pulsatile blood flow in the entire coronary arterial tree: Theory and experiment. Am. J. Physiol. Circ. Physiol. 2006, 291, H1074–H1087. [Google Scholar] [CrossRef]
- Malvè, M.; García, A.; Ohayon, J.; Martínez, M.A. Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs. CFD. Int. Commun. Heat Mass Transf. 2012, 39, 745–751. [Google Scholar] [CrossRef]
- Rikhtegar, F.; Pacheco, F.; Wyss, C.; Stok, K.S.; Ge, H.; Choo, R.J.; Ferrari, A.; Poulikakos, D.; Müller, R.; Kurtcuoglu, V. Compound ex vivo and in silico method for hemodynamic analysis of stented arteries. PLoS ONE 2013, 8, e58147. [Google Scholar] [CrossRef]
- Siogkas, P.K.; Papafaklis, M.I.; Sakellarios, A.I.; Stefanou, K.A.; Bourantas, C.V.; Athanasiou, L.S.; Exarchos, T.P.; Naka, K.K.; Michalis, L.K.; Parodi, O.; et al. Patient-Specific Simulation of Coronary Artery Pressure Measurements: An In Vivo Three-Dimensional Validation Study in Humans. BioMed Res. Int. 2015, 2015, 628416. [Google Scholar] [CrossRef]
- Blanco, P.J.; Bulant, C.A.; Müller, L.O.; Talou, G.D.M.; Bezerra, C.G.; Lemos, P.A.; Feijóo, R.A. Comparison of 1D and 3D models for the estimation of fractional flow reserve. Sci. Rep. 2018, 8, 17275. [Google Scholar] [CrossRef]
- Lo, E.; Menezes, L.; Torii, R. Impact of inflow boundary conditions on the calculation of CT-based FFR. Fluids 2019, 4, 60. [Google Scholar] [CrossRef]
- Wang, L.; Tang, D.; Maehara, A.; Wu, Z.; Yang, C.; Muccigrosso, D.; Matsumura, M.; Zheng, J.; Bach, R.; Billiar, K.L. Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change. Comput. Methods Biomech. Biomed. Engin. 2020, 23, 1267–1276. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, D.; Wang, L.; Meahara, A.; Molony, D.; Samady, H.; Zheng, J.; Mintz, G.S.; Stone, G.W.; Giddens, D.P. Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid–structure interaction simulations. Biomech. Model. Mechanobiol. 2021, 20, 1383–1397. [Google Scholar] [CrossRef] [PubMed]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations. arXiv 2017, arXiv:1711.10566. [Google Scholar]
- Tartakovsky, A.M.; Marrero, C.O.; Perdikaris, P.; Tartakovsky, G.D.; Barajas-Solano, D. Learning Parameters and Constitutive Relationships with Physics Informed Deep Neural Networks. arXiv 2018, arXiv:1808.03398. [Google Scholar]
- Xiao, N.; Alastruey, J.; Alberto Figueroa, C. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Method. Biomed. Eng. 2014, 30, 204–231. [Google Scholar] [CrossRef]
- Kissas, G.; Yang, Y.; Hwuang, E.; Witschey, W.R.; Detre, J.A.; Perdikaris, P. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2020, 358, 112623. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; Volume 9, pp. 249–256. [Google Scholar]
- Alzhanov, N.; Ng, E.Y.K.; Su, X.; Zhao, Y. CFD computation of flow fractional reserve (FFR) in coronary artery trees using a novel physiologically based algorithm (PBA) under 3D steady and pulsatile flow conditions. Bioengineering 2023, 10, 309. [Google Scholar] [CrossRef]
- Łukaszewicz, G.; Kalita, P. Navier–Stokes Equations; Advances in Mechanics and Mathematics; Springer: Berlin/Heidelberg, Germany, 2016; Volume 34. [Google Scholar]
- Bistafa, S.R. On the development of the Navier-Stokes equation by Navier. Rev. Bras. Ensino Física 2018, 40, e2603. [Google Scholar] [CrossRef]
- Hron, J.; Turek, S. A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics. In Fluid-Structure Interaction; Springer: Berlin/Heidelberg, Germany, 2006; pp. 146–170. [Google Scholar]
- Rugonyi, S.; Bathe, K.J. On Finite Element Analysis of Fluid Flows Fully Coupled with Structural Interactions. Comput. Model. Eng. Sci. 2001, 2, 195–212. [Google Scholar] [CrossRef]
- Seo, T. Hemodynamic characteristics in the human carotid artery model induced by blood-arterial wall interactions. Int. J. Biomed. Biol. Eng. 2013, 7, 215–220. [Google Scholar]
- Athani, A.; Ghazali, N.N.N.; Badruddin, I.A.; Usmani, A.Y.; Kamangar, S.; Anqi, A.E.; Ahammad, N.A. Two-phase non-Newtonian pulsatile blood flow simulations in a rigid and flexible patient-specific left coronary artery (LCA) exhibiting multi-stenosis. Appl. Sci. 2021, 11, 11361. [Google Scholar] [CrossRef]
- Gao, Z.; Desai, J.P. Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation. Med. Image Anal. 2010, 14, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, F.; Conti, M.; De Beule, M.; De Santis, G.; Verhegghe, B. Carotid artery stenting simulation: From patient-specific images to finite element analysis. Med. Eng. Phys. 2011, 33, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, R.; Holzapfel, G.A. Methods to compute 3D residual stress distributions in hyperelastic tubes with application to arterial walls. Int. J. Eng. Sci. 2010, 48, 1066–1082. [Google Scholar] [CrossRef]
- Holzapfel, G.A. Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 2006, 238, 290–302. [Google Scholar] [CrossRef]
- Kim, H.J.; Vignon-Clementel, I.E.; Coogan, J.S.; Figueroa, C.A.; Jansen, K.E.; Taylor, C.A. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 2010, 38, 3195–3209. [Google Scholar] [CrossRef]
- Zhang, J.-M.; Zhong, L.; Luo, T.; Lomarda, A.M.; Huo, Y.; Yap, J.; Lim, S.T.; Tan, R.S.; Wong, A.S.L.; Tan, J.W.C.; et al. Simplified models of non-invasive fractional flow reserve based on CT images. PLoS ONE 2016, 11, e0153070. [Google Scholar] [CrossRef]
Artery Wall Density(ρs) | 1300 kg/m3 |
Wall thickness | 0.5 mm |
Poisson’s Ratio | 0.35 |
Young’s Modulus (MPa) | 0.5 |
0.127 | |
D | 0.096 |
Method | Time | Error, % | ||
---|---|---|---|---|
CT209 | CHN13 | CHN03 | ||
1D PINN training CPU | 4 h | 3.9 | 4.6 | 3.2 |
1D PINN training GPU | 1 h | |||
1D PINN prediction | 5 s | |||
FSI transient CPU | 30 h | 5.1 | 3.7 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzhanov, N.; Ng, E.Y.K.; Zhao, Y. Hybrid CFD PINN FSI Simulation in Coronary Artery Trees. Fluids 2024, 9, 280. https://doi.org/10.3390/fluids9120280
Alzhanov N, Ng EYK, Zhao Y. Hybrid CFD PINN FSI Simulation in Coronary Artery Trees. Fluids. 2024; 9(12):280. https://doi.org/10.3390/fluids9120280
Chicago/Turabian StyleAlzhanov, Nursultan, Eddie Y. K. Ng, and Yong Zhao. 2024. "Hybrid CFD PINN FSI Simulation in Coronary Artery Trees" Fluids 9, no. 12: 280. https://doi.org/10.3390/fluids9120280
APA StyleAlzhanov, N., Ng, E. Y. K., & Zhao, Y. (2024). Hybrid CFD PINN FSI Simulation in Coronary Artery Trees. Fluids, 9(12), 280. https://doi.org/10.3390/fluids9120280