Predicting the Effect of miRNA on Gene Regulation to Foster Translational Multi-Omics Research—A Review on the Role of Super-Enhancers
Abstract
:1. Introduction
2. Unraveling Indirect Network of Gene Regulation
2.1. Advances in Computational Prediction of miRNA-Mediated Gene Regulation
2.2. Exploring the Role of SEs in miRNA-Mediated Gene Regulation
3. Identification of Network Motifs to Increase the Precision of Target Genes
3.1. Advances in Network Motifs for Enhanced Gene Target Precision
3.2. Unresolved Issues in Modeling SEs and Enhancers within Network Motifs
4. Enriched Pathways Identification by Jointly Dissecting Gene Regulators
4.1. Advances in Pathway Enrichment through Integrated Gene Regulator Analysis
4.2. Challenges in Computational Identification of SE-Driven Pathways and miRNA Interactions
Database/Softwares | Feature |
---|---|
ROSE [3,10] | Pipeline identifying SEs from ChIP-Seq data; separates SEs and typical enhancers |
HOMER (v5.1) [9] | Software for motif discovery and ChIP-Seq analysis; identifies enhancers and SEs |
SEdb 2.0 [12] | Database for SE resource and annotate the potential roles in gene transcription |
SEanalysis 2.0 [13] | Web server for identifying association connecting SEs, pathways, TFs, and genes |
CenhANCER [14] | Database for cancer enhancers from primary tissues and cell lines |
ENdb [15] | Manually curated database of experimentally supported enhancers |
EnhancerAtlas 2.0 [16] | Database with enhancer annotation across nine species |
TRmir [46] | Database for miRNA-related transcriptional regulation, especially typical enhancer and SE |
EnhFFL [44] | Database for enhancer-related FFLs based on deterministic connections |
EnhancerDB [45] | Database for enhancer-related transcriptional regulatory associations |
Methods | Feature |
---|---|
miRinGO [48] | Accumulate information from databases on TFs associated target genes and miRNAs; then combine them to predict genes that miRNAs target via TFs |
PANDA [50] | A message-passing model integrating protein–protein interaction, gene expression, and sequence motif data to predict regulatory relationships |
PUMA [51] | Identify gene regulatory networks under miRNA control using PANDA and target genes |
Sonawane et al. [49] | Computationally predict tissue-specific TF associated with genes using PANDA |
dChip-GemiNI [55] | Statistically ranks computationally predicted FFLs to account for differential gene and miRNA expression between two biological conditions |
FFLtool [56] | A web based tool for detecting FFL of TF–miRNA–target regulation in human |
Mangan and Alon [57] | Theoretically analyze the functions of all possible structural types of FFLs |
Jiang et al. [64] | Identify network motif using stochastic networks |
Yeger-Lotem et al. [65] | Developed algorithms for detecting networks motifs with two or more types of interactions |
Kashtan et al. [66] | Algorithms for detecting network motif generalizations |
Prompsy et al. [72] | Leveraged miRNA–TF co-regulatory networks to identify pathways under miRNA control, and significantly enriched the proportion of true miRNA–target interactions |
MiEAA [73] | A web-based application for miRNA set enrichment analysis and annotation |
miRFA [74] | Pipeline for biomarker discovery involving mature miRNAs |
Shalgi et al. [54] | Identifies miRNA–TF regulatory network |
Studies | Feature |
---|---|
Whyte et al. [3] | SEs play key roles in the control of mammalian cell identity; formation of SE-driven feedback loops; regulation of SE-associated gene expression via master TFs |
Hnisz et al. [75] | SEs are occupied more frequently by terminal TFs of the Wnt-, TGF-b-, and LIF-signaling pathways in ESCs/cancer cells; and SE-driven genes respond to manipulation of these pathways compared to typical enhancers |
Hnisz et al. [8] | Cancer cells generate SE at oncogenes and other genes related to tumor pathogenesis |
Lovén et al. [10] | SEs are associated with critical oncogenic drivers in cancer cells |
Suzuki et al. [41,52] | SEs potentially drive the biogenesis of miRNAs crucial for cell identity via enhancement of both transcription and Drosha/DGCR8-mediated primary miRNA processing |
Ri et al. [43] | Over-expression of miR-1301 induced by deletion of KLF6 SE inhibits cell proliferation in HepG2 cells |
Liang et al. [53] | SE–TF regulatory network plays a crucial role in the carcinogenesis of malignant tumor |
Javierre et al. [60] | Promoter interactions are highly cell-type-specific and enriched for association between active promoters and epigenetically marked enhancers |
Hu et al. [61] | IKAROS, prominently associated with leukemia, collaborates with TFs and SEs via FFL, and triggers aberrant gene expression program in a B-cell epithelial transition |
Zhou et al. [63] | SE-driven TF gene mediates oncogenesis in Natural Killer/T Cell Lymphoma |
Scholz et al. [71] | WNT signaling activates MYC expression via SE in cancer cells |
Zhang et al. [77] | miRNAs driven by SEs positively regulate Hippo pathway during liver development |
Das et al. [78] | miRNAs driven by SEs mediate immune-suppression |
Tan et al. [79] | miRNAs/genes with positive correlations tend to form super-enhancer-like regions |
Turunen et al. [80] | Synergistic role of miRNAs and TFs coinciding with SEs are associated with Hippo signaling pathway |
5. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ponting, C.P.; Hardison, R.C. What fraction of the human genome is functional? Genome Res. 2011, 21, 1769–1976. [Google Scholar] [CrossRef]
- Levine, M. Transcriptional enhancers in animal development and evolution. Curr. Biol. 2010, 20, R754–R763. [Google Scholar] [CrossRef]
- Whyte, W.A.; Orlando, D.A.; Hnisz, D.; Abraham, B.J.; Lin, C.Y.; Kagey, M.H.; Rahl, P.B.; Lee, T.I.; Young, R.A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013, 153, 307–319. [Google Scholar] [CrossRef]
- Murakawa, Y.; Yoshihara, M.; Kawaji, H.; Nishikawa, M.; Zayed, H.; Suzuki, H.; Hayashizaki, Y.; FANTOM Consortium. Enhanced identification of transcriptional enhancers provides mechanistic insights into diseases. Trends Genet. 2016, 32, 76–88. [Google Scholar] [CrossRef]
- Karnuta, J.M.; Scacheri, P.C. Enhancers: Bridging the gap between gene control and human disease. Hum. Mol. Genet. 2018, 27, R219–R227. [Google Scholar] [CrossRef] [PubMed]
- Oldridge, D.A.; Wood, A.C.; Weichert-Leahey, N.; Crimmins, I.; Sussman, R.; Winter, C.; McDaniel, L.D.; Diamond, M.; Hart, L.S.; Zhu, S.; et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature 2015, 528, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Nakayamada, S.; Tanaka, Y. Critical roles of super-enhancers in the pathogenesis of autoimmune diseases. Inflamm. Regen. 2020, 40, 16. [Google Scholar] [CrossRef] [PubMed]
- Hnisz, D.; Abraham, B.J.; Lee, T.I.; Lau, A.; Saint-André, V.; Sigova, A.A.; Hoke, H.A.; Young, R.A. Super-enhancers in the control of cell identity and disease. Cell 2013, 155, 934–947. [Google Scholar] [CrossRef] [PubMed]
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef]
- Lovén, J.; Hoke, H.A.; Lin, C.Y.; Lau, A.; Orlando, D.A.; Vakoc, C.R.; Bradner, J.E.; Lee, T.I.; Young, R.A. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013, 153, 320–334. [Google Scholar] [CrossRef] [PubMed]
- Kleftogiannis, D.; Kalnis, P.; Bajic, V.B. Progress and challenges in bioinformatics approaches for enhancer identification. Brief. Bioinform. 2016, 17, 967–979. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Liu, Z.; Duan, Y.; Li, C. Integrative approaches based on genomic techniques in the functional studies on enhancers. Brief. Bioinform. 2023, 25, bbad442. [Google Scholar] [CrossRef]
- Qian, F.C.; Zhou, L.W.; Li, Y.Y.; Yu, Z.M.; Li, L.D.; Wang, Y.Z.; Xu, M.C.; Wang, Q.Y.; Li, C.Q. SEanalysis 2.0: A comprehensive super-enhancer regulatory network analysis tool for human and mouse. Nucleic Acids Res. 2023, 51, W520–W527. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.H.; Shi, M.W.; Zhang, Y.; Wang, D.Y.; Tong, Y.B.; Pan, X.L.; Cheng, S. CenhANCER: A comprehensive cancer enhancer database for primary tissues and cell lines. Database 2023, 2023, baad022. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Shi, S.; Ai, B.; Jiang, Y.; Liu, Y.; Han, X.; Xu, M.; Pan, Q.; Wang, F.; Wang, Q.; et al. ENdb: A manually curated database of experimentally supported enhancers for human and mouse. Nucleic Acids Res. 2020, 48, D51–D57. [Google Scholar] [CrossRef]
- Gao, T.; Qian, J. EnhancerAtlas 2.0: An updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res. 2020, 48, D58–D64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wong, C.H.; Birnbaum, R.Y.; Li, G.; Favaro, R.; Ngan, C.Y.; Lim, J.; Tai, E.; Poh, H.M.; Wong, E.; et al. Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations. Nature 2013, 504, 306–310. [Google Scholar] [CrossRef]
- Mumbach, M.R.; Satpathy, A.T.; Boyle, E.A.; Dai, C.; Gowen, B.G.; Cho, S.W.; Nguyen, M.L.; Rubin, A.J.; Granja, J.M.; Kazane, K.R.; et al. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet. 2017, 49, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, P.V.; Kreis, S. Integrative approaches for analysis of mRNA and microRNA high-throughput data. Comput. Struct. Biotechnol. J. 2021, 19, 1154–1162. [Google Scholar] [CrossRef]
- Min, H.; Yoon, S. Got target? Computational methods for microRNA target prediction and their extension. Exp. Mol. Med. 2010, 42, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Lewis, B.P.; Shih, I.h.; Jones-Rhoades, M.W.; Bartel, D.P.; Burge, C.B. Prediction of mammalian microRNA targets. Cell 2003, 115, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in Drosophila. Genome Biol. 2003, 5, R1. [Google Scholar] [CrossRef] [PubMed]
- Griffiths-Jones, S.; Grocock, R.J.; van Dongen, S.; Bateman, A.; Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34, D140–D144. [Google Scholar] [CrossRef]
- Papadopoulos, G.L.; Reczko, M.; Simossis, V.A.; Sethupathy, P.; Hatzigeorgiou, A.G. The database of experimentally supported targets: A functional update of TarBase. Nucleic Acids Res. 2009, 37, D155–D158. [Google Scholar] [CrossRef]
- Zotos, P.; Papachristoudis, G.; Roubelakis, M.G.; Michalopoulos, I.; Pappa, K.I.; Anagnou, N.P.; Kossida, S. GOmir: A stand-alone application for human microRNA target analysis and gene ontology clustering. In Proceedings of the 2008 8th IEEE International Conference on BioInformatics and BioEngineering, Athens, Greece, 8–10 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–6. [Google Scholar]
- Xiao, F.; Zuo, Z.; Cai, G.; Kang, S.; Gao, X.; Li, T. miRecords: An integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009, 37, D105–D110. [Google Scholar] [CrossRef]
- Alexiou, P.; Maragkakis, M.; Papadopoulos, G.L.; Reczko, M.; Hatzigeorgiou, A.G. Lost in translation: An assessment and perspective for computational microRNA target identification. Bioinformatics 2009, 25, 3049–3055. [Google Scholar] [CrossRef]
- Cihan, M.; Andrade-Navarro, M.A. Detection of features predictive of microRNA targets by integration of network data. PLoS ONE 2022, 17, e0269731. [Google Scholar] [CrossRef]
- Tokar, T.; Pastrello, C.; Rossos, A.E.M.; Abovsky, M.; Hauschild, A.C.; Tsay, M.; Lu, R.; Jurisica, I. mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res. 2018, 46, D360–D370. [Google Scholar] [CrossRef]
- Friedman, Y.; Naamati, G.; Linial, M. MiRror: A combinatorial analysis web tool for ensembles of microRNAs and their targets. Bioinformatics 2010, 26, 1920–1921. [Google Scholar] [CrossRef]
- Andres-Leon, E.; González Peña, D.; Gomez-Lopez, G.; Pisano, D.G. miRGate: A curated database of human, mouse and rat miRNA–mRNA targets. Database 2015, 2015, bav035. [Google Scholar] [CrossRef] [PubMed]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef]
- Tay, Y.; Zhang, J.; Thomson, A.M.; Lim, B.; Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008, 455, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Nersisyan, S.; Galatenko, A.; Galatenko, V.; Shkurnikov, M.; Tonevitsky, A. miRGTF-net: Integrative miRNA-gene-TF network analysis reveals key drivers of breast cancer recurrence. PLoS ONE 2021, 16, e0249424. [Google Scholar] [CrossRef]
- Guzzi, P.H.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P.; Cannataro, M. Analysis of miRNA, mRNA, and TF interactions through network-based methods. EURASIP J. Bioinform. Syst. Biol. 2015, 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Rana, R.; Chhabra, A.; Jaiswal, A.; Rani, V. miRNA-transcription factor interactions: A combinatorial regulation of gene expression. Mol. Genet. Genom. 2013, 288, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.I.; Young, R.A.; Sharp, P.A. Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis. Cell 2017, 168, 1000–1014.e15. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, H.; Suzuki, H.I. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int. J. Mol. Sci. 2019, 21, 132. [Google Scholar] [CrossRef] [PubMed]
- Ri, K.; Kim, C.; Pak, C.; Ri, P.; Om, H. The KLF6 Super Enhancer Modulates Cell Proliferation via MiR-1301 in Human Hepatoma Cells. Microrna 2020, 9, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Tan, Z.; Lang, M.; Jin, L.; Zhang, Y.; Zhang, Y.; Guo, T.; Guo, Z. EnhFFL: A database of enhancer mediated feed-forward loops for human and mouse. Precis. Clin. Med. 2021, 4, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Zhang, Y.; Huang, Q.; Meng, J.; Ding, R.; Chang, Y.; Xiong, L.; Guo, Z. EnhancerDB: A resource of transcriptional regulation in the context of enhancers. Database 2019, 2019, bay141. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, C.; Zhang, Y.; Song, C.; Chen, J.; Li, Y.; Wei, L.; Qian, F.; Ai, B.; Liu, Y.; et al. TRmir: A Comprehensive Resource for Human Transcriptional Regulatory Information of MiRNAs. Front. Genet. 2022, 13, 808950. [Google Scholar] [CrossRef] [PubMed]
- Mitsis, T.; Efthimiadou, A.; Bacopoulou, F.; Vlachakis, D.; Chrousos, G.P.; Eliopoulos, E. Transcription factors and evolution: An integral part of gene expression. World Acad. Sci. J. 2020, 2, 3–8. [Google Scholar] [CrossRef]
- Sayed, M.; Park, J.W. miRinGO: Prediction of biological processes indirectly targeted by human microRNAs. Non-Coding RNA 2023, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, A.R.; Platig, J.; Fagny, M.; Chen, C.Y.; Paulson, J.N.; Lopes-Ramos, C.M.; DeMeo, D.L.; Quackenbush, J.; Glass, K.; Kuijjer, M.L. Understanding Tissue-Specific Gene Regulation. Cell Rep. 2017, 21, 1077–1088. [Google Scholar] [CrossRef]
- Glass, K.; Huttenhower, C.; Quackenbush, J.; Yuan, G.C. Passing messages between biological networks to refine predicted interactions. PLoS ONE 2013, 8, e64832. [Google Scholar] [CrossRef]
- Kuijjer, M.L.; Fagny, M.; Marin, A.; Quackenbush, J.; Glass, K. PUMA: PANDA Using MicroRNA Associations. Bioinformatics 2020, 36, 4765–4773. [Google Scholar] [CrossRef]
- Suzuki, H.; Katsura, A.; Matsuyama, H.; Miyazono, K. MicroRNA regulons in tumor microenvironment. Oncogene 2015, 34, 3085–3094. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, L.; Xin, T.; Li, B.; Zhang, D. Superenhancer–transcription factor regulatory network in malignant tumors. Open Med. 2021, 16, 1564–1582. [Google Scholar] [CrossRef]
- Shalgi, R.; Lieber, D.; Oren, M.; Pilpel, Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput. Biol. 2007, 3, e131. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Shah, P.K.; Amin, S.B.; Samur, M.K.; Huang, N.; Wang, X.; Misra, V.; Ji, H.; Gabuzda, D.; Li, C. Integrative analysis of gene and miRNA expression profiles with transcription factor-miRNA feed-forward loops identifies regulators in human cancers. Nucleic Acids Res. 2012, 40, e135. [Google Scholar] [CrossRef]
- Xie, G.Y.; Xia, M.; Miao, Y.R.; Luo, M.; Zhang, Q.; Guo, A.Y. FFLtool: A web server for transcription factor and miRNA feed forward loop analysis in human. Bioinformatics 2020, 36, 2605–2607. [Google Scholar] [CrossRef]
- Mangan, S.; Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 2003, 100, 11980–11985. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.T.; Corces, V.G. Enhancer function: New insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 2011, 12, 283–293. [Google Scholar] [CrossRef]
- Sanyal, A.; Lajoie, B.R.; Jain, G.; Dekker, J. The long-range interaction landscape of gene promoters. Nature 2012, 489, 109–113. [Google Scholar] [CrossRef]
- Javierre, B.M.; Burren, O.S.; Wilder, S.P.; Kreuzhuber, R.; Hill, S.M.; Sewitz, S.; Cairns, J.; Wingett, S.W.; Várnai, C.; Thiecke, M.J.; et al. Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters. Cell 2016, 167, 1369–1384.e19. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Kashiwagi, M.; Yoshida, T.; Joshi, I.; Jena, N.; Somasundaram, R.; Emmanuel, A.O.; Sigvardsson, M.; Fitamant, J.; et al. Superenhancer reprogramming drives a B-cell-epithelial transition and high-risk leukemia. Genes Dev. 2016, 30, 1971–1990. [Google Scholar] [CrossRef]
- Ng, S.B.; Yan, J.; Huang, G.; Selvarajan, V.; Tay, J.L.S.; Lin, B.; Bi, C.; Tan, J.; Kwong, Y.L.; Shimizu, N.; et al. Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma. Blood 2011, 118, 4919–4929. [Google Scholar] [CrossRef]
- Zhou, J.; Toh, S.H.M.; Tan, T.K.; Balan, K.; Lim, J.Q.; Tan, T.Z.; Xiong, S.; Jia, Y.; Ng, S.B.; Peng, Y.; et al. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Mol. Cancer 2023, 22, 69. [Google Scholar] [CrossRef]
- Jiang, R.; Tu, Z.; Chen, T.; Sun, F. Network motif identification in stochastic networks. Proc. Natl. Acad. Sci. USA 2006, 103, 9404–9409. [Google Scholar] [CrossRef]
- Yeger-Lotem, E.; Sattath, S.; Kashtan, N.; Itzkovitz, S.; Milo, R.; Pinter, R.Y.; Alon, U.; Margalit, H. Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc. Natl. Acad. Sci. USA 2004, 101, 5934–5939. [Google Scholar] [CrossRef]
- Kashtan, N.; Itzkovitz, S.; Milo, R.; Alon, U. Topological generalizations of network motifs. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2004, 70, 031909. [Google Scholar] [CrossRef]
- Guo, Y.; Alexander, K.; Clark, A.G.; Grimson, A.; Yu, H. Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs. RNA 2016, 22, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.A.; Wentzel, E.A.; Zeller, K.I.; Dang, C.V.; Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005, 435, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, I.; Tanaka, H.; Kanakura, Y. E2F1 and c-Myc in cell growth and death. Cell Cycle 2003, 2, 333–338. [Google Scholar] [CrossRef]
- Lee, K.H.; Chen, Y.L.; Yeh, S.D.; Hsiao, M.; Lin, J.T.; Goan, Y.G.; Lu, P.J. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 2009, 28, 3360–3370. [Google Scholar] [CrossRef]
- Scholz, B.A.; Sumida, N.; de Lima, C.D.M.; Chachoua, I.; Martino, M.; Tzelepis, I.; Nikoshkov, A.; Zhao, H.; Mehmood, R.; Sifakis, E.G.; et al. WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene gating. Nat. Genet. 2019, 51, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Prompsy, P.B.; Toubia, J.; Gearing, L.J.; Knight, R.L.; Forster, S.C.; Bracken, C.P.; Gantier, M.P. Making use of transcription factor enrichment to identify functional microRNA-regulons. Comput. Struct. Biotechnol. J. 2021, 19, 4896–4903. [Google Scholar] [CrossRef] [PubMed]
- Backes, C.; Khaleeq, Q.T.; Meese, E.; Keller, A. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res. 2016, 44, W110–W116. [Google Scholar] [CrossRef]
- Borgmästars, E.; de Weerd, H.A.; Lubovac-Pilav, Z.; Sund, M. miRFA: An automated pipeline for microRNA functional analysis with correlation support from TCGA and TCPA expression data in pancreatic cancer. BMC Bioinform. 2019, 20, 393. [Google Scholar] [CrossRef]
- Hnisz, D.; Schuijers, J.; Lin, C.Y.; Weintraub, A.S.; Abraham, B.J.; Lee, T.I.; Bradner, J.E.; Young, R.A. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol. Cell 2015, 58, 362–370. [Google Scholar] [CrossRef]
- Tang, F.; Yang, Z.; Tan, Y.; Li, Y. Super-enhancer function and its application in cancer targeted therapy. NPJ Precis. Oncol. 2020, 4, 2. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.Y.; Chen, P.P.; Xu, H.; Xie, S.J.; Xu, S.J.; Li, B.; Li, J.H.; Liu, S.; Yang, J.H.; et al. Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death Dis. 2021, 12, 1161. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mukherjee, S.; Ali, N. Super enhancer-mediated transcription of miR146a-5p drives M2 polarization during Leishmania donovani infection. PLoS Pathog. 2021, 17, e1009343. [Google Scholar] [CrossRef]
- Tan, H.; Huang, S.; Zhang, Z.; Qian, X.; Sun, P.; Zhou, X. Pan-cancer analysis on microRNA-associated gene activation. EBioMedicine 2019, 43, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Turunen, T.; Hernández de Sande, A.; Pölönen, P.; Heinäniemi, M. Genome-wide analysis of primary microRNA expression using H3K36me3 ChIP-seq data. Comput. Struct. Biotechnol. J. 2021, 19, 1944–1955. [Google Scholar] [CrossRef]
- Wang, D.; Gu, J.; Wang, T.; Ding, Z. OncomiRDB: A database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics 2014, 30, 2237–2238. [Google Scholar] [CrossRef]
- Pott, S.; Lieb, J.D. What are super-enhancers? Nat. Genet. 2015, 47, 8–12. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Rai, S.N. Predicting the Effect of miRNA on Gene Regulation to Foster Translational Multi-Omics Research—A Review on the Role of Super-Enhancers. Non-Coding RNA 2024, 10, 45. https://doi.org/10.3390/ncrna10040045
Das S, Rai SN. Predicting the Effect of miRNA on Gene Regulation to Foster Translational Multi-Omics Research—A Review on the Role of Super-Enhancers. Non-Coding RNA. 2024; 10(4):45. https://doi.org/10.3390/ncrna10040045
Chicago/Turabian StyleDas, Sarmistha, and Shesh N. Rai. 2024. "Predicting the Effect of miRNA on Gene Regulation to Foster Translational Multi-Omics Research—A Review on the Role of Super-Enhancers" Non-Coding RNA 10, no. 4: 45. https://doi.org/10.3390/ncrna10040045
APA StyleDas, S., & Rai, S. N. (2024). Predicting the Effect of miRNA on Gene Regulation to Foster Translational Multi-Omics Research—A Review on the Role of Super-Enhancers. Non-Coding RNA, 10(4), 45. https://doi.org/10.3390/ncrna10040045