Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer
Abstract
:1. Introduction
2. Non-Coding RNAs in Colorectal Cancer
2.1. Key ncRNAs Involved in CRC Progression
2.2. Roles of ncRNAs in CRC Hallmarks
2.2.1. Recent scRNA-Seq Studies Revealing ncRNA Heterogeneity in CRC
2.2.2. Potential of Single-Cell Derived ncRNA Signatures for CRC Diagnosis and Prognosis
2.2.3. Therapeutic Targeting of Non-Coding RNAs in CRC
3. Analyzing Single-Cell Sequencing for CRC
3.1. Preprocessing with Cell Ranger
3.2. Data Processing in SEURAT
3.3. Dimensionality Reduction and Cluster
Differential Expression
3.4. Downstream Analysis
4. Single-Cell Bioinformatics Resources for ncRNA Analysis in CRC
4.1. Databases and Resources for CRC-Specific ncRNA Data
4.2. Computational Methods for ncRNA Identification and Characterization in Single-Cell Data
4.3. Integration of Multi-Omics Single-Cell Data and Differential Expression Analysis
4.4. Functional Enrichment, Pathway Analysis, and Network-Based Methods
4.5. Survival Analysis and Prognostic Models
5. Challenges Single-Cell Analysis of ncRNAs in CRC
5.1. Technical Limitations
5.2. Functional Validation
5.3. Integration with Other Data Types
5.4. Clinical Translation
6. Discussion
6.1. Revolutionizing ncRNA Research in CRC Through Single-Cell Sequencing
6.2. Integration of Computational Methods
6.3. DNA Analysis and Epigenetic Considerations
6.4. Future Perspectives and Challenges
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bardhan, K.; Liu, K. Epigenetics and colorectal cancer pathogenesis. Cancers 2013, 5, 676–713. [Google Scholar] [CrossRef] [PubMed]
- Gondal, M.N.; Butt, R.N.; Shah, O.S.; Sultan, M.U.; Mustafa, G.; Nasir, Z.; Hussain, R.; Khawar, H.; Qazi, R.; Tariq, M.; et al. A personalized therapeutics approach using an in silico Drosophila Patient Model reveals optimal chemo- and targeted therapy combinations for colorectal cancer. Front. Oncol. 2021, 11, 692592. [Google Scholar] [CrossRef]
- Spano, D.; Cerrato, A.; Mattheolabakis, G. Combinatorial Approaches for Cancer Treatment: From Basic to Translational Research; Frontiers Media SA: Lausanne, Switzerland, 2022. [Google Scholar] [CrossRef]
- Lulli, M.; Napoli, C.; Landini, I.; Mini, E.; Lapucci, A. Role of non-coding RNAs in colorectal cancer: Focus on long non-coding RNAs. Int. J. Mol. Sci. 2022, 23, 13431. [Google Scholar] [CrossRef]
- Gondal, M.N.; Chaudhary, S.U. Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics. Front. Oncol. 2021, 11, 712505. [Google Scholar] [CrossRef] [PubMed]
- Gondal, M.N.; Sultan, M.U.; Arif, A.; Rehman, A.; Awan, H.A.; Arshad, Z.; Ahmed, W.; Chaudhary, M.F.A.; Khan, S.; Tanveer, Z.B.; et al. TISON: A next-generation multi-scale modeling theatre for in silico systems oncology. BioRxiv 2021. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-generation sequencing technology: Current trends and advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Gondal, M.N.; Shah, S.U.R.; Chinnaiyan, A.M.; Cieslik, M. A systematic overview of single-cell transcriptomics databases, their use cases, and limitations. Front. Bioinform. 2024, 4, 1417428. [Google Scholar] [CrossRef]
- Chen, G.; Ning, B.; Shi, T. Single-cell RNA-seq technologies and related computational data analysis. Front. Genet. 2019, 10, 317. [Google Scholar] [CrossRef]
- Mihaljevic, A.; Rubin, P.D.; Chouvardas, P.; Esposito, R. Cell type specific long non-coding RNA targets identified by integrative analysis of single-cell and bulk colorectal cancer transcriptomes. Sci. Rep. 2024, 14, 10939. [Google Scholar] [CrossRef]
- Jia, Z.; An, J.; Liu, Z.; Zhang, F. Non-coding RNAs in colorectal cancer: Their functions and mechanisms. Front. Oncol. 2022, 12, 783079. [Google Scholar] [CrossRef]
- Baek, J.; Lee, B.; Kwon, S.; Yoon, S. LncRNAnet: Long non-coding RNA identification using deep learning. Bioinformatics 2018, 34, 3889–3897. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, G.; Abbassi, A.Z.; Khalid, M.F.; Gondal, M.N.; Naqvi, T.A.; Shah, M.M.; Chaudhary, S.U.; Ahmad, R. A cyanobacterial photorespiratory bypass model to enhance photosynthesis by rerouting photorespiratory pathway in C3 plants. Sci. Rep. 2020, 10, 20879. [Google Scholar] [CrossRef] [PubMed]
- Argelaguet, R.; Arnol, D.; Bredikhin, D.; Deloro, Y.; Velten, B.; Marioni, J.C.; Stegle, O. MOFA+: A statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Finak, G.; McDavid, A.; Yajima, M.; Deng, J.; Gersuk, V.; Shalek, A.K.; Slichter, C.K.; Miller, H.W.; McElrath, M.J.; Prlic, M.; et al. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015, 16, 278. [Google Scholar] [CrossRef]
- Li, H.-S.; Ou-Yang, L.; Zhu, Y.; Yan, H.; Zhang, X.-F. scDEA: Differential expression analysis in single-cell RNA-sequencing data via ensemble learning. Brief. Bioinform. 2022, 23, bbab402. [Google Scholar] [CrossRef]
- Zheng, H.-T.; Shi, D.B.; Wang, Y.W.; Li, X.X.; Xu, Y.; Tripathi, P.; Gu, W.L.; Cai, G.X.; Cai, S.J. High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 3174–3181. [Google Scholar]
- Ji, Q.; Cai, G.; Liu, X.; Zhang, Y.; Wang, Y.; Zhou, L.; Sui, H.; Li, Q. MALAT1 regulates the transcriptional and translational levels of proto-oncogene RUNX2 in colorectal cancer metastasis. Cell Death Dis. 2019, 10, 378. [Google Scholar] [CrossRef]
- Liu, F.; Song, Z.M.; Wang, X.D.; Du, S.Y.; Peng, N.; Zhou, J.R.; Zhang, M.G. Long non-coding RNA signature for liver metastasis of colorectal cancers. Front. Cell Dev. Biol. 2021, 9, 707115. [Google Scholar] [CrossRef]
- Slaby, O.; Svoboda, M.; Fabian, P.; Smerdova, T.; Knoflickova, D.; Bednarikova, M.; Nenutil, R.; Vyzula, R. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007, 72, 397–402. [Google Scholar] [CrossRef]
- Schetter, A.J.; Okayama, H.; Harris, C.C. The role of microRNAs in colorectal cancer. Cancer J. 2012, 18, 244–252. [Google Scholar] [CrossRef]
- Xu, X.M.; Qian, J.C.; Deng, Z.L.; Cai, Z.; Tang, T.; Wang, P.; Zhang, K.H.; Cai, J.P. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol. Lett. 2012, 4, 339–345. [Google Scholar] [CrossRef]
- Hsiao, K.-Y.; Lin, Y.C.; Gupta, S.K.; Chang, N.; Yen, L.; Sun, H.S.; Tsai, S.J. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 2017, 77, 2339–2350. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Li, Z.; Li, L.; Xie, H.; Lu, Q.; He, X. Hypoxia-induced circCCDC66 promotes the tumorigenesis of colorectal cancer via the miR-3140/autophagy pathway. Int. J. Mol. Med. 2020, 46, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, C.; Song, H.; Yuan, J.; Zhang, L.; He, J. CircCCDC66: Emerging roles and potential clinical values in malignant tumors. Front. Oncol. 2022, 12, 1061007. [Google Scholar] [CrossRef]
- Rinn, J.L. lncRNAs: Linking RNA to chromatin. Cold Spring Harb. Perspect. Biol. 2014, 6, a018614. [Google Scholar] [CrossRef]
- Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci. 2016, 73, 2491–2509. [Google Scholar] [CrossRef] [PubMed]
- Michalik, K.M.; You, X.; Manavski, Y.; Doddaballapur, A.; Zörnig, M.; Braun, T.; John, D.; Ponomareva, Y.; Chen, W.; Uchida, S.; et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ. Res. 2014, 114, 1389–1397. [Google Scholar] [CrossRef]
- He, S.; Liu, S.; Zhu, H. The sequence, structure and evolutionary features of HOTAIR in mammals. BMC Evol. Biol. 2011, 11, 102. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; An, G.; Ma, Q. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp. Biol. Med. 2016, 241, 644–649. [Google Scholar] [CrossRef]
- Date, Y.; Ebisawa, M.; Fukuda, S.; Shima, H.; Obata, Y.; Takahashi, D.; Kato, T.; Hanazato, M.; Nakato, G.; Williams, I.R.; et al. NALT M cells are important for immune induction for the common mucosal immune system. Int. Immunol. 2017, 29, 471–478. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, S.; Xia, H.; Gao, Z.; Huang, R.; Tang, E.; Jiang, X. Long noncoding RNA FEZF1-AS1 in human cancers. Clin. Chim. Acta 2019, 497, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Krichevsky, A.M.; Gabriely, G. miR-21: A small multi-faceted RNA. J. Cell. Mol. Med. 2009, 13, 39–53. [Google Scholar] [CrossRef]
- Stepicheva, N.A.; Song, J.L. Function and regulation of microRNA-31 in development and disease. Mol. Reprod. Dev. 2016, 83, 654–674. [Google Scholar] [CrossRef]
- Jauhari, A.; Singh, T.; Singh, P.; Parmar, D.; Yadav, S. Regulation of miR-34 family in neuronal development. Mol. Neurobiol. 2018, 55, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Bell-Hensley, A.; Das, S.; McAlinden, A. The miR-181 family: Wide-ranging pathophysiological effects on cell fate and function. J. Cell. Physiol. 2023, 238, 698–713. [Google Scholar] [CrossRef] [PubMed]
- Hua, K.; Jin, J.; Zhao, J.; Song, J.; Song, H.; Li, D.; Maskey, N.; Zhao, B.; Wu, C.; Xu, H.; et al. miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2. Int. J. Oncol. 2016, 48, 1997–2006. [Google Scholar] [CrossRef]
- Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.R.; Srivastava, D. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 2008, 15, 272–284. [Google Scholar] [CrossRef]
- Miki, H.; Setou, M.; Kaneshiro, K.; Hirokawa, N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 2001, 98, 7004–7011. [Google Scholar] [CrossRef]
- Xie, H.; Ren, X.; Xin, S.; Lan, X.; Lu, G.; Lin, Y.; Yang, S.; Zeng, Z.; Liao, W.; Ding, Y.Q.; et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 2016, 7, 26680–26691. [Google Scholar] [CrossRef]
- Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 2016, 7, 11215. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y.; Yuan, F.; Jiang, S. Circular RNA CCDC66 regulates osteoarthritis progression by targeting miR-3622b-5p. Gerontology 2022, 68, 431–441. [Google Scholar] [CrossRef]
- Yan, L.; Wu, X.; Yin, X.; Du, F.; Liu, Y.; Ding, X. LncRNA CCAT2 promoted osteosarcoma cell proliferation and invasion. J. Cell. Mol. Med. 2018, 22, 2592–2599. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Spizzo, R.; Atlasi, Y.; Nicoloso, M.; Shimizu, M.; Redis, R.S.; Nishida, N.; Gafà, R.; Song, J.; Guo, Z.; et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013, 23, 1446–1461. [Google Scholar] [CrossRef]
- Li, J.; Liang, H.; Bai, M.; Ning, T.; Wang, C.; Fan, Q.; Wang, Y.; Fu, Z.; Wang, N.; Liu, R.; et al. MiR-135b promotes cancer progression by targeting transforming growth factor beta receptor II (TGFBR2) in colorectal cancer. PLoS ONE 2015, 10, e0130194. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, B.A.; Gobran, M.A.; Metwalli, A.E.M.; Abd Elhady, W.A.; Tolba, A.M.; Omar, W.E. Interplay of LncRNA TUG1 and TGF-β/P53 expression in colorectal cancer. Asian Pac. J. Cancer Prev. 2023, 24, 3957–3968. [Google Scholar] [CrossRef] [PubMed]
- Azizidoost, S.; Nasrolahi, A.; Ghaedrahmati, F.; Kempisty, B.; Mozdziak, P.; Radoszkiewicz, K.; Farzaneh, M. The pathogenic roles of lncRNA-Taurine upregulated 1 (TUG1) in colorectal cancer. Cancer Cell Int. 2022, 22, 335. [Google Scholar] [CrossRef]
- Bettin, N.; Oss Pegorar, C.; Cusanelli, E. The emerging roles of TERRA in telomere maintenance and genome stability. Cells 2019, 8, 246. [Google Scholar] [CrossRef]
- Soheilifar, M.H.; Grusch, M.; Neghab, H.K.; Amini, R.; Maadi, H.; Saidijam, M.; Wang, Z. Angioregulatory microRNAs in colorectal cancer. Cancers 2019, 12, 71. [Google Scholar] [CrossRef]
- Selven, H.; Busund, L.-T.R.; Andersen, S.; Bremnes, R.M.; Kilvær, T.K. High expression of microRNA-126 relates to favorable prognosis for colon cancer patients. Sci. Rep. 2021, 11, 9592. [Google Scholar] [CrossRef]
- Li, J.; Zhao, L.M.; Zhang, C.; Li, M.; Gao, B.; Hu, X.H.; Cao, J.; Wang, G.Y. The lncRNA FEZF1-AS1 promotes the progression of colorectal cancer through regulating OTX1 and targeting miR-30a-5p. Oncol. Res. 2020, 28, 51–63. [Google Scholar] [CrossRef]
- Bian, Z.; Zhang, J.; Li, M.; Feng, Y.; Wang, X.; Zhang, J.; Yao, S.; Jin, G.; Du, J.; Han, W.; et al. LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin. Cancer Res. 2018, 24, 4808–4819. [Google Scholar] [CrossRef]
- He, R.; Zhang, F.H.; Shen, N. LncRNA FEZF1-AS1 enhances epithelial-mesenchymal transition (EMT) through suppressing E-cadherin and regulating WNT pathway in non-small cell lung cancer (NSCLC). Biomed. Pharmacother. 2017, 95, 331–338. [Google Scholar] [CrossRef]
- Luo, Z.-D.; Wang, Y.F.; Zhao, Y.X.; Yu, L.C.; Li, T.; Fan, Y.J.; Zeng, S.J.; Zhang, Y.L.; Zhang, Y.; Zhang, X. Emerging roles of non-coding RNAs in colorectal cancer oxaliplatin resistance and liquid biopsy potential. World J. Gastroenterol. 2023, 29, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Zhao, L.; Zhang, L.; Wu, S.; Li, Z.; Qin, Y.; Lin, F.; Pan, L. LncRNA NALT1 promotes colorectal cancer progression via targeting PEG10 by sponging microRNA-574-5p. Cell Death Dis. 2022, 13, 960. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Z.; Zhou, Q.; Wang, W.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Chang, Y.; Xia, K.; et al. MicroRNAs, long noncoding RNAs, and circular RNAs: Potential tumor biomarkers and targets for colorectal cancer. Cancer Manag. Res. 2018, 10, 2249–2257. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ju, Q. Non-coding RNAs implicated in the tumor microenvironment of colorectal cancer: Roles, mechanisms and clinical study. Front. Oncol. 2022, 12, 888276. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Na, M.J.; Yoon, S.; Shin, E.; Ha, J.W.; Jeon, S.; Nam, S.W. The roles and mechanisms of coding and noncoding RNA variations in cancer. Exp. Mol. Med. 2024, 56, 1909–1920. [Google Scholar] [CrossRef]
- Han, P.; Li, J.W.; Zhang, B.M.; Lv, J.C.; Li, Y.M.; Gu, X.Y.; Yu, Z.W.; Jia, Y.H.; Bai, X.F.; Li, L.; et al. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol. Cancer 2017, 16, 9. [Google Scholar] [CrossRef]
- He, Y.; Yu, D.; Zhu, L.; Zhong, S.; Zhao, J.; Tang, J. MiR-149 in human cancer: A systemic review. J. Cancer 2018, 9, 375–388. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, Y.; Chen, J.; Hu, J.; Wang, S.; Zhang, D.; Sun, Y. BRAF-activated long non-coding RNA contributes to colorectal cancer migration by inducing epithelial-mesenchymal transition. Oncol. Lett. 2014, 8, 869–875. [Google Scholar] [CrossRef]
- Lai, H.; Zhang, J.; Zuo, H.; Liu, H.; Xu, J.; Feng, Y.; Lin, Y.; Mo, X. Overexpression of miR-17 is correlated with liver metastasis in colorectal cancer. Medicine 2020, 99, e19265. [Google Scholar] [CrossRef]
- Wang, R.-Q.; Zhao, W.; Yang, H.K.; Dong, J.M.; Lin, W.J.; He, F.Z.; Cui, M.; Zhou, Z.L. Single-cell RNA sequencing analysis of the heterogeneity in gene regulatory networks in colorectal cancer. Front. Cell Dev. Biol. 2021, 9, 765578. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Cai, Y.; Chen, D.; Xiang, Y.; Cai, W.; Mao, J.; Ye, J. Single-cell transcriptome analysis reveals heterogeneity and convergence of the tumor microenvironment in colorectal cancer. Front. Immunol. 2022, 13, 1003419. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.; Li, Z.; Li, P.; Ye, S.; Huang, J.; Hu, T.; Zhang, C.; Yuan, M.; Chen, Y.; Wu, X.; et al. Dynamic heterogeneity of colorectal cancer during progression revealed clinical risk-associated cell types and regulations in single-cell resolution and spatial context. Gastroenterol. Rep. 2023, 11, goad034. [Google Scholar] [CrossRef] [PubMed]
- Setty, M.; Kiseliovas, V.; Levine, J.; Gayoso, A.; Mazutis, L.; Pe'er, D. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 2019, 37, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Dann, E.; Henderson, N.C.; Teichmann, S.A.; Morgan, M.D.; Marioni, J.C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 2022, 40, 245–253. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, B.; Chan, J.J.; Tabatabaeian, H.; Tong, Q.Y.; Chew, X.H.; Fan, X.; Driguez, P.; Chan, C.; Cheong, F.; et al. An isoform-resolution transcriptomic atlas of colorectal cancer from long-read single-cell sequencing. Cell Genom. 2024, 4, 100641. [Google Scholar] [CrossRef]
- Yamada, A.; Yu, P.; Lin, W.; Okugawa, Y.; Boland, C.R.; Goel, A. A RNA-Sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci. Rep. 2018, 8, 575. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, L.; Chi, Y.; Wu, H.; Shi, L. LncRNA profile study reveals a seven-lncRNA signature predicts the prognosis of patients with colorectal cancer. Biomark. Res. 2020, 8, 8. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Shao, J.; Wu, X.; Li, T.; Xu, M.; Shi, D. A long non-coding RNA signature for predicting survival in patients with colorectal cancer. Oncotarget 2018, 9, 21687–21695. [Google Scholar] [CrossRef]
- Slaby, O. Non-coding RNAs as biomarkers for colorectal cancer screening and early detection. Adv. Exp. Med. Biol. 2016, 937, 153–170. [Google Scholar]
- Wu, Y.; Xu, X. Long non-coding RNA signature in colorectal cancer: Research progression and clinical application. Cancer Cell Int. 2023, 23, 28. [Google Scholar] [CrossRef] [PubMed]
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics-challenges and potential solutions. Nat. Rev. Drug Discov. 2021, 20, 629–651. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xue, Y.; Amin, M.T.; Yang, Y.; Yang, J.; Zhang, W.; Yang, W.; Niu, X.; Zhang, H.Y.; Gong, J. ncRNA-eQTL: A database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types. Nucleic Acids Res. 2020, 48, D956–D963. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Lu, Y.; Zhang, C.; Cui, Q.; Tang, Y.D.; Ji, X.; Cui, C. LncRNADisease v3.0: An updated database of long non-coding RNA-associated diseases. Nucleic Acids Res. 2024, 52, D1365–D1369. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Chen, W.; Li, J.; Liu, C. CRlncRNA: A manually curated database of cancer-related long non-coding RNAs with experimental proof of functions on clinicopathological and molecular features. BMC Med. Genom. 2018, 11, 114. [Google Scholar] [CrossRef]
- Gao, Y.; Shang, S.; Guo, S.; Li, X.; Zhou, H.; Liu, H.; Sun, Y.; Wang, J.; Wang, P.; Zhi, H.; et al. Lnc2Cancer 3.0: An updated resource for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA-seq data. Nucleic Acids Res. 2021, 49, D1251–D1258. [Google Scholar] [CrossRef]
- Gondal, M.N. Assessing Bias in Gene Expression Omnibus (GEO) Datasets. BioRxiv 2024. [Google Scholar] [CrossRef]
- Bao, Y.; Qiao, Y.; Choi, J.E.; Zhang, Y.; Mannan, R.; Cheng, C.; He, T.; Zheng, Y.; Yu, J.; Gondal, M.; et al. Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2023, 120, e2314416120. [Google Scholar] [CrossRef]
- Xie, B.; Ding, Q.; Han, H.; Wu, D. miRCancer: A microRNA-cancer association database constructed by text mining on literature. Bioinformatics 2013, 29, 638–644. [Google Scholar] [CrossRef]
- Wang, D.; Gu, J.; Wang, T.; Ding, Z. OncomiRDB: A database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics 2014, 30, 2237–2238. [Google Scholar] [CrossRef]
- Wang, C.; Wei, L.; Guo, M.; Zou, Q. Computational approaches in detecting non- coding RNA. Curr. Genom. 2013, 14, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Kato, Y.; Hamada, M.; Akutsu, T.; Asai, K. IPknot: Fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 2011, 27, i85–i93. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liang, C. LncDC: A machine learning-based tool for long non-coding RNA detection from RNA-Seq data. Sci. Rep. 2022, 12, 19083. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.; McGrath, A.; Chen, Y.-P.P. Evaluation of deep learning in non-coding RNA classification. Nat. Mach. Intell. 2019, 1, 246–256. [Google Scholar] [CrossRef]
- Stanojevic, S.; Li, Y.; Ristivojevic, A.; Garmire, L.X. Computational methods for single-cell multi-omics integration and alignment. Genom. Proteom. Bioinform. 2022, 20, 836–849. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Khan, M.I.; Dębski, K.J.; Dabrowski, M.; Czarnecka, A.M.; Szczylik, C. Gene set enrichment analysis and ingenuity pathway analysis of metastatic clear cell renal cell carcinoma cell line. Am. J. Physiol. Renal Physiol. 2016, 311, F424–F436. [Google Scholar] [CrossRef]
- Chodary Khameneh, S.; Razi, S.; Shamdani, S.; Uzan, G.; Naserian, S. Weighted correlation network analysis revealed novel long non-coding RNAs for colorectal cancer. Sci. Rep. 2022, 12, 2990. [Google Scholar] [CrossRef]
- Mostafavi, S.; Ray, D.; Warde-Farley, D.; Grouios, C.; Morris, Q. GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008, 9 (Suppl. S1), S4. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Wu, S.; Gao, J.; Qin, Z.; Zhou, Z.; Liu, J. Weighted gene co expression network analysis (WGCNA) with key pathways and hub-genes related to micro RNAs in ischemic stroke. IET Syst. Biol. 2021, 15, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, B.; Bhasin, M. Survival Genie: A web portal for single-cell data, gene-ratio, and cell composition-based survival analyses. Blood 2021, 138, 276. [Google Scholar] [CrossRef]
- Xu, M.; Guo, X.; Wang, R.D.; Zhang, Z.H.; Jia, Y.M.; Sun, X. Long non-coding RNA HANR as a biomarker for the diagnosis and prognosis of colorectal cancer. Medicine 2020, 99, e19066. [Google Scholar] [CrossRef]
- He, Z.; Lan, Y.; Zhou, X.; Yu, B.; Zhu, T.; Yang, F.; Fu, L.Y.; Chao, H.; Wang, J.; Feng, R.X.; et al. Single-cell transcriptome analysis dissects lncRNA-associated gene networks in Arabidopsis. Plant Commun. 2024, 5, 100717. [Google Scholar] [CrossRef]
- Gondal, M.N.; Cieslik, M.; Chinnaiyan, A.M. Integrated cancer cell-specific single-cell RNA-seq datasets of immune checkpoint blockade-treated patients. Scientific Data 2025, 12, 139. [Google Scholar] [CrossRef]
- Choi, J.E.; Qiao, Y.; Kryczek, I.; Yu, J.; Gurkan, J.; Bao, Y.; Gondal, M.; Tien, J.C.Y.; Maj, T.; Yazdani, S.; et al. PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nat. Commun. 2024, 15, 5487. [Google Scholar] [CrossRef]
- Gondal, M.N.; Mannan, R.; Bao, Y.; Hu, J.; Cieslik, M.; Chinnaiyan, A.M. Abstract 860: Pan-tissue master regulator inference reveals mechanisms of MHC alterations in cancers. Cancer Res. 2024, 84, 860. [Google Scholar] [CrossRef]
- Baysoy, A.; Bai, Z.; Satija, R.; Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 2023, 24, 695–713. [Google Scholar] [CrossRef]
- Van de Sande, B.; Lee, J.S.; Mutasa-Gottgens, E.; Naughton, B.; Bacon, W.; Manning, J.; Wang, Y.; Pollard, J.; Mendez, M.; Hill, J.; et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 2023, 22, 496–520. [Google Scholar] [CrossRef]
- Pan, G.; Jiang, L.; Tang, J.; Guo, F. A novel computational method for detecting DNA methylation sites with DNA sequence information and physicochemical properties. Int. J. Mol. Sci. 2018, 19, 511. [Google Scholar] [CrossRef] [PubMed]
- Beshnova, D.A.; Cherstvy, A.G.; Vainshtein, Y.; Teif, V.B. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions. PLoS Comput. Biol. 2014, 10, e1003698. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Blocker, A.W.; Airoldi, E.M.; O’Shea, E.K. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution. Elife 2016, 5, e16970. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Fondufe-Mittendorf, Y.; Xia, L.; Flatow, J.; Widom, J.; Wang, J.-P. Predicting nucleosome positioning using a duration Hidden Markov Model. BMC Bioinform. 2010, 11, 346. [Google Scholar] [CrossRef]
- Tolstorukov, M.Y.; Choudhary, V.; Olson, W.K.; Zhurkin, V.B.; Park, P.J. nuScore: A web-interface for nucleosome positioning predictions. Bioinformatics 2008, 24, 1456–1458. [Google Scholar] [CrossRef]
Type | ncRNAs | Role in the Cell | Reference |
---|---|---|---|
Long Non-Coding RNAs (lncRNAs) | HOTAIR | Key regulator of body plan during development and cellular Identity. | [26,27] |
MALAT1 | Involved in the endothelial cell function. | [28] | |
BANCR | Works as a regulatory molecule for cell, proliferation, migration and expression. | [29] | |
TUG1 | Acts as a tumor suppressor/regulation on cell apoptosis. | [30] | |
NALT 1 | Particularly involved in the immune response and inflammation. | [31] | |
FEZF1-AS1 | Plays an important role in gene regulation, cell cycle regulation, and epigenetic modifications leading to the major participant in cancer cell proliferation and migration. | [32] | |
microRNAs (miRNAs) | miR-21 | Involved in the post-transcriptional regulation. | [33] |
miR-31 | Involved in cell’s normal physiological processes and plays an important role in the embryonic implantation, development of bone tissues, and immune system functionality. | [34] | |
miR-34a | Involved in the differentiation of NSCs. | [35] | |
miR-181a-5p | Involved in regulation of cell differentiation, osteoblasts, immune, hematopoietic cells, chondrocytes and adipocytes. Also plays a key role in cardiac pulmonary and vascular abnormalities. | [36] | |
miR-135b | Plays a major role in cell proliferation, differentiation and viral infections. Also can act as an oncogenic nd tumor suppressor. | [37] | |
miR-126 | Involvement in regulation of VEGF. Knockdown of this miRNA can lead to hemorrhage and loss of vascular integrity during embryonic development. | [38] | |
KIF23 | Kinesin Family Member 23 plays an important role in cell division and intracellular transport. | [39] | |
Circular RNAs | circ_001569 | Gene regulators, act as natural miRNA sponges. | [40] |
circHIPK3 | Regulation of cell growth by spooning with the miRNAs. | [41] | |
circCCDC66 | Regulates various cell functions also involve in the CTRC, Osteoarthritis progression, and many other diseases. | [42] |
Study | ncRNA | Mechanism | Implications | Statistical Limitations | Limitations | Reference |
---|---|---|---|---|---|---|
CRC Metastasis | HOTAIR, MALAT1 | MALAT1 promotes tumor growth and metastasis by regulating gene expression related to cancer progression, including enhancing β-catenin signaling and affecting downstream target genes like RUNX2. | High expression levels of HOTAIR and MALAT1 are associated with liver metastasis and poor survival outcomes in CRC patients, suggesting their potential as prognostic biomarkers. | Expression is inconsistent, i.e., different tumor types might show the same discrete response. Moreover, there is no significant relationship between survival and the lncRNA due to the lack of long-term patient follow-ups. | RNA can degrade over time. The studied populations are small. Designs are single-centered leading to an increased risk of technical variability. | [18,19] |
RPPH1 | Transported via exosomes to macrophages | Mediates M2 polarization of macrophages, promoting CRC metastasis | The pathological and physiological role of RPPH1 is very little known. No noticeable change was found at different stages of the tumor leading to the lack of a significant link between clinical features and the miRNA. | Rt PCRs using various probes are mostly used to detect the miRNAs. Differentiation between the different PCR products using SYBR-Green I is challenging. Increased overall cost. | [57] | |
lncRNA FEZF1-AS1 | Promotes epithelial–mesenchymal transition | Activates invasion and metastasis in CRC | The association of FEZF1-AS1 with PKM2 is less known. Further research is required to develop inhibitors specifically targeting FEZF1-AS1/PKM2 signaling. FEZF1-AS1 inhibits the apoptosis of cancer cells in CRC which is consistent with other cancer types. | Low expression of FEZF1 in CRC. Precise cites are not known. The association of FEZF1 with CIN requires further investigation. | [52] | |
CRC Proliferation | miR-21, miR-31 | Positive regulators of colon carcinoma cells, promoting proliferation and invasion | Potential biomarkers for CRC diagnosis and prognosis | The expression of miR-21 and miR-31 is dependent on the tissue type. | Rt PCR using various probes such as SYBR-Green I can lead to an inaccurate or false positive quantification due to its less specificity. | [22] |
TUG1 | TUG1 is a direct transcriptional target of p53, influencing cell proliferation through the PRC2 complex | TUG1 may serve as a biomarker and therapeutic target due to its association with tumor progression and metastasis | TUG1 can be associated with various tumor types and work as oncogenes or oncogene suppressors. | Although TUG1 is a very promising prognostic marker its clinical utility is uncertain. | [47] | |
circ_001569 | Sponges miR-145 to regulate E2F5, BAG4, and FMNL2 | Promotes CRC proliferation and invasion; upregulated in CRC tissues | A thorough analysis of circRNAs in CRC has not been reported so far. The circRNAs biogenesis is elusive. | High-throughput sequencing methods and bioinformatic tools need to be developed to detect circRNAs. | [56] | |
CRNDE, miR-181a-5p | Overexpression of CRNDE suppresses miR-181a-5p, which targets β-catenin and TCF4 and increase proliferation. | The regulation of Wnt/β-catenin by miR-181a-5p’s is disturbed in CRC due to over and less expression of CRNDE. Upregulation of CRNDE promotes proliferation. | The molecular mechanism of CRNDE in the progression of CRC remains clear. Many other molecular factors can cause CRC progression and chemoresistance. No direct evidence to confirm if the signaling activity of Wnt/β-catenin is required to regulate cell proliferation and chemoresistance of CRC by miR-181a-5p and CRNDE. | Lack of detailed online database. RNAs are sensitive to handle, and a minor mishandling can lead to their degradation. | [59] | |
miR-135b | Targets APC and TGFBR2, leading to increased proliferation and decreased apoptosis | Potential oncogene and therapeutic target in CRC | Interactions of miRNAs (miR-135b, miR-31, miR-96 and miR-21) with their potential targets require further studies. | Small datasets. Less statistical significance. The complexity of CRC in living organisms cannot always be replicated by online databases. | [45] | |
CRC Progression | NALT1 | Sponges miR-574-5p to upregulate PEG10 | Promotes CRC proliferation, migration, and invasion; high expression correlated with advanced cancer stage | The role of NALT1 in CRC progression remains unclear. The regulation network for NALT1, in early-stage CRC, and the association of PEG10 with the development of NALT1-mediated CRC needs further investigation. | Lack of detailed online database. RNAs are sensetive to handle. | [55] |
miR-149 | Methylation of miR-149 contributes to the growth of CRC by targeting the transcription factor Sp1. | Ssignificantly decreased miR-149-5p in GPC+ exosomes from tumor tissues and plasma of CRC ad compared to that of healthy controls. | The function of miR-149-5p in drug sensitivity lacks comprehensive statistical validation. | Discrepancies can be caused by data integrations from multiple sources. | [60] | |
KIF23 mRNA | Interacts with ac4C modification | Promotes colorectal cancer cell progression; ac4C catalyzed by NAT10 | Overexpression is common in various tumor types. Large-scale studies are required for a thorough understanding of heterogeneity, and RNA modifications and to develop targeted therapies for CRC. | Various challenges exist for the application of RNA modification methods into clinical use. | [58] | |
CRC Growth | circHIPK3, circCCDC66 | circHIPK3 sponges miR-7; circCCDC66 acts as a sponge for miR-3140 | Potential therapeutic targets and biomarkers for CRC | Multiple binding sites of circRNAs for a variety of miRNAs explain the complexity of their role in CRC malignancy. The regulatory gene network of circRNA-miRNA in progression and treatment investigations needs to be further investigated. | Various binding sites of circRNA can be challenging. | [24,25] |
MYC Expression Promotion | CCAT2 | Regulation of MYC and WNT signaling pathways | Potential biomarker and therapeutic target in CRC | A complicated network leading toward CCAT2-provoked metastatic phenotype needs to be identified. | The rs6983267 allele has a very minimal effect on the expression levels of CCAT2 so better experimental designs are needed for expression detection. | [44] |
Chemoresistance | miR-34a | Targets SIRT1 and TGF-β/Smad4 pathway | Low expression associated with oxaliplatin resistance; overexpression enhances chemosensitivity | Treatment failure is common in various patients due to acquired or congenital resistance. Molecular mechanisms behind oxaliplatin resistance needs to be further investigated. | Limitated efficiently for obtaining highly abundant and quality exosomes. The loading capacity of ncRNAs delivered by endogenous exosomes is very less. | [54] |
CRNDE, miR-181a-5p | When CRNDE is knocked down the miR-181a-5p is overexpressed leading to chemoresistance. | The regulation of Wnt/β-catenin by miR-181a-5p’s is disturbed in CRC due to over and less expression of CRNDE. Downregulation of CRNDE promotes proliferation. | The molecular mechanism of CRNDE in the progression of CRC remains clear. Many other molecular factors can cause CRC progression and chemoresistance. No direct evidence to confirm if the signaling activity of Wnt/β-catenin is required to regulate cell proliferation and chemoresistance of CRC by miR-181a-5p and CRNDE. | Not detailed online database. Sensetivity of RNAs to handle. | [59] | |
Angiogenesis | miR-126 | Targets VEGF signaling | Modulates angiogenesis in CRC | Undifferentiated tumors. Lack of data on possibly related mutations such as KRAS, NRAS, and BRAF. Ineffective histological reports as compared to recent standards. | Lack of digital pathology. Discrepancies can be caused by data integrations from multiple sources (meta-analysis) | [50] |
CRC Migration | BANCR | BANCR facilitate EMT (epithelial–mesenchymal transition) and promotes CRC migration. | High expression levels of BANCR are associated with advanced tumor stage. | The role of BANCR in the development, expression patterns, and functionality of CRC is less known. Lack of significant correlation between BANCR expression and clinicopathological features(gender, age, tumor location, size, invasion depth, and histological grade). Limited study on gene expression changes. | Lack of analysis of long-term survival rates. Sufficient data are not available on the precise mechanism of BANCR to influence EMT in CRC. | [61] |
CRC Oncogenesis | miR-17 | Promotes CRC by activating the Wnt/β-catenin and targeting P130. | High expression of miR-17 may contribute to liver metastasis in CRC | Late-stage diagnosis of CRC in the majority of patients. No association with clinicopathological features such as age, gender, and lymphatic metastasis. Analysis of the expression of miR-17 in the primary stage of CRC and liver metastases, in larger sample sizes is required to confirm conclusions. | Lack of in-depth knowledge of downstream pathways. | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gondal, M.N.; Farooqi, H.M.U. Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer. Non-Coding RNA 2025, 11, 24. https://doi.org/10.3390/ncrna11020024
Gondal MN, Farooqi HMU. Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer. Non-Coding RNA. 2025; 11(2):24. https://doi.org/10.3390/ncrna11020024
Chicago/Turabian StyleGondal, Mahnoor Naseer, and Hafiz Muhammad Umer Farooqi. 2025. "Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer" Non-Coding RNA 11, no. 2: 24. https://doi.org/10.3390/ncrna11020024
APA StyleGondal, M. N., & Farooqi, H. M. U. (2025). Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer. Non-Coding RNA, 11(2), 24. https://doi.org/10.3390/ncrna11020024