The Non-Coding RNA Journal Club: Highlights on Recent Papers—4
1. Introduction
2. Disruptive RNA-Seq Bioinformatics
Highlight by Daniel Gautheret
3. Cytoplasmic lncRNA Mediates HIF-Targeted Enzymatic Cascade
Highlight by Joseph H. Taube and Sendurai A. Mani
4. Microbiome and microRNAs Mediate the Communication Between Gut and Vasculature
Highlight by Gaetano Santulli
5. Stable Intronic Sequence RNAs (sisRNAs) Regulate Their Cognate Pre-mRNAs
Highlight by Diego Cuerda-Gil and R. Keith Slotkin
6. Structural Study of CRISPR-Cpf1 Still on the Road
Highlight by Bo Zhang and Yanli Wang
7. Ionizing Radiation Gets miRNAs Excited
Highlight by David W. Salzman and Joanne B. Weidhaas
Author Contributions
Conflicts of Interest
References
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides accurate, fast, and bias-aware transcript expression estimates using dual-phase inference. Preprint in BioarXiv. [CrossRef]
- Lin, A.; Li, C.; Xing, Z.; Hu, Q.; Liang, K.; Han, L.; Wang, C.; Hawke, D.H.; Wang, S.; Zhang, Y.; et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat. Cell Biol. 2016, 18, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Vikram, A.; Kim, Y.R.; Kumar, S.; Li, Q.; Kassan, M.; Jacobs, J.S.; Irani, K. Vascular microRNA—204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nat. Commun. 2016, 7, 12565. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Yang, J.; Santulli, G.; Reiken, S.R.; Wronska, A.; Kim, M.M.; Osborne, B.W.; Lacampagne, A.; Yin, Y.; Marks, A.R. Maintenance of normal blood pressure is dependent on IP3R1-mediated regulation of eNOS. Proc. Natl. Acad. Sci. USA 2016, 113, 8532–8537. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, J.; Santulli, G. Integrating diet and inflammation to calculate cardiovascular risk. Atherosclerosis 2016. [Google Scholar] [CrossRef] [PubMed]
- Pek, J.W.; Osman, I.; Tay, M.L.; Zheng, R.T. Stable intronic sequence RNAs have possible regulatory roles in Drosophila melanogaster. J. Cell Biol. 2015, 211, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Hur, J.K.; Been, K.W.; Yoon, S.H.; Kim, J.S. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 2016, 34, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Kleinstiver, B.P.; Tsai, S.Q.; Prew, M.S.; Nguyen, N.T.; Welch, M.M.; Lopez, J.M.; McCaw, Z.R.; Aryee, M.J.; Joung, J.K. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 2016, 34, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Ren, K.; Qiu, X.; Zheng, J.; Guo, M.; Guan, X.; Liu, H.; Li, N.; Zhang, B.; Yang, D.; et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 2016, 532, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Yamano, T.; Nishimasu, H.; Zetsche, B.; Hirano, H.; Slaymaker, I.M.; Li, Y.; Fedorova, I.; Nakane, T.; Makarova, K.S.; Koonin, E.V.; et al. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell 2016, 165, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Yang, H.; Rajashankar, K.R.; Huang, Z.; Patel, D.J. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 2016, 26, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Salzman, D.W.; Nakamura, K.; Nallur, S.; Dookwah, M.T.; Metheetrairut, C.; Slack, F.J.; Weidhaas, J.B. miR-34 activity is modulated through 5′-end phosphorylation in response to DNA damage. Nat Commun. 2016, 7, 10954. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautheret, D.; Taube, J.H.; Mani, S.A.; Santulli, G.; Cuerda-Gil, D.; Slotkin, R.K.; Zhang, B.; Wang, Y.; Salzman, D.W.; Weidhaas, J.B. The Non-Coding RNA Journal Club: Highlights on Recent Papers—4. Non-Coding RNA 2016, 2, 9. https://doi.org/10.3390/ncrna2030009
Gautheret D, Taube JH, Mani SA, Santulli G, Cuerda-Gil D, Slotkin RK, Zhang B, Wang Y, Salzman DW, Weidhaas JB. The Non-Coding RNA Journal Club: Highlights on Recent Papers—4. Non-Coding RNA. 2016; 2(3):9. https://doi.org/10.3390/ncrna2030009
Chicago/Turabian StyleGautheret, Daniel, Joseph H. Taube, Sendurai A. Mani, Gaetano Santulli, Diego Cuerda-Gil, R. Keith Slotkin, Bo Zhang, Yanli Wang, David W. Salzman, and Joanne B. Weidhaas. 2016. "The Non-Coding RNA Journal Club: Highlights on Recent Papers—4" Non-Coding RNA 2, no. 3: 9. https://doi.org/10.3390/ncrna2030009
APA StyleGautheret, D., Taube, J. H., Mani, S. A., Santulli, G., Cuerda-Gil, D., Slotkin, R. K., Zhang, B., Wang, Y., Salzman, D. W., & Weidhaas, J. B. (2016). The Non-Coding RNA Journal Club: Highlights on Recent Papers—4. Non-Coding RNA, 2(3), 9. https://doi.org/10.3390/ncrna2030009