A Small De Novo CNV Deletion of the Paternal Copy of FOXF1, Leaving lncRNA FENDRR Intact, Provides Insight into Their Bidirectional Promoter Region
Abstract
:1. Introduction
2. Results
2.1. Clinical Report
2.2. CNV Deletion
2.3. Functional Analysis of the Promoter Region Using Reporter Assay
3. Discussion
4. Materials and Methods
4.1. DNA Extraction and Sequencing
4.2. Parental Origin of chr16 on Which the Deletion Was Found
4.3. Luciferase Reporter Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stankiewicz, P.; Sen, P.; Bhatt, S.S.; Storer, M.; Xia, Z.; Bejjani, B.A.; Ou, Z.; Wiszniewska, J.; Driscoll, D.J.; Maisenbacher, M.K.; et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am. J. Hum. Genet. 2009, 84, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Szafranski, P.; Gambin, T.; Dharmadhikari, A.V.; Akdemir, K.C.; Jhangiani, S.N.; Schuette, J.; Godiwala, N.; Yatsenko, S.A.; Sebastian, J.; Madan-Khetarpal, S.; et al. Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins. Hum. Genet. 2016, 135, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Szafranski, P.; Dharmadhikari, A.V.; Brosens, E.; Gurha, P.; Kolodziejska, K.E.; Zhishuo, O.; Dittwald, P.; Majewski, T.; Mohan, K.N.; Chen, B.; et al. Small non-coding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res. 2013, 23, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Szafranski, P.; Majewski, T.; Yıldız Bölükbaşı, E.; Gambin, T.; Karolak, J.A.; Cortes-Santiago, N.; Bruckner, M.; Amann, G.; Weis, D.; Stankiewicz, P. Ultra-conserved non-coding sequences within the FOXF1 enhancer are critical for human lung development. Genes Dis. 2022, 9, 1423–1426. [Google Scholar] [CrossRef]
- Szafranski, P.; Gambin, T.; Karolak, J.A.; Popek, E.; Stankiewicz, P. Lung-specific distant enhancer cis regulates expression of FOXF1 and lncRNA FENDRR. Hum. Mutat. 2021, 42, 694–698. [Google Scholar] [CrossRef]
- Andersson, R.; Chen, Y.; Core, L.; Lis, J.T.; Sandelin, A.; Heick Jensen, T. Human gene promoters are intrinsically bidirectional. Mol. Cell 2015, 60, 346–347. [Google Scholar] [CrossRef]
- Trinklein, N.D.; Aldred, S.F.; Hartman, S.J.; Schroeder, D.I.; Otillar, R.P.; Myers, R.M. An abundance of bidirectional promoters in the human genome. Genome Res. 2004, 14, 62–66. [Google Scholar] [CrossRef]
- Iascone, M.; Ciccone, R.; Galletti, L.; Marchetti, D.; Seddio, F.; Lincesso, A.R.; Pezzoli, L.; Vetro, A.; Barachetti, D.; Boni, L.; et al. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin. Genet. 2012, 81, 542–554. [Google Scholar] [CrossRef]
- Grote, P.; Wittler, L.; Hendrix, D.; Koch, F.; Währisch, S.; Beisaw, A.; Macura, K.; Bläss, G.; Kellis, M.; Werber, M.; et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 2013, 24, 206–214. [Google Scholar] [CrossRef]
- Sauvageau, M.; Goff, L.A.; Lodato, S.; Bonev, B.; Groff, A.F.; Gerhardinger, C.; Sanchez-Gomez, D.B.; Hacisuleyman, E.; Li, E.; Spence, M.; et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2013, 2, e01749. [Google Scholar] [CrossRef]
- García-Padilla, C.; Domínguez, J.N.; Aránega, A.E.; Franco, D. Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 194435. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Llavona, E.; Lorca, R.; Rolle, V.; Alonso, B.; Iglesias, S.; Rodríguez-Reguero, J.; Duarte-Herrera, I.D.; Pérez-Oliveira, S.; Junco-Vicente, A.; Lago, C.G. Association of the genetic variation in the long non-coding RNA FENDRR with the risk of developing hypertrophic cardiomyopathy. Life 2022, 12, 818. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Sasaki, Y.; Koyama, R.; Takeda, K.; Idogawa, M.; Tokino, T. Forkhead transcription factor FOXF1 is a novel target gene of the p53 family and regulates cancer cell migration and invasiveness. Oncogene 2014, 33, 4837–4846. [Google Scholar] [CrossRef] [PubMed]
- Milewski, D.; Pradhan, A.; Wang, X.; Cai, Y.; Le, T.; Turpin, B.; Kalinichenko, V.V.; Kalin, T.V. FoxF1 and FoxF2 transcription factors synergistically promote rhabdomyosarcoma carcinogenesis by repressing transcription of p21Cip1 CDK inhibitor. Oncogene 2017, 36, 850–862. [Google Scholar] [CrossRef]
- Wu, C.Y.; Chan, C.H.; Dubey, N.K.; Wei, H.J.; Lu, J.H.; Chang, C.C.; Cheng, H.C.; Ou, K.L.; Deng, W.P. Highly expressed FOXF1 inhibit non-small-cell lung cancer growth via inducing tumor suppressor and G1-phase cell-cycle arrest. Int. J. Mol. Sci. 2020, 21, 3227. [Google Scholar] [CrossRef]
- Szafranski, P.; Stankiewicz, P. Long non-coding RNA FENDRR: Gene structure, expression, and biological relevance. Genes 2021, 12, 177. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Q.; Yu, X.; He, Y.; Guo, W. FENDRR: A pivotal, cancer-related, long non-coding RNA. Biomed. Pharmacother. 2021, 137, 111390. [Google Scholar] [CrossRef]
- Zhang, F.; Khajavi, M.; Connolly, A.M.; Towne, C.F.; Batish, S.D.; Lupski, J.R. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat. Genet. 2009, 41, 849–853. [Google Scholar] [CrossRef]
- Yıldız Bölükbaşı, E.; Karolak, J.A.; Gambin, T.; Szafranski, P.; Deutsch, G.H.; Stankiewicz, P. Do paternal deletions involving the FOXF1 locus on chromosome 16q24.1 manifest with more severe non-lung anomalies? Eur. J. Med. Genet. 2022, 65, 104519. [Google Scholar] [CrossRef]
- Uribe, V.; Badía-Careaga, C.; Casanova, J.C.; Domínguez, J.N.; de la Pompa, J.L.; Sanz-Ezquerro, J.J. Arid3b is essential for second heart field cell deployment and heart patterning. Development 2014, 141, 4168–4181. [Google Scholar] [CrossRef]
- Ghosh, A.K. p300 in cardiac development and accelerated cardiac aging. Aging Dis. 2020, 11, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Vermunt, M.W.; Syrett, C.M.; Coté, A.; Tome, J.M.; Zhang, H.; Huang, A.; Luppino, J.M.; Keller, C.A.; Giardine, B.M.; et al. CTCF blocks antisense transcription initiation at divergent promoters. Nat. Struct. Mol. Biol. 2022, 29, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szafranski, P.; Stankiewicz, P. A Small De Novo CNV Deletion of the Paternal Copy of FOXF1, Leaving lncRNA FENDRR Intact, Provides Insight into Their Bidirectional Promoter Region. Non-Coding RNA 2023, 9, 61. https://doi.org/10.3390/ncrna9050061
Szafranski P, Stankiewicz P. A Small De Novo CNV Deletion of the Paternal Copy of FOXF1, Leaving lncRNA FENDRR Intact, Provides Insight into Their Bidirectional Promoter Region. Non-Coding RNA. 2023; 9(5):61. https://doi.org/10.3390/ncrna9050061
Chicago/Turabian StyleSzafranski, Przemyslaw, and Paweł Stankiewicz. 2023. "A Small De Novo CNV Deletion of the Paternal Copy of FOXF1, Leaving lncRNA FENDRR Intact, Provides Insight into Their Bidirectional Promoter Region" Non-Coding RNA 9, no. 5: 61. https://doi.org/10.3390/ncrna9050061
APA StyleSzafranski, P., & Stankiewicz, P. (2023). A Small De Novo CNV Deletion of the Paternal Copy of FOXF1, Leaving lncRNA FENDRR Intact, Provides Insight into Their Bidirectional Promoter Region. Non-Coding RNA, 9(5), 61. https://doi.org/10.3390/ncrna9050061