On the Mechanical Properties and Fracture Patterns of Biphenylene-Based Nanotubes: A Reactive Molecular Dynamics Study
Abstract
:1. Introduction
2. Methodology
2.1. Biphenylene-Based Nanotube Modeling
2.2. Molecular Dynamics Simulations Settings
3. Results
3.1. Mechanical Stability
3.2. Thermal Stability
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sridharan, R.; Monisha, B.; Kumar, P.S.; Gayathri, K.V. Carbon nanomaterials and its applications in pharmaceuticals: A brief review. Chemosphere 2022, 294, 133731. [Google Scholar] [CrossRef] [PubMed]
- Karthik, P.; Himaja, A.; Singh, S.P. Carbon-allotropes: Synthesis methods, applications and future perspectives. Carbon Lett. 2014, 15, 219–237. [Google Scholar] [CrossRef]
- Lu, H.; Li, S.D. Two-dimensional carbon allotropes from graphene to graphyne. J. Mater. Chem. C 2013, 1, 3677–3680. [Google Scholar] [CrossRef]
- Williams, O.A. Nanocrystalline diamond. Diam. Relat. Mater. 2011, 20, 621–640. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Ren, D.; Wang, L.; He, X. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.; Novoselov, K. Nanoscience and Technology: A Collection of Reviews from Nature Journals; Rodgers, P., Ed.; World Scientific Publishers: Singapore, 2010. [Google Scholar]
- Fan, Q.; Yan, L.; Tripp, M.W.; Krejčí, O.; Dimosthenous, S.; Kachel, S.R.; Chen, M.; Foster, A.S.; Koert, U.; Liljeroth, P.; et al. Biphenylene network: A nonbenzenoid carbon allotrope. Science 2021, 372, 852–856. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, C.; Pan, Q.; Jin, Y.; Lyu, R.; Martinez, V.; Huang, S.; Wu, J.; Wayment, L.J.; Clark, N.A.; et al. Synthesis of γ-graphyne using dynamic covalent chemistry. Nat. Synth. 2022, 1, 449–454. [Google Scholar] [CrossRef]
- Hou, L.; Cui, X.; Guan, B.; Wang, S.; Li, R.; Liu, Y.; Zhu, D.; Zheng, J. Synthesis of a monolayer fullerene network. Nature 2022, 606, 507–510. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, P.; Zheng, L.; Shi, X.; Zheng, H. Carbon nanomaterials with sp2 or/and sp hybridization in energy conversion and storage applications: A review. Energy Storage Mater. 2020, 26, 349–370. [Google Scholar] [CrossRef]
- Islam, M.S.; Shudo, Y.; Hayami, S. Energy conversion and storage in fuel cells and super-capacitors from chemical modifications of carbon allotropes: State-of-art and prospect. Bull. Chem. Soc. Jpn. 2022, 95, 1–25. [Google Scholar] [CrossRef]
- Bernardi, M.; Lohrman, J.; Kumar, P.V.; Kirkeminde, A.; Ferralis, N.; Grossman, J.C.; Ren, S. Nanocarbon-based photovoltaics. ACS Nano 2012, 6, 8896–8903. [Google Scholar] [CrossRef] [PubMed]
- Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Angione, M.D.; Pilolli, R.; Cotrone, S.; Magliulo, M.; Mallardi, A.; Palazzo, G.; Sabbatini, L.; Fine, D.; Dodabalapur, A.; Cioffi, N.; et al. Carbon based materials for electronic bio-sensing. Mater. Today 2011, 14, 424–433. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, P.; Tang, Z.; Xu, X.; Gao, H.; Wang, G. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv. Sci. 2021, 8, 2001274. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.B.; Salarizadeh, P.; Veisi, P.; Samiei, E.; Saeidfirozeh, H.; Tourchi Moghadam, M.T.; Di Bartolomeo, A. Transition-metal dichalcogenides in electrochemical batteries and solar cells. Micromachines 2023, 14, 691. [Google Scholar] [CrossRef]
- Kang, K.; Chen, S.; Yang, E.H. Synthesis of transition metal dichalcogenides. In Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures; Elsevier: Amsterdam, The Netherlands, 2020; pp. 247–264. [Google Scholar]
- Kong, X.; Liu, Q.; Zhang, C.; Peng, Z.; Chen, Q. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127–2157. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; He, H.; Pan, B. Theoretical prediction of new carbon allotropes. J. Chem. Phys. 2013, 138, 024502. [Google Scholar] [CrossRef]
- Farmani, Z.; Vetere, A.; Pfander, N.; Lehmann, C.W.; Schrader, W. Naturally Occurring Allotropes of Carbon. Anal. Chem. 2024, 96, 2968–2974. [Google Scholar] [CrossRef]
- Di Felice, R.; Mayes, M.L.; Richard, R.M.; Williams-Young, D.B.; Chan, G.K.L.; de Jong, W.A.; Govind, N.; Head-Gordon, M.; Hermes, M.R.; Kowalski, K.; et al. A perspective on sustainable computational chemistry software development and integration. J. Chem. Theory Comput. 2023, 19, 7056–7076. [Google Scholar] [CrossRef]
- Andersen, J.L.; Flamm, C.; Merkle, D.; Stadler, P.F. An intermediate level of abstraction for computational systems chemistry. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160354. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Q.; Yang, X.; Liu, Z.; Song, Q. An investigation on thermo-mechanical performance of graphene-oxide-reinforced shape memory polymer. Nanotechnol. Rev. 2022, 11, 2349–2365. [Google Scholar] [CrossRef]
- Shankar, M.R.; Prabhu, A. A review on structural characteristics and thermoelectric properties of mid-temperature range Chalcogenide-based thermoelectric materials. J. Mater. Sci. 2023, 58, 16591–16633. [Google Scholar] [CrossRef]
- Wilk, J.; Smusz, R.; Filip, R.; Chmiel, G.; Bednarczyk, T. Experimental investigations on graphene oxide/rubber composite thermal conductivity. Sci. Rep. 2020, 10, 15533. [Google Scholar] [CrossRef]
- Hayat, M.A.; Chen, Y.; Bevilacqua, M.; Li, L.; Yang, Y. Characteristics and potential applications of nano-enhanced phase change materials: A critical review on recent developments. Sustain. Energy Technol. Assess. 2022, 50, 101799. [Google Scholar] [CrossRef]
- Bafekry, A.; Faraji, M.; Fadlallah, M.; Jappor, H.; Karbasizadeh, S.; Ghergherehchi, M.; Gogova, D. Biphenylene monolayer as a two-dimensional nonbenzenoid carbon allotrope: A first-principles study. J. Phys. Condens. Matter 2021, 34, 015001. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, O.; Mortazavi, B.; Dianat, A.; Cuniberti, G.; Rabczuk, T. Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension. FlatChem 2017, 1, 65–73. [Google Scholar] [CrossRef]
- Hudspeth, M.A.; Whitman, B.W.; Barone, V.; Peralta, J.E. Electronic properties of the biphenylene sheet and its one-dimensional derivatives. ACS Nano 2010, 4, 4565–4570. [Google Scholar] [CrossRef]
- Ferguson, D.; Searles, D.J.; Hankel, M. Biphenylene and phagraphene as lithium ion battery anode materials. ACS Appl. Mater. Interfaces 2017, 9, 20577–20584. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Esfandiarpour, R.; Taghipour, S.; Badalkhani-Khamseh, F. Theoretical study on the Al-doped biphenylene nanosheets as NO sensors. Chem. Phys. Lett. 2020, 754, 137712. [Google Scholar] [CrossRef]
- Júnior, M.L.P.; Júnior, L.A.R. Thermomechanical insight into the stability of nanoporous graphene membranes. FlatChem 2020, 24, 100196. [Google Scholar]
- Alcón, I.; Calogero, G.; Papior, N.; Antidormi, A.; Song, K.; Cummings, A.W.; Brandbyge, M.; Roche, S. Unveiling the multiradical character of the biphenylene network and its anisotropic charge transport. J. Am. Chem. Soc. 2022, 144, 8278–8285. [Google Scholar] [CrossRef] [PubMed]
- Rublev, P.; Tkachenko, N.V.; Boldyrev, A.I. Overlapping electron density and the global delocalization of π-aromatic fragments as the reason of conductivity of the biphenylene network. J. Comput. Chem. 2023, 44, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.; Fan, Q.; Chi, L.; Rosen, J.; Gottfried, J.M.; Björk, J. Unveiling the formation mechanism of the biphenylene network. Nanoscale Horiz. 2023, 8, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Q.; Shao, Z.G. Structure and interaction between the novel graphene-like planar biphenylene network and DNA: Molecular dynamics simulations. Phys. E Low-Dimens. Syst. Nanostruct. 2023, 146, 115547. [Google Scholar] [CrossRef]
- Lee, C.L.; Chang, T.C.; Chang, C.M. Quantum Chemical Studies on the Adsorption of Hexachlorobenzene, Decachlorobiphenyl, Benzene, and Biphenyl by BN-Doped Graphene and C-Doped Hexagonal Boron Nitride Modified with β-Cyclodextrin. Crystals 2023, 13, 266. [Google Scholar] [CrossRef]
- Esfandiarpour, R.; Zamanian, F.; Badalkhani-Khamseh, F.; Hosseini, M.R. Carbon dioxide sensor device based on biphenylene nanotube: A density functional theory study. Comput. Theor. Chem. 2022, 1218, 113939. [Google Scholar] [CrossRef]
- Júnior, M.; da Cunha, W.; Junior, R.; Nze, G.; Galvão, D.; Júnior, L. On the Thermomechanical Properties and Fracture Patterns of the Novel Nonbenzenoid Carbon Allotrope (Biphenylene Network): A Reactive Molecular Dynamics Study. arXiv 2021, arXiv:2109.11606. [Google Scholar]
- Dresselhaus, M.; Dresselhaus, G.; Saito, R. Physics of carbon nanotubes. Carbon 1995, 33, 883–891. [Google Scholar] [CrossRef]
- Heyrovska, R. Atomic structures of graphene, benzene and methane with bond lengths as sums of the single, double and resonance bond radii of carbon. arXiv 2008, arXiv:0804.4086. [Google Scholar]
- Luo, Y.; Ren, C.; Xu, Y.; Yu, J.; Wang, S.; Sun, M. A first principles investigation on the structural, mechanical, electronic, and catalytic properties of biphenylene. Sci. Rep. 2021, 11, 19008. [Google Scholar] [CrossRef] [PubMed]
- Ke, K.; Meng, K.; Rong, J.; Yu, X. Biphenylene: A Two- Dimensional Graphene- Based Coating with Superior Anti- Corrosion Performance. Materials 2022, 15, 5675. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Aktulga, H.M.; Fogarty, J.C.; Pandit, S.A.; Grama, A.Y. Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques. Parallel Comput. 2012, 38, 245–259. [Google Scholar] [CrossRef]
- Ashraf, C.; Van Duin, A.C. Hoover toward syngas combustion and initial oxidation kinetics. J. Phys. Chem. A 2017, 121, 1051–1068. [Google Scholar] [CrossRef] [PubMed]
- Chenoweth, K.; Van Duin, A.C.; Goddard, W.A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 2008, 112, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- Jarvi, T.T.; Van Duin, A.C.; Nordlund, K.; Goddard, W.A., III. Development of interatomic reaxff potentials for Au–S–C–H systems. J. Phys. Chem. A 2011, 115, 10315–10322. [Google Scholar] [CrossRef]
- Goverapet Srinivasan, S.; van Duin, A.C. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field. J. Phys. Chem. A 2011, 115, 13269–13280. [Google Scholar] [CrossRef]
- Nicholson, K.T.; Minton, T.K.; Sibener, S. Spatially anisotropic etching of graphite by hyperthermal atomic oxygen. J. Phys. Chem. B 2005, 109, 8476–8480. [Google Scholar] [CrossRef]
- Poovathingal, S.; Schwartzentruber, T.E.; Srinivasan, S.G.; Van Duin, A.C. Large scale computational chemistry modeling of the oxidation of highly oriented pyrolytic graphite. J. Phys. Chem. A 2013, 117, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Junior, M.L.P.; da Cunha, W.F.; Galvão, D.S.; Junior, L.A.R. A reactive molecular dynamics study on the mechanical properties of a recently synthesized amorphous carbon monolayer converted into a nanotube/nanoscroll. Phys. Chem. Chem. Phys. 2021, 23, 9089–9095. [Google Scholar] [CrossRef] [PubMed]
- Hamzei, A.; Hajiabadi, H.; Rad, M.T. Wettability of net C, net W and net Y: A molecular dynamics simulation study. RSC Adv. 2023, 13, 2318–2328. [Google Scholar] [CrossRef] [PubMed]
- Ying, P.; Liang, T.; Du, Y.; Zhang, J.; Zeng, X.; Zhong, Z. Thermal transport in planar sp2-hybridized carbon allotropes: A comparative study of biphenylene network, pentaheptite and graphene. Int. J. Heat Mass Transf. 2022, 183, 122060. [Google Scholar] [CrossRef]
- Martys, N.S.; Mountain, R.D. Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys. Rev. E 1999, 59, 3733. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695. [Google Scholar] [CrossRef] [PubMed]
- Von Mises, R. Gottinger Nachrichten, Math.-Phys. 1913. Available online: https://eudml.org/doc/58894 (accessed on 14 February 2024).
- de Sousa, J.M.; Brandão, W.H.d.S.; Silva, W.L.A.P.; Ribeiro Júnior, L.A.; Galvão, D.S.; Pereira Júnior, M.L. Nanomechanical behavior of pentagraphyne-based single-layer and nanotubes through reactive classical molecular dynamics. C 2023, 9, 110. [Google Scholar] [CrossRef]
- Felix, L.C.; Tromer, R.M.; Autreto, P.A.; Ribeiro Junior, L.A.; Galvao, D.S. On the mechanical properties and thermal stability of a recently synthesized monolayer amorphous carbon. J. Phys. Chem. C 2020, 124, 14855–14860. [Google Scholar] [CrossRef]
- Los, J.; Zakharchenko, K.; Katsnelson, M.; Fasolino, A. Melting temperature of graphene. Phys. Rev. B 2015, 91, 045415. [Google Scholar] [CrossRef]
- Ganz, E.; Ganz, A.B.; Yang, L.M.; Dornfeld, M. The initial stages of melting of graphene between 4000 K and 6000 K. Phys. Chem. Chem. Phys. 2017, 19, 3756–3762. [Google Scholar] [CrossRef]
- Fomin, Y.D.; Brazhkin, V. Comparative study of melting of graphite and graphene. Carbon 2020, 157, 767–778. [Google Scholar] [CrossRef]
- Lau, K.T.; Chipara, M.; Ling, H.Y.; Hui, D. On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Compos. Part B Eng. 2004, 35, 95–101. [Google Scholar] [CrossRef]
BPN-NT | Number of Atoms | Diameter (Å) | Length (Å) |
---|---|---|---|
(4,0) | 672 | 5.43 | 100.88 |
(7,0) | 1176 | 9.50 | 100.88 |
(11,0) | 1848 | 14.92 | 100.88 |
(15,0) | 2520 | 20.35 | 100.88 |
(19,0) | 3192 | 25.78 | 100.88 |
(0,5) | 780 | 5.45 | 102.24 |
(0,9) | 1404 | 9.80 | 102.24 |
(0,14) | 2184 | 15.25 | 102.24 |
(0,18) | 2808 | 19.61 | 102.24 |
(0,22) | 3432 | 23.96 | 102.24 |
BPN-NT | [GPa] | FS [%] | US [GPa] |
---|---|---|---|
(4,0) | 1108.94 | 7.53 | 93.18 |
(7,0) | 1200.07 | 8.16 | 96.52 |
(11,0) | 1220.93 | 7.62 | 96.21 |
(15,0) | 1212.05 | 8.23 | 97.39 |
(19,0) | 1259.92 | 8.16 | 97.13 |
(0,5) | 746.26 | 8.94 | 49.37 |
(0,9) | 782.77 | 13.17 | 65.27 |
(0,14) | 794.06 | 12.84 | 59.41 |
(0,18) | 795.52 | 12.83 | 58.22 |
(0,22) | 796.70 | 12.53 | 55.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armando, H.R.; Giozza, W.F.; Ribeiro Junior, L.A.; Pereira Junior, M.L. On the Mechanical Properties and Fracture Patterns of Biphenylene-Based Nanotubes: A Reactive Molecular Dynamics Study. C 2024, 10, 42. https://doi.org/10.3390/c10020042
Armando HR, Giozza WF, Ribeiro Junior LA, Pereira Junior ML. On the Mechanical Properties and Fracture Patterns of Biphenylene-Based Nanotubes: A Reactive Molecular Dynamics Study. C. 2024; 10(2):42. https://doi.org/10.3390/c10020042
Chicago/Turabian StyleArmando, Hudson Rodrigues, Wiliam Ferreira Giozza, Luiz Antonio Ribeiro Junior, and Marcelo Lopes Pereira Junior. 2024. "On the Mechanical Properties and Fracture Patterns of Biphenylene-Based Nanotubes: A Reactive Molecular Dynamics Study" C 10, no. 2: 42. https://doi.org/10.3390/c10020042
APA StyleArmando, H. R., Giozza, W. F., Ribeiro Junior, L. A., & Pereira Junior, M. L. (2024). On the Mechanical Properties and Fracture Patterns of Biphenylene-Based Nanotubes: A Reactive Molecular Dynamics Study. C, 10(2), 42. https://doi.org/10.3390/c10020042