Photocatalytic N-Formylation of CO2 with Amines Catalyzed by Diethyltriamine Pentaacetic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Preparation of Formamide
2.3. Catalyst Recycling Procedure
3. Results and Discussion
3.1. Optimization of Reaction Conditions
3.1.1. Light Intensity Effect on the Reaction
3.1.2. Screening of Amount of DTPA and Xanthone and Reaction Time
3.1.3. Screening of Solvents
3.1.4. Screening of Reducing Agents and Their Dosages
3.2. Studies on the Suitability of N-Formylated Substrates for Secondary Amines
3.3. Studies on the Suitability of N-Formylated Substrates for Primary Amines
3.3.1. Investigation of Aromatic Primary Amine Substrate Suitability
3.3.2. Study of the Suitability of Aliphatic Primary Amine Substrates
3.4. Catalyst Recycling
3.5. CO2 Photocatalytic Reaction Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sushanta, K.M.; Prakash, N.; Sasmita, D. Magnesium-porphyrin as an efficient photocatalyst for the transformation of CO2 to cyclic carbonates and oxazolidinones under ambient conditions. Catal. Sci. Technol. 2024, 14, 3125–3130. [Google Scholar]
- Wang, H.; Dong, Y.; Zheng, C. Catalytic cyanation using CO2 and NH3. Chemistry 2018, 4, 2883–2893. [Google Scholar] [CrossRef]
- Bruffaerts, J.; Wolff, N.; Posner, Y.D. Milstein, formamides as isocyanate surrogates: A mechanistically driven approach to the development of atom-efficient, selective catalytic syntheses of ureas, carbamates, and heterocycles. J. Am. Chem. Soc. 2019, 141, 16486–16493. [Google Scholar] [CrossRef] [PubMed]
- Schnermann, M.J.; Shenvi, R.A. Syntheses and biological studies of marine terpenoids derived from inorganic cyanide. Nat. Prod. Rep. 2015, 32, 543–577. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Kumar, R.; Krishnamurthy, R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 2020, 120, 4766–4805. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Zancanella, M.; Oyola, Y. Total synthesis and comparative analysis of orlistat, valilactone, and a transposed orlistat derivative: Inhibitors of fatty acid synthase. Org. Lett. 2006, 8, 4497–4500. [Google Scholar] [CrossRef] [PubMed]
- Froidevaux, V.; Negrell, C.; Caillol, S. Biobased amines: From synthesis to polymers; present and future. Chem. Rev. 2016, 116, 14181–14224. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Zhang, H.; Luo, X. Reductive formylation of amines with CO2 using sodium Borohydride: A catalyst-free route. J. CO2 Util. 2017, 22, 208–211. [Google Scholar] [CrossRef]
- Sonawane, R.B.; Rasal, N.K.; Bhange, D.S. Copper-(II) catalyzed N-formylation and N-acylation of aromatic, aliphatic, and heterocyclic amines and a preventive study in the C-N cross soupling of amines with aryl halides. Chem. Cat. Chem. 2018, 10, 3907–3913. [Google Scholar] [CrossRef]
- Muzart, J. N,N-dimethylformamide: Much more than a solvent. Tetrahedron 2009, 65, 8313–8323. [Google Scholar] [CrossRef]
- Wen, Q.; Yuan, X.X.; Yang, H.J. Efficient N-formylation of carbon dioxide and amines with alkanolamine as eco-friendly catalyst under mild conditions. J. CO2 Util. 2023, 69, 102398. [Google Scholar] [CrossRef]
- Fang, J.; Wang, Z.Q.; Gong, X.Q. N-Formylation of amines with carbon dioxide and hydrogen catalyzed by ionic liquid-assisted Ru complexes. ACS Sustain. Chem. Eng. 2021, 9, 13256–13267. [Google Scholar] [CrossRef]
- Das, S.; Bobbink, D.F.; Dyson, J.P. Thiazolium carbene catalysts for the fixation of CO2 onto amines. Chem. Commun. 2016, 52, 2497–2500. [Google Scholar] [CrossRef]
- Zanda, N.; Primitivo, L.; Pericàs, À.M. Organocatalytic N-formylation of amines by CO2 in batch and continuous flow. Org. Chem. Front. 2023, 10, 375–381. [Google Scholar] [CrossRef]
- Gao, Y.F.; Rong, P.P.; Sadeghzadeh, S.M. Selective N-formylation of amines and carbon dioxide through the utilization of Nd2Sn2O7 supported by Ar-g-C3N4 on dendritic filamentous nanotitanium. J. CO2 Util. 2024, 81, 102720. [Google Scholar] [CrossRef]
- Li, Y.H.; Fang, X.J.; Junge, K. A general catalytic methylation of amines using carbon dioxide. Angew. Chem. Int. Edit 2013, 52, 9568–9571. [Google Scholar] [CrossRef]
- Jacquet, O.; Frogneux, X.; Gomes, C.D.N. CO2 as a C1-building block for the catalytic methylation of amines. Chem. Sci. 2013, 4, 2127–2131. [Google Scholar] [CrossRef]
- Ramdar, M.; Kazemi, F.; Taran, Z. N-Formylation of amines via trapping of degradation intermediate of ethers. J. Photoch Photobio A 2023, 438, 114555. [Google Scholar] [CrossRef]
- Prajapati, P.K.; Saini, S.; Jain, S.L. Photochemical fixation of carbon dioxide for N-formylation of amine using Cu(II) embedded BiVO4 nanocomposite under visible light. J. CO2 Util. 2021, 45, 101402. [Google Scholar] [CrossRef]
- Xie, C.; Song, J.L.; Wu, H.R. Natural product glycine betaine as an efficient catalyst for transformation of CO2 with amines to synthesize N-substituted compounds. ACS Sustain. Chem. Eng. 2017, 5, 7086–7092. [Google Scholar] [CrossRef]
- Liao, L.L.; Cao, G.M.; Ye, J.H. Visible-light-driven external-reductant-free cross-electrophile couplings of tetraalkyl ammonium salts. J. Am. Chem. Soc. 2018, 140, 17338–17342. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Zhu, D.Y.; Li, G. Iron-catalyzed selective N-methylation and N-formylation of amines with CO2. Adv. Synth. Catal. 2019, 361, 5098–5104. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, N.; Liu, X.F. Tungstate catalysis: Pressure-switched 2- and 6-electron reductive functionalization of CO2 with amines and phenylsilane. Green. Chem. 2018, 20, 1564–1570. [Google Scholar] [CrossRef]
- Li, G.; Chen, J.; Zhu, D.Y. DBU-catalyzed selective N-methylation and N-formylation of amines with CO2 and polymethylhydrosiloxane. Adv. Synth. Catal. 2018, 360, 2364–2369. [Google Scholar] [CrossRef]
- Fang, C.; Lu, C.L.; Liu, M.H. Selective formylation and methylation of amines using carbon dioxide and hydrosilane catalyzed by alkali-metal carbonates. ACS Catal. 2016, 6, 7876–7881. [Google Scholar] [CrossRef]
- Liu, X.F.; Ma, R.; Qiao, C. Fluoride-catalyzed methylation of amines by reductive functionalization of CO2 with hydrosilanes. Chem.—A Eur. J. 2016, 22, 16489–16493. [Google Scholar] [CrossRef]
- Fujita, M.; Hiyama, T. Fluoride ion-catalyzed reduction of aldehydes and ketones with hydrosilanes: Synthetic and mechanistic aspects and an application to the threo-directed reduction of .alpha.-substituted alkanones. J. Org. Chem. 1988, 53, 5405–5415. [Google Scholar] [CrossRef]
- Wen, Q.; Yuan, X.X.; Zhou, Q.Q.; Yang, H.J.; Jiang, Q.Q.; Hu, J.C.; Guo, C.Y. Solvent-free coupling reaction of carbon dioxide and epoxides catalyzed by quaternary ammonium functionalized schiff base metal complexes under mild conditions. Materials. 2023, 16, 1646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Wang, H.L.; Yuan, H.K. Hydroxyl group-regulated active nano-Pd/C catalyst generation via in situ reduction of Pd(NH3)xCly/C for N-Formylation of amines with CO2/H2. ACS Sustain. Chem. Eng. 2017, 5, 5758–5765. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P.; Sharma, N. Catalyst free N-formylation of aromatic and aliphatic amines exploiting reductive formylation of CO2 using NaBH4. RSC Adv. 2021, 11, 25777–25787. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, J.; Huang, Y. Visible light-promoted synthesis of ureas and formamides from amines and CO2. Chem. Commun. 2022, 58, 4599–4602. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.Z.; Ye, J.H.; Yu, D.G. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2. Chin. J. Catal. 2023, 50, 222–228. [Google Scholar] [CrossRef]
- Hulla, M.; Laurenczy, G.; Dyson, P.J. Mechanistic study of the N-Formylation of amines with carbon dioxide and hydrosilanes. ACS Catal. 2018, 8, 10619–10630. [Google Scholar] [CrossRef]
Entry | LED (W) | Conversion (%) a,b | Selectivity (%) b (2a:2b) |
---|---|---|---|
1 c | - | trace | - |
2 | 20 | 88 | 96:4 |
3 | 35 | 92 | 93:7 |
4 | 50 | 85 | 93:7 |
5 | 80 | 81 | 90:10 |
6 | 100 | 80 | 88:12 |
Entry | DTPA (mol%) | Xanthone (mol%) | Yield(%) a,b | Selectivity (%) b (2a:2b) |
---|---|---|---|---|
1 | 5 | 20 | 48 | 85:15 |
2 | 10 | 20 | 92 | 93:7 |
3 | 20 | 20 | 93 | 92:8 |
4 | 10 | 10 | 51 | 90:10 |
5 | 10 | 5 | 43 | 90:10 |
6 c | 10 | 20 | 37 | 93:7 |
7 d | 10 | 20 | 94 | 78:12 |
Entry | Hydrosilane | Dosage (mmol) | Conversion (%) a,b | Selectivity (%) b (2a:2b) |
---|---|---|---|---|
1 | PhSiH3 | 2.5 | 92 | 100:0 |
2 | Ph2SiH2 | 2.5 | 50 | 100:0 |
3 | Ph3SiH | 2.5 | 26 | 100:0 |
4 | Me2PhSiH | 2.5 | trace | - |
5 | Et3SiH | 2.5 | 24 | 100:0 |
6 c | PhSiH3 | 1.25 | 48 | 85:15 |
7 d | PhSiH3 | 3.75 | 93 | 91:9 |
Entry | Substrate | Product | Yield (%) a,b |
---|---|---|---|
1 | 88.5 | ||
2 | 79.4 | ||
3 | 77.0 | ||
4 | 98.0 | ||
5 | 45.2 | ||
6 | 92.6 | ||
7 | 88.5 | ||
8 | 72.9 | ||
9 | 96.5 | ||
10 | 95.2 | ||
11 | 92.6 | ||
12 | 90.1 |
Entry | Substrate | Product | Yield (%) a,b |
---|---|---|---|
1 | 82.6 | ||
2 | 79.4 | ||
3 | 75.8 | ||
4 | 73.5 | ||
5 | 53.5 | ||
6 | 69.0 | ||
7 | 53.5 | ||
8 | 39.4 | ||
9 | 48.8 | ||
10 | 94.3 | ||
11 | 91.7 | ||
12 | 86.2 | ||
13 | 87.7 |
Entry | Substrate | Product | Yield (%) a,b |
---|---|---|---|
1 | 90.1 | ||
2 | 87.0 | ||
3 | 85.5 | ||
4 | 50.9 | ||
5 | 40.3 | ||
6 | 38.0 | ||
7 | 53.5 | ||
8 | 46.1 | ||
9 | 98.0 | ||
10 | 48.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Zhou, Q.; Chen, Y.; Yang, H.-J.; Jiang, Q.; Hu, J.; Guo, C.-Y. Photocatalytic N-Formylation of CO2 with Amines Catalyzed by Diethyltriamine Pentaacetic Acid. C 2024, 10, 62. https://doi.org/10.3390/c10030062
Yuan X, Zhou Q, Chen Y, Yang H-J, Jiang Q, Hu J, Guo C-Y. Photocatalytic N-Formylation of CO2 with Amines Catalyzed by Diethyltriamine Pentaacetic Acid. C. 2024; 10(3):62. https://doi.org/10.3390/c10030062
Chicago/Turabian StyleYuan, Xuexin, Qiqi Zhou, Yu Chen, Hai-Jian Yang, Qingqing Jiang, Juncheng Hu, and Cun-Yue Guo. 2024. "Photocatalytic N-Formylation of CO2 with Amines Catalyzed by Diethyltriamine Pentaacetic Acid" C 10, no. 3: 62. https://doi.org/10.3390/c10030062
APA StyleYuan, X., Zhou, Q., Chen, Y., Yang, H. -J., Jiang, Q., Hu, J., & Guo, C. -Y. (2024). Photocatalytic N-Formylation of CO2 with Amines Catalyzed by Diethyltriamine Pentaacetic Acid. C, 10(3), 62. https://doi.org/10.3390/c10030062