Carbon and Related Composites for Sensors and Energy Storage: Synthesis, Properties, and Application
Funding
Conflicts of Interest
List of Contributions
- Bisheh, H.; Abdin, Y. Carbon Fibers: From PAN to Asphaltene Precursors; A State-of-Art Review. C 2023, 9, 19. https://doi.org/10.3390/c9010019
- Moheimani, R.; Hosseini, P.; Mohammadi, S.; Dalir, H. Recent Advances in Capacitive Proximity Sensors: From Design and Materials to Creative Applications. C 2022, 8, 26. https://doi.org/10.3390/c8020026
- Wang, X.; Lim, E.G.; Hoettges, K.; Song, P. A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments. C 2023, 9, 108. https://doi.org/10.3390/c9040108
- Nantes, K.S.; Ferreira, A.L.H.K.; Pereira, M.C.; Nogueira, F.G.E.; Afonso, A.S. A Novel Non-Enzymatic Efficient H2O2 Sensor Utilizing δ-FeOOH and Prussian Blue Anchoring on Carbon Felt Electrode. C 2024, 10, 82. https://doi.org/10.3390/c10030082
- Ghaffari, N.; Jahed, N.; Abader, Z.; Baker, P.G.L.; Pokpas, K. Preferential Stripping Analysis of Post-Transition Metals (In and Ga) at Bi/Hg Films Electroplated on Graphene-Functionalized Graphite Rods. C 2024, 10, 95. https://doi.org/10.3390/c10040095
- Toural, L.S.; Marzoa, V.; Bernardo-Gavito, R.; Pau, J.L.; Granados, D. Hands-On Quantum Sensing with NV Centers in Diamonds. C 2023, 9, 16. https://doi.org/10.3390/c9010016
- Ayaz, S.; Shah, A.; Munir, S. Investigation of Electron Transfer Mechanistic Pathways of Ferrocene Derivatives in Droplet at Carbon Electrode. C 2022, 8, 45. https://doi.org/10.3390/c8030045
- Adcock, A.F.; Wang, P.; Cao, E.Y.; Ge, L.; Tang, Y.; Ferguson, I.S.; Sweilem, F.S.A.; Petta, L.; Cannon, W.; Yang, L.; et al. Carbon Dots versus Nano-Carbon/Organic Hybrids: Divergence between Optical Properties and Photoinduced Antimicrobial Activities. C 2022, 8, 54. https://doi.org/10.3390/c8040054
- Vashchynskyi, V.; Okhay, O.; Boychuk, T. Chemical Activation of Apricot Pit-Derived Carbon Sorbents for the Effective Removal of Dyes in Environmental Remediation. C 2023, 9, 93. https://doi.org/10.3390/c9040093
- Ngernyen, Y.; Siriketh, T.; Manyuen, K.; Thawngen, P.; Rodtoem, W.; Wannuea, K.; Knijnenburg, J.T.N.; Budsaereechai, S. Easy and Low-Cost Method for Synthesis of Carbon–Silica Composite from Vinasse and Study of Ibuprofen Removal. C 2022, 8, 51. https://doi.org/10.3390/c8040051
- Darabian, L.M.; Costa, T.L.G.; Cipriano, D.F.; Cremasco, C.W.; Schettino, M.A., Jr.; Freitas, J.C.C. Synthesis of Graphene Quantum Dots by a Simple Hydrothermal Route Using Graphite Recycled from Spent Li-Ion Batteries. C 2022, 8, 48. https://doi.org/10.3390/c8040048
- Vieira, M.A.; Costa, T.L.G.; Gonçalves, G.R.; Cipriano, D.F.; Schettino, M.A.; da Silva, E.L.; Cuña, A.; Freitas, J.C.C. Phosphorus/Sulfur-Enriched Reduced Graphene Oxide Papers Obtained from Recycled Graphite: Solid-State NMR Characterization and Electrochemical Performance for Energy Storage. C 2023, 9, 60. https://doi.org/10.3390/c9020060
- Daniele, G.G.; de Souza, D.C.; de Oliveira, P.R.; Orzari, L.O.; Blasques, R.V.; Germscheidt, R.L.; da Silva, E.C.; Pocrifka, L.A.; Bonacin, J.A.; Janegitz, B.C. Development of Disposable and Flexible Supercapacitor Based on Carbonaceous and Ecofriendly Materials. C 2022, 8, 32. https://doi.org/10.3390/c8020032
- Chiu, H.-Y.; Cho, C.-P. Effects of Mn Content and Mass Loading on the Performance of Flexible Asymmetric Solid-State Supercapacitors Using Mixed-Phase MnO2/N-Containing Graphene Composites as Cathode Materials. C 2023, 9, 88. https://doi.org/10.3390/c9030088
- Zallouz, S.; Réty, B.; Meins, J.-M.L.; Ndiaye, M.Y.; Fioux, P.; Ghimbeu, C.M. FeS2 Nanoparticles in S-Doped Carbon: Ageing Effects on Performance as a Supercapacitor Electrode. C 2023, 9, 112. https://doi.org/10.3390/c9040112
- Yadav, A.; Kumar, R.; Joseph, D.; Thomas, N.; Yan, F.; Sahoo, B. Impact of Dispersive Solvent and Temperature on Supercapacitor Performance of N-Doped Reduced Graphene Oxide. C 2024, 10, 89. https://doi.org/10.3390/c10040089
- Chang, H.-W.; Tsai, Z.-Y.; Ye, J.-J.; Chiu, K.-C.; Liu, T.-Y.; Tsai, Y.-C. Synthesis and Characterization of Ni–Co–O Nanosheets on Silicon Carbide Microspheres/Graphite Composite for Supercapacitor Applications. C 2023, 9, 101. https://doi.org/10.3390/c9040101
- Shu, X.; Yang, Y.; Yang, Z.; Wang, H.; Yu, N. A Nitrogen/Oxygen Dual-Doped Porous Carbon with High Catalytic Conversion Ability toward Polysulfides for Advanced Lithium-Sulfur Batteries. C 2024, 10, 67. https://doi.org/10.3390/c10030067
- Ohta, T.; Iwata, H.; Hiramatsu, M.; Kondo, H.; Hori, M. Power Generation Characteristics of Polymer Electrolyte Fuel Cells Using Carbon Nanowalls as Catalyst Support Material. C 2022, 8, 44. https://doi.org/10.3390/c8030044
References
- Koohi-Fayegh, S.; Rose, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Elalfy, D.A.; Gouda, E.; Kotb, M.F.; Bureš, V.; Sedhom, B.E. Comprehensive review of energy storage systems technologies, objectives, challenges, and future trends. Energy Strategy Rev. 2024, 54, 101482. [Google Scholar] [CrossRef]
- Waris; Chaudhary, M. S.; Anwer, A.H.; Sultana, S.; Ingole, P.P.; Nami, S.A.A.; Khan, M.Z. A Review on Development of Carbon-Based Nanomaterials for Energy Storage Devices: Opportunities and Challenges. Energy Fuels 2023, 37, 24–19433. [Google Scholar] [CrossRef]
- Bezzon, V.D.N.; Montanheiro, T.L.A.; de Menezes, B.R.C.; Ribas, R.G.; Righetti, V.A.N.; Rodrigues, K.F.; Thim, G.P. Carbon Nanostructure-based Sensors: A Brief Review on Recent Advances. Adv. Mater. Sci. Eng. 2019, 2019, 4293073. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abbas, Q.; Abdelkareem, M.A.; Alami, A.H.; Mirzaeian, M.; Sayed, E.T. Carbon-Based Materials for Supercapacitors: Recent Progress, Challenges and Barriers. Batteries 2023, 9, 19. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Cao, F.; Pan, G.; Li, C.; Chen, M.; Zhang, Y.; He, X.; Xia, Y.; Xia, X.; Zhang, W. Carbon materials for metal-ion batteries. ChemPhysMater 2023, 2, 267–281. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. A comprehensive review of the use of porous graphene frameworks for various types of rechargeable lithium batteries. J. Energy Storage 2024, 80, 110336. [Google Scholar] [CrossRef]
- Rey-Raap, N.; dos Santos-Gómez, L.; Arenillas, A. Carbons for fuel cell energy generation. Carbon 2024, 228, 119291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhay, O.; Goncalves, G. Carbon and Related Composites for Sensors and Energy Storage: Synthesis, Properties, and Application. C 2024, 10, 101. https://doi.org/10.3390/c10040101
Okhay O, Goncalves G. Carbon and Related Composites for Sensors and Energy Storage: Synthesis, Properties, and Application. C. 2024; 10(4):101. https://doi.org/10.3390/c10040101
Chicago/Turabian StyleOkhay, Olena, and Gil Goncalves. 2024. "Carbon and Related Composites for Sensors and Energy Storage: Synthesis, Properties, and Application" C 10, no. 4: 101. https://doi.org/10.3390/c10040101
APA StyleOkhay, O., & Goncalves, G. (2024). Carbon and Related Composites for Sensors and Energy Storage: Synthesis, Properties, and Application. C, 10(4), 101. https://doi.org/10.3390/c10040101