Thermal Transport Study in a Strained Carbon Nanotube and Graphene Junction Using Phonon Wavepacket Analysis
Abstract
:1. Introduction
2. Simulation Methods
3. Results and Discussions
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Zhou, C. The race to replace tin-doped indium oxide: Which material will win? ACS Nano 2010, 4, 11–14. [Google Scholar] [CrossRef]
- Wassei, J.K.; Kaner, R.B. Graphene, a promising transparent conductor. Mater. Today 2010, 13, 52–59. [Google Scholar] [CrossRef]
- Liew, K.; He, X.; Wong, C. On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater. 2004, 52, 2521–2527. [Google Scholar] [CrossRef]
- Liew, K.; Wong, C.H.; He, X.; Tan, M.-J.; Meguid, S.A. Nanomechanics of single and multiwalled carbon nanotubes. Phys. Rev. B 2004, 69, 115429. [Google Scholar] [CrossRef]
- Jiang, J.-W.; Wang, J.-S.; Li, B. Young’s modulus of graphene: A molecular dynamics study. Phys. Rev. B 2009, 80, 113405. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Zheng, Y.; Wei, N.; Fan, Z.; Xu, L.; Huang, Z. Mechanical properties of grafold: A demonstration of strengthened graphene. Nanotechnology 2011, 22, 405701. [Google Scholar] [CrossRef]
- Balandin, A.; Ghosh, S.; Teweldebrhan, D.; Calizo, I.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in silicon nanoelectronics. In Proceedings of the 2008 IEEE Silicon Nanoelectronics Workshop, Honolulu, HI, USA, 15–16 June 2008; pp. 1–2. [Google Scholar] [CrossRef]
- Berber, S.; Kwon, Y.K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Shi, L.; Yao, Z.; Li, D.Y.; Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 2005, 5, 1842–1846. [Google Scholar] [CrossRef]
- Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H.J. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006, 6, 96–100. [Google Scholar] [CrossRef]
- Che, J.W.; Cagin, T.; Goddard, W.A. Thermal Conductivity of Carbon Nanotubes. Nanotechnology 2000, 11, 65–69. [Google Scholar] [CrossRef]
- Balandin, A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nanoletters 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Ruan, X.; Chen, Y.P. Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study. Nano Lett. 2009, 9, 2730–2735. [Google Scholar] [CrossRef]
- Cai, W.; Moore, A.L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R.S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Stroscio, M.A.; Dutta, M. Thermal conductivity of carbon nanotubes. J. Appl. Phys. 2009, 105, 074316. [Google Scholar] [CrossRef]
- Park, J.; Prakash, V. Thermal resistance across interfaces comprising dimensionally mismatched carbon nanotube-graphene junctions in 3D carbon nanomaterials. J. Nanomater. 2014, 2014, 4. [Google Scholar] [CrossRef]
- Varshney, V.; Patnaik, S.S.; Roy, A.K.; Froudakis, G.; Farmer, B.L. Modeling of thermal transport in pillared-graphene architectures. ACS Nano 2010, 4, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakakis, G.K.; Tylianakis, E.; Froudakis, G.E. Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 2008, 8, 3166–3170. [Google Scholar] [CrossRef]
- Lee, S.-H.; Sridhar, V.; Jung, J.-H.; Karthikeyan, K.; Lee, Y.-S.; Mukherjee, R.; Koratkar, N.; Oh, I.-K. Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 2013, 7, 4242–4251. [Google Scholar] [CrossRef]
- Kang, C.; Baskaran, R.; Hwang, J.; Ku, B.-C.; Choi, W. Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery. Carbon 2014, 68, 493–500. [Google Scholar] [CrossRef]
- Das, S.; Li, J.; Hui, R. Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance. In Proceedings of the COMSOL Conference, Boston, MA, USA; 2014; pp. 8–10. [Google Scholar]
- Bae, S.-H.; Karthikeyan, K.; Lee, Y.-S.; Oh, I.-K. Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery. Carbon 2013, 64, 527–536. [Google Scholar] [CrossRef]
- Wang, W.; Ruiz, I.; Ozkan, M.; Ozkan, C.S. Pillared graphene and silicon nanocomposite architecture for anodes of lithium ion batteries. In Proceedings of the SPIE NanoScience+ Engineering, San Diego, CA, USA; 2014. [Google Scholar]
- Wang, W.; Ruiz, I.; Guo, S.; Favors, Z.; Bay, H.H.; Ozkan, M.; Ozkan, C.S. Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes. Nano Energy 2014, 3, 113–118. [Google Scholar] [CrossRef]
- Luo, J.; Liu, J.; Zeng, Z.; Ng, C.F.; Ma, L.; Zhang, H.; Lin, J.; Shen, Z.; Fan, H.J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-s.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282. [Google Scholar] [CrossRef]
- Chen, S.; Chen, P.; Wang, Y. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Nanoscale 2011, 3, 4323–4329. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, L.; Zhang, C.; Casillas, G.; Sun, Z.; Yan, Z.; Ruan, G.; Peng, Z.; Raji, A.-R.O.; Kittrell, C. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 2012, 3, 1225. [Google Scholar] [CrossRef]
- Yan, Z.; Ma, L.; Zhu, Y.; Lahiri, I.; Hahm, M.G.; Liu, Z.; Yang, S.; Xiang, C.; Lu, W.; Peng, Z. Three-dimensional metal–graphene–nanotube multifunctional hybrid materials. ACS Nano 2012, 7, 58–64. [Google Scholar] [CrossRef]
- Lin, C.; Wang, H.; Yang, W. The thermomutability of single-walled carbon nanotubes by constrained mechanical folding. Nanotechnology 2010, 21, 365708. [Google Scholar] [CrossRef]
- Liu, J.; Yang, R. Tuning the thermal conductivity of polymers with mechanical strains. Phys. Rev. B 2010, 81, 174122. [Google Scholar] [CrossRef]
- Xu, Z.; Buehler, M.J. Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 2009, 20, 185701. [Google Scholar] [CrossRef]
- Lee, H.-F.; Kumar, S.; Haque, M. Role of mechanical strain on thermal conductivity of nanoscale aluminum films. Acta Mater. 2010, 58, 6619–6627. [Google Scholar] [CrossRef]
- Wei, N.; Xu, L.; Wang, H.-Q.; Zheng, J.-C. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 2011, 22, 105705. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Maute, K.; Dunn, M.L.; Yang, R. Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 2010, 81, 245318. [Google Scholar] [CrossRef]
- Lee, J.; Varshney, V.; Brown, J.S.; Roy, A.K.; Farmer, B.L. Single mode phonon scattering at carbon nanotube-graphene junction in pillared graphene structure. Appl. Phys. Lett. 2012, 100, 183111–183114. [Google Scholar] [CrossRef]
- Schelling, P.; Phillpot, S.; Keblinski, P. Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation. Appl. Phys. Lett. 2002, 80, 2484–2486. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, Y.; Dames, C. Wave packet simulations of phonon boundary scattering at graphene edges. J. Appl. Phys. 2012, 112, 024328. [Google Scholar] [CrossRef]
- Lee, J.; Varshney, V.; Roy, A.K.; Farmer, B.L. Single mode phonon energy transmission in functionalized carbon nanotubes. J. Chem. Phys. 2011, 135, 104109. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Prakash, V. Phonon scattering at SWCNT–SWCNT junctions in branched carbon nanotube networks. J. Nanoparticle Res. 2015, 17, 1–13. [Google Scholar] [CrossRef]
- Park, J.; Prakash, V. Phonon scattering and thermal conductivity of pillared graphene structures with carbon nanotube-graphene intramolecular junctions. J. Appl. Phys. 2014, 116, 014303. [Google Scholar] [CrossRef]
- Muller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 1997, 106, 6082–6085. [Google Scholar] [CrossRef]
- Resnick, A.; Mitchell, K.; Park, J.; Farfán, E.B.; Yee, T. Thermal transport study in actinide oxides with point defects. Nucl. Eng. Technol. 2019, 51, 1398–1405. [Google Scholar] [CrossRef]
- Park, J.; Farfán, E.B.; Mitchell, K.; Resnick, A.; Enriquez, C.; Yee, T. Sensitivity of thermal transport in thorium dioxide to defects. J. Nucl. Mater. 2018, 504, 198–205. [Google Scholar] [CrossRef]
- Park, J.; Bifano, M.F.; Prakash, V. Sensitivity of thermal conductivity of carbon nanotubes to defect concentrations and heat-treatment. J. Appl. Phys. 2013, 113, 034312. [Google Scholar] [CrossRef]
- Mitchell, K.; Park, J.; Resnick, A.; Horner, H.; Farfan, E.B. Phonon scattering and thermal conductivity of actinide oxides with defects. Appl. Sci. 2020, 10, 1860. [Google Scholar] [CrossRef]
- Park, J.; Farfán, E.B.; Enriquez, C. Thermal transport in thorium dioxide. Nucl. Eng. Technol. 2018, 50, 731–737. [Google Scholar] [CrossRef]
- Park, J.; Pena, P.; Tekes, A. Thermal Transport Behavior of Carbon Nanotube–Graphene Junction under Deformation. Int. J. Nanosci. 2020, 19, 1950013. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Sun, H.; Ren, P.; Fried, J. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246. [Google Scholar] [CrossRef]
- Sun, H.; Mumby, S.J.; Maple, J.R.; Hagler, A.T. An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 1994, 116, 2978–2987. [Google Scholar] [CrossRef]
- Hu, M.; Keblinski, P.; Schelling, P.K. Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations. Phys. Rev. B 2009, 79, 104305. [Google Scholar] [CrossRef]
- Prasad, M.V.; Bhattacharya, B. Phonon wave-packet scattering and energy dissipation dynamics in carbon nanotube oscillators. J. Appl. Phys. 2015, 118, 244906. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.-S. Single-mode phonon transmission in symmetry-broken carbon nanotubes: Role of phonon symmetries. J. Appl. Phys. 2009, 105, 063509. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472. [Google Scholar] [CrossRef]
- Grujicic, M.; Cao, G.; Gersten, B. Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes. Mater. Sci. Eng. B 2004, 107, 204–216. [Google Scholar] [CrossRef]
- Si, C.; Wang, X.-D.; Fan, Z.; Feng, Z.-H.; Cao, B.-Y. Impacts of potential models on calculating the thermal conductivity of graphene using non-equilibrium molecular dynamics simulations. Int. J. Heat Mass Transf. 2017, 107, 450–460. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Chen, H.; Xu, L. Comparative studies of thermal conductivity for bilayer graphene with different potential functions in molecular dynamic simulations. Results Phys. 2021, 22, 103894. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J. Thermal Transport Study in a Strained Carbon Nanotube and Graphene Junction Using Phonon Wavepacket Analysis. C 2023, 9, 21. https://doi.org/10.3390/c9010021
Park J. Thermal Transport Study in a Strained Carbon Nanotube and Graphene Junction Using Phonon Wavepacket Analysis. C. 2023; 9(1):21. https://doi.org/10.3390/c9010021
Chicago/Turabian StylePark, Jungkyu. 2023. "Thermal Transport Study in a Strained Carbon Nanotube and Graphene Junction Using Phonon Wavepacket Analysis" C 9, no. 1: 21. https://doi.org/10.3390/c9010021
APA StylePark, J. (2023). Thermal Transport Study in a Strained Carbon Nanotube and Graphene Junction Using Phonon Wavepacket Analysis. C, 9(1), 21. https://doi.org/10.3390/c9010021