Biomethane Production and Methanogenic Microbiota Restoration After a pH Failure in an Anaerobic Sequencing Batch Reactor (A-SBR) Treating Tequila Vinasse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transitioning a Methanogenic Microbiota to an Acidogenic One Within an A-SBR
Microbiota Characterization Before and After the Basic pH Shock
2.2. Strategies for Restoring the Methanogenic Microbiota in the Reactor
2.2.1. Decreasing the Initial Concentration of Vinasse
2.2.2. Extension of Reaction Time (RT)
2.2.3. Carbon/Nitrogen Ratio Adjustment
- I.
- Addition of 2.4 g/L of NH4Cl at the beginning of each operation cycle for 2 cycles.
- II.
- Addition of 2.4 g/L of NH4Cl at the beginning, plus an additional 2.4 g/L shot at 72 h into the operation cycle for 4 cycles.
- III.
- Addition of 1.3 g/L of CO(NH2)2 for 2 operation cycles.
- IV.
- Addition of 1.1 g/L of NH4Cl for 11 operation cycles.
2.2.4. Increase in the Initial Concentration of Vinasses
2.3. Statistical Analysis
2.4. Physicochemical and Metagenomic Analysis
2.5. Biogas Production and Composition
3. Results and Discussion
3.1. Impact of Alkaline Shock on COD Removal and Methane Production
3.2. Evaluation of Strategies for Restoring the Methanogenic Microbiota
3.2.1. Decreasing the Initial Concentration of Vinasse
3.2.2. Extension of Reaction Time (RT)
3.2.3. Adjustment of the Carbon/Nitrogen Ratio
Addition of Ammonium Chloride (NH4Cl)
Urea Addition (CO(NH2)2)
Addition of Ammonium Chloride (NH4Cl) in Smaller Quantities
3.2.4. Increase in OLR: Initial Concentration of Vinasse
3.2.5. Operation and Stability of the System Under Optimal Conditions
3.2.6. Biogas Production and Composition
3.2.7. Comparison of Anaerobic Activity Between Recovery Strategies
3.2.8. Evolution of the Balance of Microbial Populations (Acidogenic–Methanogenic)
3.2.9. Additional Considerations and Future Research
Extrapolation of Results
Effect of Other Factors on the Recovery of Methanogenic Activity
Future Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bi, S.; Hong, X.; Yang, H.; Yu, X.; Fang, S.; Bai, Y.; Wang, Y. Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste. Renew. Energy 2020, 150, 213–220. [Google Scholar] [CrossRef]
- Sołowski, G.; Konkol, I.; Cenian, A. Methane and hydrogen production from cotton waste by dark fermentation under anaerobic and micro-aerobic conditions. Biomass Bioenergy 2020, 138, 105576. [Google Scholar] [CrossRef]
- Choi, Y.; Ryu, J.; Lee, S.R. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J. Anim. Sci. Technol. 2020, 62, 74. [Google Scholar] [CrossRef] [PubMed]
- Paulo, L.M.; Castilla-Archilla, J.; Ramiro-Garcia, J.; Escamez-Picón, J.A.; Hughes, D.; Mahony, T.; O’Flaherty, V. Microbial community redundancy and resilience underpins high-rate anaerobic treatment of dairy-processing wastewater at ambient temperatures. Front. Bioeng. Biotechnol. 2020, 8, 192. [Google Scholar] [CrossRef]
- Díaz-Barajas, S.A.; Garzón-Zúñiga, M.A.; Moreno-Andrade, I.; Vigueras-Cortés, J.M.; Barragán-Huerta, B.E. Acclimation of microorganisms for an efficient production of volatile fatty acids and biogas from mezcal vinasses in a dark fermentation process. Water Sci. Technol. 2021, 83, 2724–2731. [Google Scholar] [CrossRef]
- Pattharaprachayakul, N.; Kesonlam, N.; Duangjumpa, P.; Rungsardthong, V.; Suvajittanont, W.; Lamsal, B. Optimization of Hydraulic Retention Time and Organic Loading Rate in Anaerobic Digestion of Squeezed Pineapple Liquid Wastes for Biogas Production. Appl. Sci. Eng. Prog. 2021, 14, 468–476. [Google Scholar] [CrossRef]
- Pramanik, S.K.; Suja, F.B.; Pramanik, B.K. Effects of hydraulic retention time on the process performance and microbial community structure of an anaerobic single-stage semi-pilot scale reactor for the treatment of food waste. Int. Biodeterior. Biodegrad. 2020, 152, 104999. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Bair, R.; Ozcan, O.; Ravishankar, H.; Esposito, G.; Lens, P.N.; Yeh, D.H. Performance of AnMBR in treatment of post-consumer food waste: Effect of hydraulic retention time and organic loading rate on biogas production and membrane fouling. Front. Bioeng. Biotechnol. 2020, 8, 594936. [Google Scholar] [CrossRef]
- Jiang, M.; Westerholm, M.; Qiao, W.; Wandera, S.M.; Dong, R. High rate anaerobic digestion of swine wastewater in an/ anaerobic membrane bioreactor. Energy 2020, 193, 116783. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Ren, X.; Zhang, Z.; Awasthi, M.K. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. J. Hazard. Mater. 2020, 389, 121908. [Google Scholar] [CrossRef]
- Li, J.; He, J.; Si, B.; Liu, Z.; Zhang, C.; Wang, Y.; Xing, X.H. A pilot study of biohythane production from cornstalk via two-stage anaerobic fermentation. Int. J. Hydrogen Energy 2020, 45, 31719–31731. [Google Scholar] [CrossRef]
- Biruntha, M.; Karmegam, N.; Archana, J.; Selvi, B.K.; Paul JA, J.; Balamuralikrishnan, B.; Ravindran, B. Vermiconversion of biowastes with low-to-high C/N ratio into value-added vermicompost. Bioresour. Technol. 2020, 297, 122398. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Romero, J.J.; Aceves-Lara, C.A.; Silva, C.F.; Gschaedler, A.; Amaya-Delgado, L.; Arrizon, J. 2-Phenylethanol and 2-phenylethylacetate production by nonconventional yeasts using tequila vinasses as a substrate. Biotechnol. Rep. 2020, 25, e00420. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Dávila-Vázquez, G.; León-Becerril, E.; Villegas-García, E.; Gallardo-Valdez, J. Tequila vinasses: Generation and full-scale treatment processes. Rev. Environ. Sci. Biotechnol. 2010, 9, 109–116. [Google Scholar] [CrossRef]
- Rodríguez-Félix, E.; Contreras-Ramos, S.M.; Davila-Vazquez, G.; Rodríguez-Campos, J.; Marino-Marmolejo, E.N. Identification and quantification of volatile compounds found in vinasses from two different processes of tequila production. Energies 2018, 11, 490. [Google Scholar] [CrossRef]
- Consejo Regulador del Tequila. Statistics. Total Production. México. 2024. Available online: https://www.crt.org.mx/ (accessed on 25 October 2024).
- López-López, A.; León-Becerril, E.; Rosales-Contreras, M.E.; Villegas-García, E. Influence of alkalinity and VFAs on the performance of an UASB reactor with recirculation for the treatment of Tequila vinasses. Environ. Technol. 2015, 36, 2468–2476. [Google Scholar] [CrossRef]
- Torres-Lozada, P.; Perez, A. Actividad metanogénica específica: Una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales. Ing. Recur. Nat. Ambiente 2010, 9, 5–14. [Google Scholar]
- Segovia, F. Caracterización y Cuantificación de las Poblaciones de Bacterias y Arqueas Presentes en Digestores Anaerobios de EDAR. Master’s Dissertation, Environmental Engineering Màster Universitari en Enginyeria Ambiental, Universitat Politècnica de València, Valencia, Spain, 2018. [Google Scholar]
- Serrano-Meza, A.; Garzón-Zúñiga, M.A.; Moreno-Andrade, I.; Barragán-Huerta, B.E.; Estrada-Arriaga, E.B.; Vigueras-Cortés, J.M.; García-Olivares, J.G. Hydrogen and Methane Production from Tequila Vinasses in a Novel Hybrid Reactor Containing Biofilm and Suspended Biomass. BioEnergy Res. 2022, 15, 1675–1690. [Google Scholar] [CrossRef]
- Sadi, M.A. Design and Building of Biogas Digester for Organic Materials Gained from Solid Waste. Ph.D. Dissertation, An-Najah National University, Nablus, Palestine, 2010. [Google Scholar]
- Jeganathan, J.; Nakhla, G.; Bassi, A. Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater. Environ. Sci. Technol. 2006, 40, 6466–6472. [Google Scholar] [CrossRef]
- Hegde, S.; Trabold, T.A. Anaerobic digestion of food waste with unconventional co-substrates for stable biogas production at high organic loading rates. Sustainability 2019, 11, 3875. [Google Scholar] [CrossRef]
- Sun, H.; Ni, P.; Angelidaki, I.; Dong, R.; Wu, S. Exploring stability indicators for efficient monitoring of anaerobic digestion of pig manure under perturbations. Waste Manag. 2019, 91, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Sreekrishnan, T.R.; Shaikh, Z.A. Evaluating the effects on performance and biomass of hybrid anaerobic reactor while treating effluents having glucose with increasing concentrations of 4-chlorophenols. J. Environ. Chem. Eng. 2018, 6, 2643–2650. [Google Scholar] [CrossRef]
- Shi, X.; Zuo, J.; Zhang, M.; Wang, Y.; Yu, H.; Li, B. Enhanced biogas production and in situ ammonia recovery from food waste using a gas-membrane absorption anaerobic reactor. Bioresour. Technol. 2019, 292, 121864. [Google Scholar] [CrossRef]
- Arreola-Vargas, J.; Jaramillo-Gante, N.E.; Celis, L.B.; Corona-González, R.I.; González-Álvarez, V.; Méndez-Acosta, H.O. Biogas production in an anaerobic sequencing batch reactor by using tequila vinasses: Effect of pH and temperature. Water Sci. Technol. 2016, 73, 550–556. [Google Scholar] [CrossRef]
- Jáuregui-Jáuregui, J.A.; Méndez-Acosta, H.O.; González-Álvarez, V.; Snell-Castro, R.; Alcaraz-González, V.; Godon, J.J. Anaerobic treatment of tequila vinasses under seasonal operating conditions: Start-up, normal operation, and restart-up after a long stop and starvation period. Bioresour. Technol. 2014, 168, 33–40. [Google Scholar] [CrossRef]
- Maspolim, Y.; Zhou, Y.; Guo, C.; Xiao, K.; Ng, W.J. The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation. Bioresour. Technol. 2015, 190, 289–298. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2014. [Google Scholar]
- HACH. DR5000 Spectrophotometer: Procedures Manual, 2nd ed.; Hach Company: Duesseldorf, Germany, 2005. [Google Scholar]
- García-Sánchez, L.; Garzón-Zúñiga, M.A.; Buelna, G.; Estrada-Arriaga, E.B. Tylosin effect on methanogenesis in an anaerobic biomass from swine wastewater treatment. Water Sci. Technol. 2016, 73, 445–452. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.; Zhang, M.; Xiong, P.; Liu, L.; Bao, Y.; Zhao, Z. Link between characteristics of Fe (III) oxides and critical role in enhancing anaerobic methanogenic degradation of complex organic compounds. Environ. Res. 2021, 194, 110498. [Google Scholar] [CrossRef]
- Zhang, W.; Lang, Q.; Pan, Z.; Jiang, Y.; Liebetrau, J.; Nelles, M.; Dong, H.; Dong, R. Performance evaluation of a novel anaerobic digestion operation process for treating high-solids content chicken manure: Effect of reduction of the hydraulic retention time at a constant organic loading rate. Waste Manag. 2017, 64, 340–347. [Google Scholar] [CrossRef]
- Alvillo-Rivera, A.; Garzón-Zúñiga, M.; Estrada-Arriaga, E.; Buelna, G.; Bahena-Bahena, E. Tequila vinasses treatment using up-flow anaerobic sludge blanket. In Proceedings of the 4th IWA Mexico YWP Conference, Guanajuato, México, 27–29 April 2015. [Google Scholar]
- De-Lemos-Chernicharo, C.A. Anaerobic Reactors; IWA Publishing: New Delhi, India, 2007. [Google Scholar]
- Nakakubo, R.; Møller, H.B.; Nielsen, A.M.; Matsuda, J. Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environ. Eng. Sci. 2008, 25, 1487–1496. [Google Scholar] [CrossRef]
- Puyol, D.; Mohedano, A.F.; Sanz, J.L.; Rodriguez, J.J. Anaerobic biodegradation of 2, 4, 6-trichlorophenol by methanogenic granular sludge: Role of co-substrates and methanogenic inhibition. Water Sci. Technol. 2009, 59, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Botheju, D.; Bakke, R. Oxygen effects in anaerobic digestion-a review. Open Waste Manag. J. 2011, 4, 1–19. [Google Scholar] [CrossRef]
- Lim, J.W.; Chiam, J.A.; Wang, J.Y. Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste. Bioresour. Technol. 2014, 171, 132–138. [Google Scholar] [CrossRef] [PubMed]
- López-Rivera, A.; López-López, A.; Vallejo-Rodríguez, R.; León-Becerril, E. Effect of the organic loading rate in the stillage treatment in a constructed wetland with Canna indica. Environ. Prog. Sustain. Energy 2016, 35, 411–415. [Google Scholar] [CrossRef]
- Serrano-Meza, A.; Garzón-Zúñiga, M.; Barragán-Huerta, B.; Estrada-Arriaga, E.; Almaraz-Abarca, N.; García-Olivares, J. Anaerobic digestion inhibition indicators and control strategies in processes treating industrial wastewater and wastes. Rev. Mex. Ing. Química 2020, 19 (Suppl. S1), 29–44. [Google Scholar] [CrossRef]
- Rocha, D.H.D.; Sakamoto, I.K.; Varesche, M.B.A. Optimization of methane production from co-digestion of citrus agro-industrial waste in a two-stage system: Investigation of the effects of organic matter concentration and alkalinization. J. Clean. Prod. 2023, 433, 139793. [Google Scholar] [CrossRef]
- Kim, T.G.; Yun, J.; Cho, K.S. The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor. Appl. Microbiol. Biotechnol. 2015, 99, 8271–8283. [Google Scholar] [CrossRef]
- Morgan-Sagastume, F.; Jacobsson, S.; Olsson, L.E.; Carlsson, M.; Gyllenhammar, M.; Horváth, I.S. Anaerobic treatment of oil-contaminated wastewater with methane production using anaerobic moving bed biofilm reactors. Water Res. 2019, 163, 114851. [Google Scholar] [CrossRef]
- Anachad, O.; Taouil, A.; Taha, W.; Bennis, F.; Chegdani, F. The implication of short-chain Fatty acids in Obesity and Diabetes. Microbiol. Insights 2023, 16, 11786361231162720. [Google Scholar] [CrossRef]
- Karnachuk, O.V.; Rusanov, I.I.; Panova, I.A.; Grigoriev, M.A.; Zyusman, V.S.; Latygolets, E.A.; Ravin, N.V. Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility. Sci. Rep. 2021, 11, 10720. [Google Scholar] [CrossRef]
- Liu, P.; Pommerenke, B.; Conrad, R. Identification of Syntrophobacteraceae as major acetate-degrading sulfate reducing bacteria in Italian paddy soil. Environ. Microbiol. 2018, 20, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.M.; Westerholm, M.; Qiao, W.; Bi, S.J.; Wandera, S.M.; Fan, R.; Dong, R.J. An explanation of the methanogenic pathway for methane production in anaerobic digestion of nitrogen-rich materials under mesophilic and thermophilic conditions. Bioresour. Technol. 2018, 264, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, G.; Chen, X. Optimization of hydraulic retention time and carbon-to-nitrogen ratio in anaerobic digestion of food waste: Effects on biogas production and microbial community structure. Bioresour. Technol. 2022, 344, 126145. [Google Scholar]
- Liu, X.; Fu, Q.; Liu, Z.; Zeng, T.; Du, M.; He, D.; Wang, D. Alkaline pre-fermentation for anaerobic digestion of polyacrylamide flocculated sludge: Simultaneously enhancing methane production and polyacrylamide degradation. Chem. Eng. J. 2021, 425, 131407. [Google Scholar] [CrossRef]
- Li, D.; Ni, H.; Jiao, S.; Lu, Y.; Zhou, J.; Sun, B.; Liang, Y. Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies. Microbiome 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Sela-Adler, M.; Ronen, Z.; Herut, B.; Antler, G.; Vigderovich, H.; Eckert, W.; Sivan, O. Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments. Front. Microbiol. 2017, 8, 766. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Y.; Shang, W.; Dong, X.; Tang, Q.; Cheng, H. The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil. Ann. Microbiol. 2019, 69, 849–859. [Google Scholar] [CrossRef]
Stage | Operating Conditions | Sampling Operation Day | Microorganism Communities | OLR (kg COD/m3d) | COD Influent (mg/L) | COD Effluent (mg/L) | COD Removal Efficiency (%) |
---|---|---|---|---|---|---|---|
Start-up | T = 35 ± 2 °C pH = 6.9–7.9 RT = 48 h C/N = 100/0.5 IC = 55% | Inoculum | Suspended microbiota Clostridium (20%) Actinomyces (6%) Bacteroides (7%) Methanobacterium (6%) Desulfovibrio (2%) | 13 ± 1.4 | 25,096 ± 2844 | 5145 ± 1066 | 79 ± 4 |
Stable operation of A-SBR before pH shock | T = 35 ± 2 °C pH = 6.9–7.9 RT = 48 h C/N = 100/0.5 IC = 55% | 12 ± 2.7 | 23,033 ± 2124 | 6616 ± 140 | 71 ± 2 | ||
A-SBR after pH shock > 11 | T = 35 ± 2 °C pH = 6.9–7.9 RT = 48 h C/N = 100/0.5 IC = 55% | 71 | Suspended microbiota Clostridium (17%) Bacteroides (19%) Desulfovibrio (1.88%) | 11 ± 1.3 | 21,902 ± 2772 | 7238 ± 1413 | 65 ± 6 |
A-SBR after decrease in IC of vinasse | T = 35 ± 2 °C pH = 6.9–7.9 RT = 168 h C/N = 100/0.5 IC = 40% | 8 ± 0.5 | 15,021 ± 1028 | 6519 ± 344 | 56 ± 3 | ||
A-SBR after extension of RT | 158 | Suspended microbiota Clostridium 43% Bacteroides 21% Biofilm Clostridium 43% Bacteroides 4% Methanosarcina 9% Desulfovibrio 7% | 2.3 ± 0.5 | 16,503 ± 3574 | 9196 ± 445 | 41 ± 11 |
Stage | Added Compound | Concentration (g/L) | Influent COD (mg/L) | Effluent COD (mg/L) | Removal (%) |
---|---|---|---|---|---|
0 | Without addition | 0 | 16,503 ± 3574 | 9196 ± 445 | 41 ± 11 |
I | NH4Cl | 2.4 | 20,438 ± 811 | 7267 ± 1195 | 64 ± 4 |
IIa | NH4Cl | 4.6 | 19,133 ± 1288 | 9105 ± 2438 | 51 ± 16 |
IIb | NH4Cl | 0 | 19,686 ± 279 | 8840 ± 2661 | 55 ± 13 |
III | Urea | 1.3 | 20,094 ± 576 | 6618 ± 2424 | 57 ± 13 |
IV | NH4Cl | 1.1 | 19,837 ± 931 | 4674 ± 481 | 76 ± 2 |
Initial Vinasse Concentration (%) | OLR (kg COD/m3d) | Influent COD (mg/L) | Effluent COD (mg/L) | Removal (%) |
---|---|---|---|---|
50 | 2.8 ± 0.1 | 19,837 ± 931 | 4674 ± 481 | 75 ± 3 |
55 | 2.9 ± 0.1 | 20,552 ± 710 | 2930 ± 402 | 85 ± 2 |
60 | 3.3 ± 0.2 | 23,493 ± 1401 | 2240 ± 591 | 90 ± 2 |
65 | 3.5 ± 0.1 | 24,496 ± 945 | 2752 ± 740 | 88 ± 3 |
60 | 3.2 ± 0.2 | 22,758 ± 1234 | 1841 ± 411 | 92 ± 1 |
Stage | Composition (%) | Production (NL CH4/h) | Yield (NL CH4/g CODr) | ||
---|---|---|---|---|---|
CH4 | CO2 | H2 | |||
Stable operation pre-pH shock | 56 | 43 | 0 | 0.070 | 0.31 |
Post-pH shock > 11 (pre-recovery strategies) | 8 | 0.9 | 79 | 0.00003 | 0.0107 |
Post-system recovery | 60 | 40 | 0 | 0.075 | 0.33 |
Comparison Between the Stable Phase and the Effect of Each Recovery Strategy | Mean of Stable Period | Mean of Evaluated Strategy | Significant Difference | Adjusted p-Value |
---|---|---|---|---|
Stable period vs decrease of ICV | 71.09 | 56.42 | Yes | <0.0001 |
Stable period vs extension of RT | 71.09 | 41.46 | Yes | <0.0001 |
Stable period vs adjustment of C/N ratio | 71.09 | 65.54 | No | 0.1386 |
Stable period vs increase of OLR | 71.09 | 86.16 | Yes | <0.0001 |
Stable period vs optimal conditions | 71.09 | 92.54 | Yes | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-Meza, A.; Moreno-Andrade, I.; Estrada-Arriaga, E.B.; Díaz-Barajas, S.A.; García-Sánchez, L.; Garzón-Zúñiga, M.A. Biomethane Production and Methanogenic Microbiota Restoration After a pH Failure in an Anaerobic Sequencing Batch Reactor (A-SBR) Treating Tequila Vinasse. Fermentation 2024, 10, 557. https://doi.org/10.3390/fermentation10110557
Serrano-Meza A, Moreno-Andrade I, Estrada-Arriaga EB, Díaz-Barajas SA, García-Sánchez L, Garzón-Zúñiga MA. Biomethane Production and Methanogenic Microbiota Restoration After a pH Failure in an Anaerobic Sequencing Batch Reactor (A-SBR) Treating Tequila Vinasse. Fermentation. 2024; 10(11):557. https://doi.org/10.3390/fermentation10110557
Chicago/Turabian StyleSerrano-Meza, Adriana, Iván Moreno-Andrade, Edson B. Estrada-Arriaga, Sergio A. Díaz-Barajas, Liliana García-Sánchez, and Marco A. Garzón-Zúñiga. 2024. "Biomethane Production and Methanogenic Microbiota Restoration After a pH Failure in an Anaerobic Sequencing Batch Reactor (A-SBR) Treating Tequila Vinasse" Fermentation 10, no. 11: 557. https://doi.org/10.3390/fermentation10110557
APA StyleSerrano-Meza, A., Moreno-Andrade, I., Estrada-Arriaga, E. B., Díaz-Barajas, S. A., García-Sánchez, L., & Garzón-Zúñiga, M. A. (2024). Biomethane Production and Methanogenic Microbiota Restoration After a pH Failure in an Anaerobic Sequencing Batch Reactor (A-SBR) Treating Tequila Vinasse. Fermentation, 10(11), 557. https://doi.org/10.3390/fermentation10110557