Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Ethical Approval
2.2. Substrate Preparation
2.3. Test Ingredients and Study Design
2.4. RUSITEC Fermentation
2.5. Sampling for Total Gas, Greenhouse Gases, Ammonia Nitrogen (NH3-N), and VFA Determinations
2.6. Dry Matter, Organic Matter, and Fiber Digestibility
2.7. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of The United Nations. The State of Food and Agriculture: Livestock in the Balance; FAO: Rome, Italy, 2009; 180p, ISSN 0081-4539. Available online: https://www.fao.org/3/i0680e/i0680e.pdf (accessed on 15 October 2023).
- Paulina, G.; Acciaro, M.; Atzori, A.S.; Battacone, G.; Crovetto, G.M.; Mele, M.; Pirlo, G.; Rassu, S.P.G. Animal board invited review—Beef for future: Technologies for a sustainable and profitable beef industry. Animal 2021, 15, 100358. [Google Scholar] [CrossRef] [PubMed]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 2016, 1, 556–568. [Google Scholar] [CrossRef]
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Parchami, M.; Varjani, S.; Khanal, S.K.; Wong, J.; Awasthi, M.K.; et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, N.; Cao, Y.; Jin, C.; Li, F.; Cai, C.; Yao, J. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. J. Anim. Sci. Biotechnol. 2018, 9, 21. [Google Scholar] [CrossRef]
- García-Martínez, R.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage: Concentrate ratio. Br. J. Nutr. 2005, 94, 71–77. [Google Scholar] [CrossRef]
- Sirohi, S.K.; Pandey, P.; Goel, N. Response of fumaric acid addition on methanogenesis, rumen fermentation, and dry matter degradability in diets containing wheat straw and sorghum or berseem as roughage source. ISRN Vet. Sci. 2012, 17, 496801. [Google Scholar] [CrossRef]
- Benchaar, C.; Petit, H.V.; Berthiaume, R.; Ouellet, D.R.; Chiquette, J.; Chouinard, P.Y. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn Silage. J. Dairy Sci. 2007, 90, 886–897. [Google Scholar] [CrossRef]
- Nanon, A.; Suksombat, W.; Yang, W.Z. Effects of essential oils supplementation on in vitro and in situ feed digestion in beef cattle. Anim. Feed Sci. Technol. 2014, 196, 50–59. [Google Scholar] [CrossRef]
- Metwally, A.; Deml, M.; Fahn, C.; Windisch, W. Effects of a specific blend of essential oil on rumen degradability, total tract digestibility and fermentation characteristics in rumen fistulated cows. JDVAR 2016, 2, 51–60. [Google Scholar] [CrossRef]
- Elcoso, G.; Zweifel, B.; Bach, A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Appl. Anim. Sci. 2019, 35, 304–311. [Google Scholar] [CrossRef]
- Silva, A.S.; Cortinhas, C.S.; Acedo, T.S.; Lopes, F.C.F.; Arrigoni, M.B.; Tomich, T.R.; Pereira, L.G.R.; Ferreira, M.H.; Jaguaribe, T.L.; Weber, C.T.; et al. Effects of essential oils supplementation, associated or not with amylase, on dry matter intake, productive performance, and nitrogen metabolism of dairy cows. Anim. Feed Sci. Technol. 2023, 297, 115575. [Google Scholar] [CrossRef]
- Giller, K.; Rilko, T.; Manzocchi, E.; Hug, S.; Bolt, R.; Kreuzer, M. Effects of mixed essential oils from eucalyptus, thyme and anise on composition, coagulation properties and antioxidant capacity of the milk of dairy cows. J. Anim. Feed Sci. 2020, 29, 3–10. [Google Scholar] [CrossRef]
- El-Essawy, A.M.; Anele, U.Y.; Abdel-Wahed, A.M.; Abdou, A.R.; Khattab, I.M. Effects of anise, clove and thyme essential oils supplementation on rumen fermentation, blood metabolites, milk yield and milk composition in lactating goats. Anim. Feed Sci. Technol. 2021, 271, 114760. [Google Scholar] [CrossRef]
- Bassolé, I.H.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Gurtler, J.B.; Garner, C.M. A Review of Essential Oils as Antimicrobials in Foods with Special Emphasis on Fresh Produce. J. Food Prot. 2022, 85, 1300–1319. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Catillejos, L.; Ferret, A. Invited Review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Benetel, G.; Silva, T.S.; Fagundes, G.M.; Welter, K.C.; Melo, F.A.; Lobo, A.A.G.; Muir, J.P.; Bueno, I.C.S. Essential Oils as In Vitro Ruminal Fermentation Manipulators to Mitigate Methane Emission by Beef Cattle Grazing Tropical Grasses. Molecules 2022, 27, 2227. [Google Scholar] [CrossRef]
- Brice, R.M.; Dele, P.A.; Ike, K.A.; Shaw, Y.A.; Olagunju, L.K.; Orimaye, O.E.; Subedi, K.; Anele, U.Y. Effects of essential oil blends on in vitro apparent and truly degradable dry matter, efficiency of microbial production, total short-chain fatty acids and greenhouse gas emissions of two dairy cow diets. Animals 2022, 12, 2185. [Google Scholar] [CrossRef]
- Blanch, M.; Carro, M.D.; Ranilla, M.J.; Viso, A.; Vázquez-Anón, M.; Bach, A. Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows. Anim. Feed Sci. Technol. 2016, 219, 313–323. [Google Scholar] [CrossRef]
- Lin, B.; Lu, Y.; Salem, A.Z.M.; Wang, J.H.; Liang, Q.; Liu, J.X. Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim. Feed Sci. Technol. 2013, 184, 24–32. [Google Scholar] [CrossRef]
- Ahmed, M.G.; El-Zarkouny, S.Z.; El-Shazly, K.A.; Sallam, S.M.A. Impact of essential oils blend on methane emission, rumen fermentation characteristics and nutrient digestibility in Barki Sheep. J. Agric. Sci. 2014, 6, 144–156. [Google Scholar] [CrossRef]
- Remling, N.; Riede, S.; Meyer, U.; Beineke, A.; Breves, G.; Flachowsky, G.; Dänicke, S. Influence of fumaric acid on ruminal parameters and organ weights of growing bulls fed with grass or maize silage. Animal 2017, 11, 1754–1761. [Google Scholar] [CrossRef]
- Bayaru, E.; Kanda, S.; Kamada, T.; Itabashi, H.; Andoh, S.; Nishida, T.; Ishida, M.; Itoh, T.; Nagara, K.; Isobe, Y. Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone. Anim. Sci. J. 2001, 72, 139–146. [Google Scholar] [CrossRef]
- Baraz, H.; Jahani-Azizabadi, H.; Azizi, O. Simultaneous use of thyme essential oil and disodium fumarate can improve in vitro ruminal microbial fermentation characteristics. Vet. Res. Forum 2018, 9, 193–198. [Google Scholar] [CrossRef]
- Alabi, J.O.; Okedoyin, D.O.; Anotaenwere, C.C.; Wuaku, M.; Gray, D.; Adelusi, O.O.; Ike, K.A.; Olagunju, L.K.; Dele, P.A.; Anele, U.Y. Essential Oil Blends with or without Fumaric Acid Influenced In Vitro Rumen Fermentation, Greenhouse Gas Emission, and Volatile Fatty Acids Production of a Total Mixed Ration. Ruminants 2023, 3, 373–384. [Google Scholar] [CrossRef]
- Olagunju, L.K.; Isikhuemhen, O.S.; Dele, P.A.; Anike, F.N.; Ike, K.A.; Shaw, Y.; Brice, R.M.; Orimaye, O.E.; Wuaku, M.; Essick, B.G.; et al. Effects of the Incubation Period of Pleurotus ostreatus on the Chemical Composition and Nutrient Availability of Solid-State-Fermented Corn Stover. Animals 2023, 13, 2587. [Google Scholar] [CrossRef]
- Duarte, A.C.; Holman, D.B.; Alexander, T.W.; Durmic, Z.; Vercoe, P.E.; Chaves, A.V. The Type of Forage Substrate Preparation Included as Substrate in a RUSITEC System Affects the Ruminal Microbiota and Fermentation Characteristics. Front. Microbiol. 2017, 8, 704. [Google Scholar] [CrossRef]
- Forejtová, J.; Lád, F.; Třináctý, J.; Richter, M.; Gruber, L.; Doležal, P.; Homolka, P.; Pavelek, L. Comparison of organic matter digestibility determined by in vivo and in vitro methods. Czech J. Anim. Sci. 2005, 50, 47–53. [Google Scholar] [CrossRef]
- Garcia, F.; Colombatto, D.; Brunetti, M.A.; Martínez, M.J.; Moreno, M.V.; Turcato, M.C.S.; Lucini, E.; Frossasco, G.; Martínez Ferrer, J. The reduction of methane production in the in vitro ruminal fermentation of different substrates is linked with the chemical composition of the essential oil. Animals 2020, 10, 786. [Google Scholar] [CrossRef]
- Belanche, A.; Newbold, C.J.; Morgavi, D.P.; Bach, A.; Zweifel, B.; Yáñez-Ruiz, D.R. A Meta-analysis Describing the Effects of the Essential oils Blend Agolin Ruminant on Performance, Rumen Fermentation and Methane Emissions in Dairy Cows. Animals 2020, 10, 620. [Google Scholar] [CrossRef]
- Parra, M.C.; Forwood, D.L.; Chaves, A.V.; Meale, S.J. In vitro screening of anti-methanogenic additives for use in Australian grazing systems. Front. Anim. Sci. 2023, 4, 1123532. [Google Scholar] [CrossRef]
- Gao, X.; Oba, M. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. J. Dairy Sci. 2014, 97, 3006–3016. [Google Scholar] [CrossRef] [PubMed]
- Castilejos, L.; Calsamiglia, S.; Ferret, A. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci. 2006, 89, 2649–2658. [Google Scholar] [CrossRef]
- Molho-Ortiz, A.A.; Romero-Pérez, A.; Ramírez-Bribiesca, E.; Márquez-Mota, C.C.; Castrejón-Pineda, F.A.; Corona, L. Effect of essential oils and aqueous extracts of plants on in vitro rumen fermentation and methane production. J. Anim. Behav. Biometeorol. 2022, 10, 2210. [Google Scholar] [CrossRef]
- Kong, F.; Wang, S.; Cao, Z.; Wang, Y.; Li, S.; Wang, W. In vitro fermentation and degradation characteristics of rosemary extract in total mixed ration of lactating dairy cows. Fermentation 2022, 8, 461. [Google Scholar] [CrossRef]
- Parker, D.S.; Lomaxz, M.A.; Seal, C.J.; Wilton, J.C. Metabolic implications of ammonia production in the ruminant. Proc. Nutr. Soc. 1995, 54, 549–563. [Google Scholar] [CrossRef]
- Lin, B.; Wang, J.H.; Lu, Y.; Liang, Q.; Liu, J.X. In vitro rumen fermentation and methane production are influenced by active components of essential oils combined with fumarate. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1–9. [Google Scholar] [CrossRef]
- Fraser, G.R.; Chaves, A.V.; Wang, Y.; McAllister, T.A.; Beauchemin, K.A.; Benchaar, C. Assessment of the effects of cinnamon leaf oil on rumen microbial fermentation using two continuous culture systems. J. Dairy Sci. 2007, 90, 2315–2328. [Google Scholar] [CrossRef]
- Pawar, M.M.; Kamra, D.N.; Agarwal, N.; Chaudhary, L.C. Effects of essential oils on in vitro methanogenesis and feed fermentation with buffalo rumen liquor. Agric. Res. 2014, 3, 67–74. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Marcotullio, M.C.; Yu, Z. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim. Feed Sci. Technol. 2016, 215, 25–36. [Google Scholar] [CrossRef]
- Weimer, P.J. Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef]
- Alataş, M.S.; Umucalılar, H.D. Bacteria of the rumen ecosystem and their roles. Atatürk Univ. J. Vet. Sci. 2011, 6, 71–83. [Google Scholar]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- Wainaina, S.; Lukitawesa; Kumar Awasthi, M.; Taherzadeh, M.J. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019, 10, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Lukitawesa; Patinvoh, R.J.; Millati, R.; Sárvári-Horváth, I.; Taherzadeh, M.J. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered 2020, 11, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Andrea, B.; Joshua, G. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef]
- Seal, C.J.; Reynolds, C.K. Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutr. Res. Rev. 1993, 6, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Melkonian, E.A.; Asuka, E.; Schury, M.P. Physiology, Gluconeogenesis; Updated 13 November 2023; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK541119/ (accessed on 19 January 2024).
- Baraka, T.A.M.; Abdl-Rahman, M.A. In vitro evaluation of sheep rumen fermentation pattern after adding different levels of eugenol–fumaric acid combinations. Vet. World 2012, 5, 110–117. [Google Scholar] [CrossRef]
Chemical Composition | Corn Silage | Alfalfa Hay | Concentrate | Total Mixed Ration |
---|---|---|---|---|
Dry Matter | 38.1 | 83.9 | 90.8 | 68.1 |
Organic matter | 96.5 | 90.9 | 83.3 | 93.1 |
Crude Protein | 6.31 | 16.0 | 20.3 | 13.2 |
Crude Fat | 4.67 | 3.15 | 8.49 | 4.73 |
Ash | 3.51 | 9.05 | 16.7 | 6.92 |
Neutral detergent fiber | 59.4 | 49.5 | 74.1 | 61.9 |
Acid detergent fiber | 14.1 | 9.6 | 15.4 | 12.0 |
Acid detergent lignin | 14.5 | 18.2 | 10.5 | 13.7 |
Treatments | pH | Volume of Effluent (mL) | Gas Volume (mL) | NH3-N (mg/dL) | DMD (%) | OMD (%) |
---|---|---|---|---|---|---|
Control | 7.27 | 466 | 1810 | 5.04 | 56.5 | 87.8 |
EFA1 | 6.89 | 444 | 1556 | 4.73 | 55.8 | 85.7 |
EFA2 | 7.27 | 522 | 1466 | 4.71 | 54.5 | 87.1 |
EFA3 | 7.19 | 464 | 1591 | 4.80 | 52.2 | 87.6 |
SEM | 0.094 | 13.2 | 69.1 | 0.192 | 1.03 | 0.71 |
p value | 0.429 | 0.180 | 0.333 | 0.930 | 0.473 | 0.762 |
Treatments | NDFD (%) | ADFD (%) | ADLD (%) | HEMD (%) | CELD (%) |
---|---|---|---|---|---|
Control | 65.6 | 58.5 | 26.1 | 7.06 | 32.4 |
EFA1 | 65.3 | 56.9 | 26.0 | 8.37 | 30.9 |
EFA2 | 65.1 | 56.8 | 23.8 | 8.37 | 32.9 |
EFA3 | 64.8 | 56.2 | 23.7 | 8.60 | 32.5 |
SEM | 0.24 | 0.36 | 0.72 | 0.339 | 0.47 |
p value | 0.674 | 0.108 | 0.488 | 0.367 | 0.460 |
Treatments | TVFA | Acetate | Propionate | Butyrate | Iso-Butyrate | Valerate | Iso-Valerate | APR |
---|---|---|---|---|---|---|---|---|
Control | 58.6 a | 0.576 a | 0.278 b | 0.120 a | 0.0056 | 0.0169 | 0.0037 ab | 2.08 a |
EFA1 | 52.1 b | 0.573 a | 0.302 a | 0.100 b | 0.0050 | 0.0174 | 0.0030 b | 1.91 b |
EFA2 | 51.2 b | 0.557 b | 0.310 a | 0.103 b | 0.0053 | 0.0208 | 0.0038 a | 1.81 b |
EFA3 | 51.8 b | 0.568 ab | 0.301 a | 0.105 b | 0.0050 | 0.0190 | 0.0033 ab | 1.90 b |
SEM | 1.04 | 0.0026 | 0.0025 | 0.0021 | 0.00017 | 0.00115 | 0.00014 | 0.021 |
p value | 0.039 | 0.045 | <0.001 | 0.001 | 0.624 | 0.179 | 0.013 | <0.001 |
Treatments | Methane (mg/g DM) | Carbon Dioxide (mg/g DM) | Ammonia (mmol/g DM) | Hydrogen Sulfide (mg/g DM) |
---|---|---|---|---|
Control | 48.3 a | 271 | 737 | 7653 |
EFA1 | 19.2 b | 230 | 738 | 6722 |
EFA2 | 37.4 ab | 226 | 582 | 5916 |
EFA3 | 38.4 ab | 253 | 600 | 4026 |
SEM | 3.67 | 18.2 | 62.3 | 748.7 |
p value | 0.035 | 0.799 | 0.714 | 0.391 |
Variables | pH | Vol. Effl. | Gas Vol. | DMD | OMD | NH3-N | NDFD | ADFD | ADLD | HEMD | CELD |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1.000 | ||||||||||
Vol. Effl. | 0.251 * | 1.000 | |||||||||
Gas Vol. | 0.043 | 0.154 | 1.000 | ||||||||
DMD | −0.166 | −0.041 | −0.028 | 1.000 | |||||||
OMD | 0.069 | 0.207 | 0.044 | −0.228 | 1.000 | ||||||
NH3-N | 0.077 | 0.002 | −0.162 | −0.100 | 0.457 ** | 1.000 | |||||
NDFD | 0.114 | 0.168 | −0.061 | −0.072 | 0.326 * | 0.318 * | 1.000 | ||||
ADFD | 0.128 | 0.141 | −0.135 | 0.026 | −0.213 | 0.012 | 0.401 ** | 1.000 | |||
ADLD | 0.064 | 0.048 | −0.229 | −0.004 | −0.036 | 0.286 * | 0.486 ** | 0.840 ** | 1.000 | ||
HEMD | −0.055 | −0.032 | 0.100 | −0.077 | 0.452 ** | 0.242 | 0.273 * | −0.772 ** | −0.545 ** | 1.000 | |
CELD | −0.002 | 0.033 | 0.252 * | 0.026 | −0.112 | −0.364 ** | −0.448 ** | −0.541 ** | −0.910 ** | 0.257 * | 1.000 |
Variables | TVFA | Acetate | Propionate | Butyrate | Iso-Butyrate | Valerate | Iso-Valerate | APR | CH4 | CO2 | NH3 | H2S |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TVFA | 1.000 | |||||||||||
Acetate | −0.088 | 1.000 | ||||||||||
Propionate | 0.022 | −0.558 ** | 1.000 | |||||||||
Butyrate | 0.127 | −0.311 ** | −0.600 ** | 1.000 | ||||||||
Iso-Butyrate | −0.317 ** | 0.343 ** | −0.591 ** | 0.357 ** | 1.000 | |||||||
Valerate | −0.042 | −0.819 ** | 0.381 ** | 0.242 * | −0.437 ** | 1.000 | ||||||
Iso-Valerate | 0.029 | −0.751 ** | 0.074 | 0.574 ** | −0.096 | 0.746 ** | 1.000 | |||||
APR | −0.050 | 0.782 ** | −0.949 ** | 0.332 ** | 0.584 ** | −0.589 ** | −0.320 ** | 1.000 | ||||
CH4 | −0.120 | 0.177 | −0.116 | 0.003 | 0.021 | −0.243 * | −0.233 | 0.168 | 1.000 | |||
CO2 | −0.222 | 0.167 | −0.140 | 0.022 | 0.072 | −0.197 | −0.198 | 0.185 | 0.901 ** | 1.000 | ||
NH3 | −0.304 * | 0.254 * | −0.133 | −0.057 | 0.230 | −0.352 ** | −0.227 | 0.208 | 0.625 ** | 0.736 ** | 1.000 | |
H2S | −0.330 ** | 0.275 * | −0.164 | −0.050 | 0.198 | −0.335 ** | −0.216 | 0.245 * | 0.743 ** | 0.826 ** | 0.861 ** | 1.000 |
Variables | Vol. Effl. | Gas Vol. | DMD | OMD | NH3-N | NDFD | ADFD | ADLD | HEMD | CELD |
---|---|---|---|---|---|---|---|---|---|---|
TVFA | −0.197 | −0.042 | 0.154 | −0.311 | −0.248 | −0.031 | 0.383 ** | 0.292 * | −0.423 ** | −0.161 |
Acetate | −0.193 | 0.045 | −0.116 | 0.290 * | 0.288 * | 0.177 | −0.181 | −0.068 | 0.313 ** | −0.032 |
Propionate | 0.148 | −0.124 | 0.145 | −0.345 ** | −0.356 * | −0.148 | 0.171 | 0.141 | −0.283 * | −0.088 |
Butyrate | 0.026 | 0.109 | −0.028 | 0.096 | 0.077 | −0.026 | −0.034 | −0.112 | 0.018 | 0.147 |
Iso-Butyrate | 0.063 | 0.002 | −0.218 * | 0.489 ** | 0.645 ** | 0.098 | −0.486 ** | −0.353 ** | 0.578 ** | 0.177 |
Valerate | 0.108 | −0.065 | 0.066 | −0.390 ** | −0.349 * | −0.100 | 0.304 * | 0.194 | −0.389 ** | −0.068 |
Iso-Valerate | 0.096 | −0.064 | 0.022 | 0.036 | 0.164 | 0.040 | 0.212 | 0.189 | −0.196 | −0.131 |
APR | −0.183 | 0.128 | −0.157 | 0.363 ** | 0.369 ** | 0.173 | −0.199 | −0.135 | 0.329 ** | 0.057 |
CH4 | 0.113 | 0.720 ** | −0.072 | 0.173 | −0.113 | −0.122 | −0.225 | −0.319 ** | 0.151 | 0.323 ** |
CO2 | 0.115 | 0.804 ** | −0.106 | 0.133 | −0.137 | −0.062 | −0.256 * | −0.316 ** | 0.226 | 0.294 * |
NH3 | 0.200 | 0.704 ** | −0.176 | 0.411 ** | −0.035 | 0.072 | −0.312 ** | −0.309 * | 0.377 ** | 0.241 * |
H2S | 0.271 * | 0.666 ** | −0.154 | 0.365 ** | 0.021 | 0.164 | −0.168 | −0.169 | 0.290 * | 0.134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabi, J.O.; Dele, P.A.; Okedoyin, D.O.; Wuaku, M.; Anotaenwere, C.C.; Adelusi, O.O.; Gray, D.; Ike, K.A.; Oderinwale, O.A.; Subedi, K.; et al. Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC). Fermentation 2024, 10, 114. https://doi.org/10.3390/fermentation10020114
Alabi JO, Dele PA, Okedoyin DO, Wuaku M, Anotaenwere CC, Adelusi OO, Gray D, Ike KA, Oderinwale OA, Subedi K, et al. Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC). Fermentation. 2024; 10(2):114. https://doi.org/10.3390/fermentation10020114
Chicago/Turabian StyleAlabi, Joel O., Peter A. Dele, Deborah O. Okedoyin, Michael Wuaku, Chika C. Anotaenwere, Oludotun O. Adelusi, DeAndrea Gray, Kelechi A. Ike, Olatunde A. Oderinwale, Kiran Subedi, and et al. 2024. "Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC)" Fermentation 10, no. 2: 114. https://doi.org/10.3390/fermentation10020114
APA StyleAlabi, J. O., Dele, P. A., Okedoyin, D. O., Wuaku, M., Anotaenwere, C. C., Adelusi, O. O., Gray, D., Ike, K. A., Oderinwale, O. A., Subedi, K., & Anele, U. Y. (2024). Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC). Fermentation, 10(2), 114. https://doi.org/10.3390/fermentation10020114