Valorization of Sugarcane Vinasse and Crude Glycerol for Single-Cell Oils Production by Rhodotorula glutinis R4: A Preliminary Approach to the Integration of Biofuels Industries for Sustainable Biodiesel Feedstock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agro-Industrial Waste Used as Substrates
2.2. Yeast Strain, Medium, and Culture Conditions
2.3. Analytical Determinations
2.4. Analysis of Fatty Acid Composition and Estimation of Biodiesel Properties
2.5. Statistical Processing and Analysis of Data
3. Results and Discussion
3.1. Growth and Lipid Production Using Vinasse
- GMY medium composed of yeast extract, glucose, and salts (MgSO4·7H2O and KH2PO4) is estimated at ~USD 51.16. Glucose represents 76% of the total cost.
- Medium 10% Vinasse + Glucose + Yeast Extract = USD 41.35, representing a 19% reduction in medium cost compared to GMY medium.
- Medium 10% Vinasse + Glycerol = USD 0 (the cost of materials for this medium was considered “0” in this study, as vinasse and crude glycerol substrates are local industry residues with no current application).
3.2. Fatty Acids Profile and Biodiesel Properties
Relative Abundance of FAs (w/w %) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SCOs from R. glutinis R4 | C14:0 | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | C22:1 | Others | Total C16 | Total C18 | Total SFA | Total MUFA | Total PUFA | Reference |
Control GMY 120 h | ND | 19.8 | 8.3 | 2.9 | 52.2 | 13.0 | ND | ND | ND | 28.2 | 68.1 | 22.7 | 60.5 | 13.0 | This work |
Vinasse 10% + glucose 120 h | ND | 19.0 | 6.6 | 3.6 | 55.7 | 15.1 | ND | ND | ND | 25.6 | 74.4 | 22.5 | 62.3 | 15.1 | This work |
Vinasse 10% + glucose 168 h | ND | 26.6 | 3.6 | 3.4 | 57.8 | 8.7 | ND | ND | ND | 30.2 | 69.8 | 30.0 | 61.3 | 8.7 | This work |
Vinasse 25% + glucose 120 h | ND | 15.9 | 2.7 | 3.1 | 70.5 | 7.9 | ND | ND | ND | 18.6 | 81.4 | 19.0 | 73.1 | 7.9 | This work |
Vinasse 25% + glucose 168 h | ND | 25.9 | 2.7 | 2.8 | 57.6 | 11.0 | ND | ND | ND | 28.6 | 71.4 | 28.7 | 60.4 | 11.0 | This work |
Vinasse 10% + glucose + YE 120 h | ND | 23.9 | 1.7 | 3.5 | 60.7 | 9.3 | ND | ND | ND | 25.6 | 73.5 | 27.4 | 62.5 | 9.3 | This work |
Vinasse 10% + glucose + YE 168 h | ND | 23.0 | 3.4 | 4.1 | 55.4 | 14.1 | ND | ND | ND | 26.4 | 73.6 | 27.1 | 58.8 | 14.1 | This work |
Vinasse 10% + glycerol 120 h | ND | 19.3 | 2.6 | 3.4 | 63.1 | 11.4 | ND | ND | ND | 21.9 | 78.1 | 22.8 | 65.7 | 11.5 | This work |
Vinasse 10% + glycerol 168 h | ND | 24.0 | 2.3 | 3.4 | 60.5 | 9.7 | ND | ND | ND | 26.4 | 73.6 | 27.4 | 62.9 | 9.7 | This work |
Oils from vegetables | |||||||||||||||
Rapeseed | 0.07 | 4.9 | 0.2 | 1.6 | 66.6 | 17.1 | 7.8 | 0.3 | 1.4 | 5.2 | 93.1 | 6.6 | 67.1 | 24.8 | [38] |
Sunflower | 0.05 | 4.8 | 0.1 | 4.8 | 67.7 | 21.3 | 0.1 | 0.9 | 0.3 | 5.0 | 93.8 | 9.7 | 68.7 | 21.4 | [38] |
High oleic sunflower | 0.03 | 3.9 | 0.2 | 2.6 | 85.3 | 6.7 | 0.1 | 0.9 | 0.3 | 4.1 | 94.7 | 6.5 | 86.4 | 6.8 | [38] |
Jatropha curcas | 0.07 | 14.0 | 1.1 | 7.9 | 42.7 | 33.8 | 0.1 | 0.2 | 0.2 | 15.0 | 84.5 | 22.0 | 44.0 | 33.8 | [38] |
Palm | 0.04 | 38.8 | ND | 3.2 | 37.6 | 8.8 | 0.2 | ND | ND | 38.8 | 49.7 | 42.0 | 37.6 | 8.9 | [39] |
Biodiesel Properties | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oils | SV (mg KOH) | IV (gI2 100 g−1) | CN | OS (h) | DU (%wt.) | LCSF (%wt.) | CFPP (°C) | HHV (MJ/Kg) | v at 40 °C (mm2 s−1) | ρ (g cm −3) | C18:3 (%) | Reference |
ASTM D6751 | ≤0.5 | NS | ≥47 | >3 | NS | NS | NS | NS | 1.9–6 | 0.86-0.89 | NS | [27,38] |
EN 14214 | ≥0.5 | ≤120 | ≥51 | ≥6 | NS | NS | +5 to −20 | ~35 | 3.5–5 | 0.86-0.90 | ≤12 | [27,38] |
Diesel | 218.1 | 63.8 | 57.8 | 23.7 | ND | ND | −20 | 48.5 | 3.43 | 0.84 | ND | [40,41] |
Vinasse 10% + glucose | 203.7 | 84.1 | 54.2 | 10.4 | 92.6 | 3.7 | −4.9 | 39.5 | 3.9 | 0.88 | ND | This work |
Vinasse 25% + glucose | 202.1 | 80.4 | 55.2 | 17.5 | 88.9 | 3.1 | −6.7 | 39.5 | 4.0 | 0.87 | ND | This work |
Vinasse 10% + glucose + YE | 201.9 | 73.2 | 56.9 | 15.2 | 81.1 | 4.1 | −3.5 | 39.2 | 3.9 | 0.87 | ND | This work |
Vinasse 10% + crude glycerol | 202.8 | 80.1 | 55.2 | 12.9 | 88.6 | 3.7 | −5.0 | 39.5 | 3.9 | 0.88 | ND | This work |
Control GMY | 196.8 | 78.8 | 56.3 | 11.7 | 86.5 | 3.4 | −5.7 | 38.0 | 3.7 | 0.84 | ND | This work |
Soybean | 190.7 | 120.6 | 42.6 | ND | 143.4 | ND | −4.0 | 39.8 | 4.0 | 0.89 | ND | [38] |
Cynara cardunculus | 189.2 | 114.8 | 43.2 | ND | 136.5 | ND | −3.0 | 40.0 | 4.7 | 0.89 | ND | [38] |
High oleic sunflower | 187.5 | 84.6 | 53.2 | ND | 99.9 | ND | 2.0 | 40.5 | 4.7 | 0.88 | ND | [38] |
Brassica carinata | 188.1 | 106.1 | 46.4 | ND | 126.4 | ND | 5.0 | 40.1 | 5.3 | 0.90 | ND | [38] |
Sunflower | 186.9 | 96.7 | 49.2 | ND | 112.8 | ND | 1.0 | 40.3 | 4.5 | 0.88 | ND | [38] |
Rapeseed | 185.0 | 101.5 | 48.3 | ND | 116.8 | ND | −7.0 | 40.3 | 4.4 | 0.88 | ND | [38] |
Jatropha | 186.0 | 91.2 | 54 | 3.95 | ND | ND | 1.0 | 40.4 | 4.6 | 0.86 | ND | [38] |
Palm | ND | 57 | 61 | 4 | 64.2 | 7.7 | 10.0 | ND | 4.5 | ND | 0.2 | [42] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamil, F. A Review on Biodiesel Production, Analysis, and Emission Characteristics from Non-Edible Feedstocks. ChemistrySelect 2023, 8, e202300800. [Google Scholar] [CrossRef]
- Rame, R.; Purwanto, P.; Sudarno, S. Biotechnological approaches in utilizing agro-waste for biofuel production: An extensive review on techniques and challenges. Bioresour. Technol. Rep. 2023, 24, 101662. [Google Scholar] [CrossRef]
- Attarbachi, T.; Kingsley, M.D.; Spallina, V. New trends on crude glycerol purification: A review. Fuel 2023, 340, 127485. [Google Scholar] [CrossRef]
- Ahmed, P.M.; Pajot, H.F.; de Figueroa, L.I.; Gusils, C.H. Sustainable bioremediation of sugarcane vinasse using autochthonous macrofungi. J. Environ. Chem. Eng. 2018, 6, 5177–5185. [Google Scholar] [CrossRef]
- Nitayavardhana, S.; Issarapayup, K.; Pavasant, P.; Khanal, S.K. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresour. Technol. 2013, 133, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Cui, Y.; Trushenski, J.; Blackburn, J.W. Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour. Technol. 2010, 101, 7581–7586. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Zhou, W.; Zhou, W.; Gong, Z. Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook. Renew. Sustain. Energy Rev. 2023, 180, 113303. [Google Scholar] [CrossRef]
- Viñarta, S.C.; Angelicola, M.V.; Barros, J.M.; Fernandez, P.M.; Mac Cormak, W.; Aybar, M.J.; De Figueroa, L.I. Oleaginous yeasts from Antarctica: Screening and preliminary approach on lipid accumulation. J. Basic Microbiol. 2016, 56, 1360–1368. [Google Scholar] [CrossRef]
- Maza, D.D.; Viñarta, S.C.; Su, Y.; Guillamón, J.M.; Aybar, M.J. Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. J. Biotechnol. 2020, 310, 21–31. [Google Scholar] [CrossRef]
- Adrio, J.L. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels. Biotechnol. Bioeng. 2017, 114, 1915–1920. [Google Scholar] [CrossRef]
- Rovati, J.I.; Pajot, H.F.; Ruberto, L.; Mac Cormack, W.; Figueroa, L.I. Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 2013, 30, 459–470. [Google Scholar] [CrossRef]
- Angelicola, M.V.; Fernández, P.M.; Aybar, M.J.; Van Nieuwenhove, C.P.; Figueroa, L.I.C.; Viñarta, S.C. Bioconversion of commercial and crude glycerol to single-cell oils by the Antarctic yeast Rhodotorula glutinis R4 as a biodiesel feedstock. Biocatal. Agric. Biotechnol. 2023, 47, 102544. [Google Scholar] [CrossRef]
- Sineli, P.E.; Maza, D.D.; Aybar, M.J.; Figueroa, L.I.; Viñarta, S.C.; X, M. Bioconversion of sugarcane molasses and waste glycerol on single cell oils for biodiesel by the red yeast Rhodotorula glutinis R4 from Antarctica. Energy Convers. 2022, 16, 100331. [Google Scholar] [CrossRef]
- Maza, D.D.; Viñarta, S.C.; Garcia-Rios, E.; Guillamon, J.M.; Aybar, M.J. Rhodotorula glutinis T13 as a potential source of microbial lipids for biodiesel generation. J. Biotechnol. 2021, 331, 14–18. [Google Scholar] [CrossRef]
- Viñarta, S.C.; Angelicola, M.V.; Van Nieuwenhove, C.; Aybar, M.J.; de Figueroa, L.I.C. Fatty acids profiles and estimation of the biodiesel quality parameters from Rhodotorula spp. from Antarctica. Biotechnol. Lett. 2020, 42, 757–772. [Google Scholar] [CrossRef]
- Burke, R.; Mavrodineanu, R. Certification and Use of Acidic Potassium Dichromate Solutions as an Ultraviolet Absorbance Standard SRM 935; US Department of Commerce, National Bureau of Standards: Gaithersburg, MD, USA, 1977; Volume 258. [Google Scholar]
- Liang, D.; He, W.; Li, C.; Yu, Y.; Zhang, Z.; Ren, N.; Feng, Y. Bidirectional electron transfer biofilm assisted complete bioelectrochemical denitrification process. Chem. Eng. J. 2019, 375, 121960. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- DalmasNeto, C.J.; Sydney, E.B.; Assmann, R.; Neto, D.; Soccol, C.R. Chapter 7—Production of Biofuels from Algal Biomass by Fast Pyrolysis. In Biofuels from Algae; Pandey, A., Lee, D.-J., Chisti, Y., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 143–153. [Google Scholar]
- Rodrigues Reis, C.E.; Furtado Carvalho, A.K.; Bento, H.B.S.; de Castro, H.F. Integration of microbial biodiesel and bioethanol industries through utilization of vinasse as substrate for oleaginous fungi. Bioresour. Technol. Rep. 2019, 6, 46–53. [Google Scholar] [CrossRef]
- Vadivel, R.; Minhas, P.S.; Kumar, S.; Singh, Y.; Nageshwar, R.; Nirmale, A. Significance of vinasses waste management in agriculture and environmental quality-Review. Afr. J. Agric. Res. 2014, 9, 2862–2873. [Google Scholar]
- Rodrigues Reis, C.E.; Hu, B. Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization? Front. Energy Res. 2017, 5, 7. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 2011, 113, 1031–1051. [Google Scholar] [CrossRef]
- Sindhu, R.; Gnansounou, E.; Binod, P.; Pandey, A. Bioconversion of sugarcane crop residue for value added products—An overview. Renew. Energy 2016, 98, 203–215. [Google Scholar] [CrossRef]
- Ratledge, C.; Wynn, J.P. The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms. In Advances in Applied Microbiology; Laskin, A.I., Bennett, J.W., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2002; Volume 51, pp. 1–52. [Google Scholar]
- Nair, R.B.; Taherzadeh, M.J. Valorization of sugar-to-ethanol process waste vinasse: A novel biorefinery approach using edible ascomycetes filamentous fungi. Bioresour. Technol. 2016, 221, 469–476. [Google Scholar] [CrossRef]
- Martinez-Silveira, A.; Garmendia, G.; Rufo, C.; Vero, S. Production of microbial oils by the oleaginous yeast Rhodotorula graminis S1/2R in a medium based on agro-industrial by-products. World J. Microbiol. Biotechnol. 2022, 38, 46. [Google Scholar] [CrossRef] [PubMed]
- Uprety, B.K.; Samavi, M.; Rakshit, S.K. Contribution of specific impurities in crude glycerol towards improved lipid production by Rhodosporidium toruloides ATCC 10788. Bioresour. Technol. Rep. 2018, 3, 27–34. [Google Scholar] [CrossRef]
- Gao, Z.; Ma, Y.; Wang, Q.; Zhang, M.; Wang, J.; Liu, Y. Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489. Bioresour. Technol. 2016, 218, 373–379. [Google Scholar] [CrossRef]
- Bansal, N.; Dasgupta, D.; Hazra, S.; Bhaskar, T.; Ray, A.; Ghosh, D. Effect of utilization of crude glycerol as substrate on fatty acid composition of an oleaginous yeast Rhodotorula mucilagenosa IIPL32: Assessment of nutritional indices. Bioresour. Technol. 2020, 309, 123330. [Google Scholar] [CrossRef]
- Robles-Iglesias, R.; Naveira-Pazos, C.; Fernández-Blanco, C.; Veiga, M.C.; Kennes, C. Factors affecting the optimisation and scale-up of lipid accumulation in oleaginous yeasts for sustainable biofuels production. Renew. Sustain. Energy Rev. 2023, 171, 113043. [Google Scholar] [CrossRef]
- Bryant, J.A. Fatty Acids, Triacylglycerols and Biodiesel. Biofuels Bioenergy 2017, 105–118. [Google Scholar] [CrossRef]
- Rashed, M.; Kalam, M.; Masjuki, H.; Mofijur, M.; Rasul, M.; Zulkifli, N. Performance and emission characteristics of a diesel engine fueled with palm, jatropha, and moringa oil methyl ester. Ind. Crops Prod. 2016, 79, 70–76. [Google Scholar] [CrossRef]
- Smith, P.C.; Ngothai, Y.; Nguyen, Q.D.; O’Neill, B.K. Improving the low-temperature properties of biodiesel: Methods and consequences. Renew. Energy 2010, 35, 1145–1151. [Google Scholar] [CrossRef]
- Refaat, A.A. Correlation between the chemical structure of biodiesel and its physical properties. Int. J. Environ. Sci. Technol. 2009, 6, 677–694. [Google Scholar] [CrossRef]
- Boviatsi, E.; Papadaki, A.; Efthymiou, M.N.; Nychas, G.J.E.; Papanikolaou, S.; da Silva, J.A.; Freire, D.M.; Koutinas, A. Valorisation of sugarcane molasses for the production of microbial lipids via fermentation of two Rhodosporidium strains for enzymatic synthesis of polyol esters. J. Chem. Technol. Biotechnol. 2020, 95, 402–407. [Google Scholar] [CrossRef]
- Uriarte, F. Biofuels from Plant Oils; ASEAN Foundation: Jakarta, Indonesia, 2010; pp. 29–105. ISBN 978-979-19684-1-6. [Google Scholar]
- Martínez, G.; Sánchez, N.; Encinar, J.; González, J. Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution. Biomass Bioenergy 2014, 63, 22–32. [Google Scholar] [CrossRef]
- Li, M.; Alotaibi, M.K.H.; Li, L.; Abomohra, A.E.-F. Enhanced waste glycerol recycling by yeast for efficient biodiesel production: Towards waste biorefinery. Biomass Bioenergy 2022, 159, 106410. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M. Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renew. Energy 2008, 33, 2623–2630. [Google Scholar] [CrossRef]
- Mujtaba, M.A.; Muk Cho, H.; Masjuki, H.H.; Kalam, M.A.; Ong, H.C.; Gul, M.; Harith, M.H.; Yusoff, M.N.A.M. Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability. Energy Rep. 2020, 6, 40–54. [Google Scholar] [CrossRef]
- Ramos, M.J.; Fernández, C.M.; Casas, A.; Rodríguez, L.; Pérez, Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009, 100, 261–268. [Google Scholar] [CrossRef]
Parameters | Vinasse | Crude Glycerol |
---|---|---|
pH | 5.8 | 6.5 |
COD [mg O2 L−1] | 106,252 | NC |
BOD5 [mg O2 L−1] | 64,360 | NC |
BOD5/COD | 0.6 | NC |
NO2−–N [mg L−1] | 4.8 | 0.1 |
NO3−–N [mg L−1] | 187 | 48.4 |
NH4+–N [mg L−1] | 1.4 | ND |
TN [mg L−1] | 193.2 | 48.5 |
PO4− [mg L−1] | 191.0 | ND |
K [g L−1] | 11.0 | NC |
Na [g L−1] | 0.6 | NC |
RS [g %] | 0.9 | NC |
Conditions | Time (h) | YL/X (g g−1) | QL (g L−1h−1) | Qx (g L−1h−1) |
---|---|---|---|---|
Vinasse 10% + glucose | 72 | 0.864 ± 0.012 a | 0.019 ± 0.001 a | 0.023 ± 0.002 a |
96 | 0.880 ± 0.009 a | 0.016 ± 0.002 b | 0.018 ± 0.001 ab | |
120 | 0.784 ± 0.007 b | 0.014 ± 0.001 c | 0.018 ± 0.001 bc | |
144 | 0.786 ± 0.005 b | 0.012 ± 0.002 d | 0.015 ± 0.003 d | |
168 | 0.791 ± 0.005 b | 0.010 ± 0.001 e | 0.013 ± 0.004 e | |
Vinasse 25% + glucose | 72 | 0.498 ± 0.014 c | 0.024 ± 0.001 a | 0.049 ± 0.002 a |
96 | 0.559 ± 0.011 bc | 0.016 ± 0.001 b | 0.028 ± 0.001 b | |
120 | 0.600 ± 0.009 ab | 0.011 ± 0.003 c | 0.019 ± 0.003 c | |
144 | 0.506 ± 0.016 b | 0.010 ± 0.001 d | 0.019 ± 0.003 d | |
168 | 0.559 ± 0.008 ab | 0.009 ± 0.001 e | 0.017 ± 0.002 e | |
Vinasse 10% + glucose + YE | 72 | 0.379 ± 0.001 b | 0.047 ± 0.002 a | 0.123 ± 0.001 a |
96 | 0.372 ± 0.014 c | 0.041 ± 0.001 b | 0.111 ± 0.002 b | |
120 | 0.370 ± 0.019 d | 0.042 ± 0.005 b | 0.114 ± 0.001 bc | |
144 | 0.381 ± 0.024 ab | 0.034 ± 0.001 c | 0.090 ± 0.002 d | |
168 | 0.399 ± 0.012 a | 0.031 ± 0.003 d | 0.077 ± 0.003 e | |
Vinasse 10% + glycerol | 72 | 0.426 ± 0.010 a | 0.014 ± 0.005 b | 0.032 ± 0.001 d |
96 | 0.398 ± 0.002 b | 0.022 ± 0.002 bc | 0.057 ± 0.001 c | |
120 | 0.384 ± 0.005 c | 0.032 ± 0.003 a | 0.084 ± 0.002 ab | |
144 | 0.391 ± 0.019 b | 0.028 ± 0.004 b | 0.073 ± 0.001 b | |
168 | 0.388 ± 0.018 bc | 0.029 ± 0.001 b | 0.075 ± 0.003 b | |
GMY control + glucose | 72 | 0.548 ± 0.012 a | 0.083 ± 0.001 a | 0.151 ± 0.002 a |
96 | 0.464 ± 0.008 bc | 0.066 ± 0.005 bc | 0.143 ± 0.001 ab | |
120 | 0.454 ± 0.014 bc | 0.052 ± 0.001 c | 0.114 ± 0.003 bc | |
144 | 0.486 ± 0.009 bc | 0.047 ± 0.003 d | 0.097 ± 0.003 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maza, D.D.; Barros, J.M.; Guillamón, J.M.; Aybar, M.J.; Viñarta, S.C. Valorization of Sugarcane Vinasse and Crude Glycerol for Single-Cell Oils Production by Rhodotorula glutinis R4: A Preliminary Approach to the Integration of Biofuels Industries for Sustainable Biodiesel Feedstock. Fermentation 2024, 10, 178. https://doi.org/10.3390/fermentation10040178
Maza DD, Barros JM, Guillamón JM, Aybar MJ, Viñarta SC. Valorization of Sugarcane Vinasse and Crude Glycerol for Single-Cell Oils Production by Rhodotorula glutinis R4: A Preliminary Approach to the Integration of Biofuels Industries for Sustainable Biodiesel Feedstock. Fermentation. 2024; 10(4):178. https://doi.org/10.3390/fermentation10040178
Chicago/Turabian StyleMaza, D. Daniela, Julio Maximiliano Barros, José Manuel Guillamón, Manuel J. Aybar, and Silvana C. Viñarta. 2024. "Valorization of Sugarcane Vinasse and Crude Glycerol for Single-Cell Oils Production by Rhodotorula glutinis R4: A Preliminary Approach to the Integration of Biofuels Industries for Sustainable Biodiesel Feedstock" Fermentation 10, no. 4: 178. https://doi.org/10.3390/fermentation10040178
APA StyleMaza, D. D., Barros, J. M., Guillamón, J. M., Aybar, M. J., & Viñarta, S. C. (2024). Valorization of Sugarcane Vinasse and Crude Glycerol for Single-Cell Oils Production by Rhodotorula glutinis R4: A Preliminary Approach to the Integration of Biofuels Industries for Sustainable Biodiesel Feedstock. Fermentation, 10(4), 178. https://doi.org/10.3390/fermentation10040178