Syntrophic Jiont of Sulfate-Reducing Bacteria and Hydrogen-Producing Acetogen Stimulated Methane Production from Waste Activated Sludge Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of WAS
2.2. Enrichment of io-SRB and HPA Consortia
2.3. Experimental Design for Enhanced Methane Production by HPA-SRB-Stimulation
2.4. MiSeq Sequencing of Key Microflora
2.5. Analytical Methods
3. Results and Discussion
3.1. Overall Performance of Methane Production by HPA-SRB-Mediation
3.2. Acetic Acid Conversion towards Methane via HPA-SRB Cooperation
3.3. Microbial Community Distribution and MEN Network Analysis between Key Microbiomes
3.4. Interactions between Environmental Factors and the Key Microbiome
3.5. Underlying Mechanism and Implication Benefits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, Y.; Chen, S.; Dong, B.; Dai, X. Effect of nitrite addition on the two-phase anaerobic digestion of waste activated sludge: Optimization of the acidogenic phase and influence mechanisms. Environ. Pollut. 2020, 261, 114085. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, S.; Yuan, H.; Zhou, Q.; Gu, G. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 2007, 41, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, Q.; Wu, L.; Feng, Q.; Fang, F.; Xue, Z.; Li, C.; Cao, J. Improving anaerobic fermentation of waste activated sludge using iron activated persulfate treatment. Bioresour. Technol. 2018, 268, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Liu, Z.; Fan, Y.; He, Z.W.; Liu, W.; Yue, X.; Zhou, A. Improving methane production from waste activated sludge assisted by Fe(II)-activated peroxydisulfate pretreatment via anaerobic dgestion: Role of interspecific syntrophism mediated by sulfate-reducing bacteria. ACS Sustain. Chem. Eng. 2023, 11, 3012–3022. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.; Tian, L.; Wei, W.; Zhu, T.; Liu, Y. Insight into the enhancing short-chain fatty acids (SCFAs) production from waste activated sludge via polyoxometalates pretreatment: Mechanisms and implications. Sci. Total Environ. 2021, 800, 149392. [Google Scholar] [CrossRef] [PubMed]
- Masse, D.I.; Droste, R.L. Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor. Water Res. 2000, 34, 3087–3106. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, K.-M.; Kim, H.-E.; Lee, H.-J.; Lee, C.; Lee, C. Disintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterability. Environ. Sci. Technol. 2016, 50, 7106–7115. [Google Scholar] [CrossRef]
- Muyzer, G.; Stams, A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef]
- Coma, M.; Vilchez-Vargas, R.; Roume, H.; Jauregui, R.; Pieper, D.H.; Rabaey, K. Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation. Environ. Sci. Technol. 2016, 50, 6467–6476. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Huebner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Pang, S.; Jiang, J.; Ma, J.; Huang, Z.; Zhang, J.; Liu, Y.; Xu, C.; Liu, Q.; Yuan, Y. The combination of ferrate (VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants. Chem. Eng. J. 2018, 333, 11–19. [Google Scholar] [CrossRef]
- Zhou, A.; Wei, Y.; Fan, Y.; Shyryn, A.; Wang, S.; Liu, W.; Yuan, J.; Yue, X. Sulfate reduction-mediated syntrophic microbiomes accelerated waste-activated sludge fermentation on the basis of SO4·− oxidation and eliminated superfluous sulfate. ACS Sustain. Chem. Eng. 2020, 8, 9325–9334. [Google Scholar] [CrossRef]
- Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 1997, 61, 262–280. [Google Scholar] [PubMed]
- Visser, A.; Beeksma, I.; Zee, F.; Lettinga, A.J.M.S. Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Appl. Microbiol. Biot. 1993, 40, 549–556. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, A.; Fan, Y.; Duan, Y.; Liu, Z.; He, Z.; Liu, W.; Yue, X. Using heat-activated persulfate to accelerate short-chain fatty acids production from waste activated sludge fermentation triggered by sulfate-reducing microbial consortium. Sci. Total Environ. 2023, 861, 160795. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Liu, H.; Varrone, C.; Shyryn, A.; Defemur, Z.; Wang, S.; Liu, W.; Yue, X. New insight into waste activated sludge acetogenesis triggered by coupling sulfite/ferrate oxidation with sulfate reduction-mediated syntrophic consortia. Chem. Eng. J. 2020, 400, 125885. [Google Scholar] [CrossRef]
- Lin, X.-Q.; Li, Z.-L.; Liang, B.; Zhai, H.-L.; Cai, W.-W.; Nan, J.; Wang, A.-J. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. Water Res. 2019, 162, 236–245. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.-H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinf. 2012, 13, 113. [Google Scholar] [CrossRef]
- Pardilho, S.; Pires, J.C.; Boaventura, R.; Almeida, M.; Dias, J.M. Biogas production from residual marine macroalgae biomass: Kinetic modelling approach. Bioresour. Technol. 2022, 359, 127473. [Google Scholar] [CrossRef]
- Luo, J.; Wu, L.; Feng, Q.; Fang, F.; Cao, J.; Zhang, Q.; Su, Y. Synergistic effects of iron and persulfate on the efficient production of volatile fatty acids from waste activated sludge: Understanding the roles of bioavailable substrates, microbial community & activities, and environmental factors. Biochem. Eng. J. Chem. Eng. J. 2019, 141, 71–79. [Google Scholar]
- Wang, L.; Liu, C.; Fan, X.; Sangeetha, T.; Pan, K.; Bi, X.; Liu, W.; Lin, X.; Wang, X.; Wang, A.; et al. The dual role of potassium ferrate in promoting primary sludge hydrolysis and acidogenesis in anaerobic fermentation. Chem. Eng. J. 2023, 477, 147023. [Google Scholar] [CrossRef]
- Kerrou, O.; Lahboubi, N.; Bakraoui, M.; Karouach, F.; El Gnaoui, Y.; Schuech, A.; Stinner, W.; El Bari, H. Methane production from anaerobic digestion of date palm leaflet waste in Morocco. J. Mater. Cycles Waste Manag. 2021, 23, 1599–1608. [Google Scholar] [CrossRef]
- Nelson, M.C.; Morrison, M.; Yu, Z. A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour. Technol. 2011, 102, 3730–3739. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Tian, L.; Zheng, K.; Zhu, T.; Chen, X.; Zhao, Y.; Liu, Y. Heat-assisted potassium ferrate pretreatment enhancing short-chain fatty acids production from waste activated sludge: Performance and mechanisms. J. Clean. 2022, 380, 134989. [Google Scholar] [CrossRef]
- Kato, S.; Haruta, S.; Cui, Z.J.; Ishii, M.; Yokota, A.; Igarashi, Y. Clostridium Straminisolvens sp. nov. a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int. J. Syst. Evol. Microbiol. 2004, 54 Pt 6, 2043–2047. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zheng, Z.; Wang, X. Obstacles faced by methanogenic archaea originating from substrate-driven toxicants in anaerobic digestion. J. Hazard. 2020, 403, 123938. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, A.-E.; Shrestha, P.M.; Liu, F.; Shrestha, M.; Shrestha, D.; Embree, M.; Zengler, K.; Wardman, C.; Nevin, K.P.; Lovley, D.R. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ. Environ. Sci. 2014, 7, 408–415. [Google Scholar] [CrossRef]
- Falsen, E.; Collins, M.D.; Welinder-Olsson, C.; Song, Y.; Finegold, S.M.; Lawson, P.A. Fastidiosipila sanguinis gen. nov. sp nov. a new Gram-positive, coccus-shaped organism from human blood. Int. J. Syst. Evol. Microbiol. 2005, 55, 853–858. [Google Scholar] [CrossRef]
- Kniemeyer, O.; Musat, F.; Sievert, S.M.; Knittel, K.; Wilkes, H.; Blumenberg, M.; Michaelis, W.; Classen, A.; Bolm, C.; Joye, S.B.; et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 2007, 449, 898–901. [Google Scholar] [CrossRef]
- Yi, Y.; Dolfing, J.; Jin, G.; Fang, X.; Han, W.; Liu, L.; Tang, Y.; Cheng, L. Thermodynamic restrictions determine ammonia tolerance of methanogenic pathways in Methanosarcina barkeri. Water Res. 2023, 232, 119664. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Investigation on the sludge yield of municipal wastewater treatment plants in key watershed of China. China Water Wastewater 2018, 34, 23–27. (In Chinese) [Google Scholar]
Groups | λ/d | Rm/mL CH4/(g VSS·d) | Pm/mL CH4/g VSS | R2 |
---|---|---|---|---|
Control | 4.00 ± 0.16 | 10.27 ± 1.38 | 26.95 ± 0.46 | 0.99 |
H-S-W50 | 3.85 ± 0.23 | 11.63 ± 1.87 | 31.40 ± 0.78 | 0.97 |
H-S-W100 | 3.95 ± 0.17 | 10.96 ± 1.25 | 30.45 ± 0.55 | 0.99 |
H-S-W200 | 3.98 ± 0.15 | 10.56 ± 1.10 | 28.00 ± 0.45 | 0.99 |
H-S-W400 | 4.01 ± 0.38 | 8.05 ± 1.75 | 26.27 ± 1.00 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zhou, A.; Duan, Y.; Liu, Z.; He, Z.; Liu, W.; Yue, X. Syntrophic Jiont of Sulfate-Reducing Bacteria and Hydrogen-Producing Acetogen Stimulated Methane Production from Waste Activated Sludge Digestion. Fermentation 2024, 10, 243. https://doi.org/10.3390/fermentation10050243
Wu H, Zhou A, Duan Y, Liu Z, He Z, Liu W, Yue X. Syntrophic Jiont of Sulfate-Reducing Bacteria and Hydrogen-Producing Acetogen Stimulated Methane Production from Waste Activated Sludge Digestion. Fermentation. 2024; 10(5):243. https://doi.org/10.3390/fermentation10050243
Chicago/Turabian StyleWu, Haokun, Aijuan Zhou, Yanqing Duan, Zhihong Liu, Zhangwei He, Wenzong Liu, and Xiuping Yue. 2024. "Syntrophic Jiont of Sulfate-Reducing Bacteria and Hydrogen-Producing Acetogen Stimulated Methane Production from Waste Activated Sludge Digestion" Fermentation 10, no. 5: 243. https://doi.org/10.3390/fermentation10050243
APA StyleWu, H., Zhou, A., Duan, Y., Liu, Z., He, Z., Liu, W., & Yue, X. (2024). Syntrophic Jiont of Sulfate-Reducing Bacteria and Hydrogen-Producing Acetogen Stimulated Methane Production from Waste Activated Sludge Digestion. Fermentation, 10(5), 243. https://doi.org/10.3390/fermentation10050243