Extremophilic Exopolysaccharides: Bioprocess and Novel Applications in 21st Century
Abstract
:1. Introduction
1.1. Extremophiles as Exopolysaccharide Producers
1.2. Classification of Extremophiles and Their Survival Ability
1.3. Basic Structural Organization of Microbial Exopolysaccharides
1.4. Major Synthesis Pathways of Exopolysaccharides
- (i)
- The Wzx/Wzy-dependent pathway
- (ii)
- The ATP-binding cassette (ABC) transporter-dependent pathway
- (iii)
- The synthase-dependent pathway
- (iv)
- The extracellular synthesis pathway
1.5. Extremophiles and Exopolysaccharides Production
1.5.1. Halophiles as EPS Producers
- (a)
- EPS production by moderate halophiles:
- (b)
- EPS production by extreme halophiles:
1.5.2. Thermophilic Microbes and EPS Production
- (a)
- Geobacillus as an EPS source
1.5.3. Psychrophiles as EPS Producers
1.5.4. EPS Production by Microorganisms Grown in Harsh Environments Viz. Polluted Sites
2. Fermentation Methods for the Production of Bacterial and Fungal EPS
2.1. Submerged Fermentation (Smf) for EPS Production
2.2. Solid-State Fermentation (Ssf) for EPS Production
2.3. Optimizing Bioreactor Design for Superior Production of Microbial Exopolysaccharides
Different Fermenters for Production
3. Factors Affecting EPS Production by Extremophiles
4. Genes Involved in EPS Production
5. Applications of Various EPSs Produced by Extremophiles
5.1. Food Industry
5.2. Food Packaging
5.3. Pharmaceutical Industry
5.4. Bioremediation
5.5. Agriculture
5.6. Textile
5.7. Cosmetics
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schröder, C.; Burkhardt, C.; Antranikian, G. What we learn from extremophiles. ChemTexts 2020, 6, 8. [Google Scholar] [CrossRef]
- Irwin, J.A. Overview of extremophiles and their food and medical applications. In Physiological and Biotechnological Aspects of Extremophiles; Academic Press: Cambridge, MA, USA, 2020; pp. 65–87. ISBN 9780128183229. [Google Scholar]
- Flint, H.J. Micro-organisms and the Microbiome. In Why Gut Microbes Matter; Nature Publishing Group: Berlin, Germany, 2020; pp. 1–8. [Google Scholar]
- Keller, H.; Friedli, T. Visibility limit of naked-eye sunspots. Q. J. R. Astron. Soc. 1992, 33, 83–89. Available online: https://ui.adsabs.harvard.edu/abs/1992QJRAS..33...83K/abstract (accessed on 28 January 2024).
- Nicolaus, B.; Kambourova, M.; Oner, E.T. Exopolysaccharides from extremophiles: From fundamentals to biotechnology. Environ. Technol. 2010, 31, 1145–1158. [Google Scholar] [CrossRef]
- Poli, A.; Anzelmo, G.; Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats: Production, characterization and biological activities. Mar. Drugs 2010, 8, 1779–1802. [Google Scholar] [CrossRef]
- Hartzell, P.L.; Millstein, J.; Lapaglia, C. Biofilm formation in hyperthermophilic archaea. Methods Enzymol. 1999, 310, 335–349. [Google Scholar] [CrossRef]
- Rinker, K.D.; Kelly, R.M. Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: Development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl. Environ. Microbiol. 1996, 62, 4478–4485. [Google Scholar] [CrossRef]
- Lapaglia, C.; Hartzell, P.L. Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl. Environ. Microbiol. 1997, 63, 3158–3163. [Google Scholar] [CrossRef]
- Nicolaus, B.; Manca, M.C.; Ramano, I.; Lama, L. Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus. FEMS Microbiol. Lett. 1993, 109, 203–206. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Nguyen, T.T.; Bui, D.C.; Hong, P.T.; Hoang, Q.K.; Nguyen, H.T. Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiol. 2020, 6, 451–469. [Google Scholar] [CrossRef]
- Díaz-Cornejo, S.; Otero, M.C.; Banerjee, A.; Gordillo-Fuenzalida, F. Biological properties of exopolysaccharides produced by Bacillus spp. Microbiol. Res. 2023, 268, 127276. [Google Scholar] [CrossRef]
- Wünsche, J.; Schmid, J. Acetobacteraceae as exopolysaccharide producers: Current state of knowledge and further perspectives. Front. Bioeng. Biotechnol. 2023, 11, 1166618. [Google Scholar] [CrossRef]
- Kaur, N.; Dey, P. Bacterial exopolysaccharides as emerging bioactive macromolecules: From fundamentals to applications. Res. Microbiol. 2023, 174, 104024. [Google Scholar] [CrossRef]
- Barcelos, M.C.S.; Vespermann, K.A.C.; Pelissari, F.M.; Molina, G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit. Rev. Food Sci. Nutr. 2020, 60, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, N.; Naik, S.; Eswari, J.S. Exopolysaccharides and their applications in food processing industries. Food Sci. Appl. Biotechnol. 2022, 5, 22–44. [Google Scholar] [CrossRef]
- Banerjee, A.; Sarkar, S.; Govil, T.; González-Faune, P.; Cabrera-Barjas, G.; Bandopadhyay, R.; Salem, D.R.; Sani, R.K. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation. Front. Microbiol. 2021, 12, 721365. [Google Scholar] [CrossRef]
- Waoo, A.A.; Singh, S.; Pandey, A.; Kant, G.; Choure, K.; Amesho, K.T.T.; Srivastava, S. Microbial exopolysaccharides in the biomedical and pharmaceutical industries. Heliyon 2023, 9, e18613. [Google Scholar] [CrossRef]
- Sanalibaba, P.; Cakmak, G.A. Exopolysaccharides Production by Lactic Acid Bacteria. Appl. Microbiol. Open Access 2016, 2, 1–5. [Google Scholar] [CrossRef]
- Ruas-Madiedo, P.; De Los Reyes-Gavilán, C.G. Invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 2005, 88, 843–856. [Google Scholar] [CrossRef]
- Spanò, A.; Zammuto, V.; Macrì, A.; Agostino, E.; Nicolò, M.S.; Scala, A.; Trombetta, D.; Smeriglio, A.; Ingegneri, M.; Caccamo, M.T.; et al. Arsenic Adsorption and Toxicity Reduction of An Exopolysaccharide Produced by Bacillus licheniformis B3-15 of Shallow Hydrothermal Vent Origin. J. Mar. Sci. Eng. 2023, 11, 325. [Google Scholar] [CrossRef]
- Wang, J.; Salem, D.R.; Sani, R.K. Two new exopolysaccharides from a thermophilic bacterium Geobacillus sp. WSUCF1: Characterization and bioactivities. New Biotechnol. 2021, 61, 29–39. [Google Scholar] [CrossRef]
- Elumalai, P.; Parthipan, P.; Narenkumar, J.; Anandakumar, B.; Madhavan, J.; Oh, B.T.; Rajasekar, A. Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3 Biotech 2019, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Finore, I.; Lama, L.; Di Donato, P.; Romano, I.; Tramice, A.; Leone, L.; Nicolaus, B.; Poli, A. Parageobacillus thermantarcticus, an antarctic cell factory: From crop residue valorization by green chemistry to astrobiology studies. Diversity 2019, 11, 128. [Google Scholar] [CrossRef]
- Johnson, M.R.; Conners, S.B.; Montero, C.I.; Chou, C.J.; Shockley, K.R.; Kelly, R.M. The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture. Appl. Environ. Microbiol. 2006, 72, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Yaşar Yıldız, S.; Radchenkova, N. Exploring Extremophiles from Bulgaria: Biodiversity, Biopolymer Synthesis, Functional Properties, Applications. Polymers 2023, 16, 69. [Google Scholar] [CrossRef]
- Lin, M.H.; Yang, Y.L.; Chen, Y.P.; Hua, K.F.; Lu, C.P.; Sheu, F.; Lin, G.H.; Tsay, S.S.; Liang, S.M.; Wu, S.H. A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through toll-like receptor 2. J. Biol. Chem. 2011, 286, 17736–17745. [Google Scholar] [CrossRef]
- González-González, R.; Fucĩnos, P.; Rúa, M.L. An overview on Extremophilic esterases. In Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy; Springer: Berlin/Heidelberg, Germany, 2017; pp. 181–204. [Google Scholar]
- Renganathan, P.; Dumorné, K.; Córdova, D.C.; Astorga-Eló, M. Extremozymes: A potential source for industrial applications. J. Microbiol. Biotechnol. 2017, 27, 649–659. [Google Scholar] [CrossRef]
- Sharma, A.; Kawarabayasi, Y.; Satyanarayana, T. Acidophilic bacteria and archaea: Acid stable biocatalysts and their potential applications. Extremophiles 2012, 16, 1–19. [Google Scholar] [CrossRef]
- Rizzo, C.; Perrin, E.; Poli, A.; Finore, I.; Fani, R.; Lo Giudice, A. Characterization of the exopolymer-producing Pseudoalteromonas sp. S8-8 from Antarctic sediment. Appl. Microbiol. Biotechnol. 2022, 106, 7173–7185. [Google Scholar] [CrossRef]
- Khalikova, E.; Somersalo, S.; Korpela, T. Metabolites produced by alkaliphiles with potential biotechnological applications. In Alkaliphiles in Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 157–193. [Google Scholar]
- Biswas, J.; Paul, A.K. Diversity and production of extracellular polysaccharide by halophilic microorganisms. Biodivers. Int. J. 2017, 1, 32–39. [Google Scholar]
- Uhliariková, I.; Šutovská, M.; Barboríková, J.; Molitorisová, M.; Kim, H.J.; Park, Y.I.; Matulová, M.; Lukavský, J.; Hromadková, Z.; Capek, P. Structural characteristics and biological effects of exopolysaccharide produced by cyanobacterium Nostoc sp. Int. J. Biol. Macromol. 2020, 160, 364–371. [Google Scholar] [CrossRef]
- Büdel, B.; Friedl, T. (Eds.) Life at Rock Surfaces: Challenged by Extreme Light, Temperature and Hydration Fluctuations (Volume 9). Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021. [Google Scholar]
- Milling, A.; Babujee, L.; Allen, C. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS ONE 2011, 6, e15853. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Song, Y.J.; Yu, H.S.; Lee, N.K.; Paik, H.D. Investigating the antimicrobial and antibiofilm effects of cinnamaldehyde against Campylobacter spp. using cell surface characteristics. J. Food Sci. 2020, 85, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Herr, K.L.; Carey, A.M.; Heckman, T.I.; Chávez, J.L.; Johnson, C.N.; Harvey, E.; Gamroth, W.A.; Wulfing, B.S.; Van Kessel, R.A.; Marks, M.E. Exopolysaccharide production in Caulobacter crescentus: A resource allocation trade-off between protection and proliferation. PLoS ONE 2018, 13, e0190371. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Yu, H.; Zhang, B.; Liu, Q.; Xiong, B.; Li, C.; Qiao, C.; Dai, L.; Li, J.; Li, W.; et al. Engineering Exopolysaccharide Biosynthesis of Shewanella oneidensis to Promote Electroactive Biofilm Formation for Liquor Wastewater Treatment. ACS Synth. Biol. 2024. [Google Scholar] [CrossRef]
- Berg, T.O.; Gurung, M.K.; Altermark, B.; Smalås, A.O.; Ræder, I.L.U. Characterization of the N-acetylneuraminic acid synthase (NeuB) from the psychrophilic fish pathogen Moritella viscosa. Carbohydr. Res. 2015, 402, 133–145. [Google Scholar] [CrossRef]
- Casillo, A.; Ricciardelli, A.; Parrilli, E.; Tutino, M.L.; Corsaro, M.M. Cell-wall associated polysaccharide from the psychrotolerant bacterium Psychrobacter arcticus 273-4: Isolation, purification and structural elucidation. Extremophiles 2020, 24, 63–70. [Google Scholar] [CrossRef]
- Concórdio-Reis, P.; Alves, V.D.; Moppert, X.; Guézennec, J.; Freitas, F.; Reis, M.A. Characterization and biotechnological potential of extracellular polysaccharides synthesized by Alteromonas strains isolated from French Polynesia marine environments. Mar. Drugs 2021, 19, 522. [Google Scholar] [CrossRef]
- Lin, S.M.; Baek, C.Y.; Jung, J.H.; Kim, W.S.; Song, H.Y.; Lee, J.H.; Ji, H.J.; Zhi, Y.; Kang, B.S.; Bahn, Y.S.; et al. Antioxidant activities of an exopolysaccharide (DeinoPol) produced by the extreme radiation-resistant bacterium Deinococcus radiodurans. Sci. Rep. 2020, 10, 55. [Google Scholar] [CrossRef]
- Kambourova, M.; Radchenkova, N.; Tomova, I.; Bojadjieva, I. Thermophiles as a promising source of exopolysaccharides with interesting properties. In Biotechnology of Extremophiles: Advances and Challenges; Springer: Berlin/Heidelberg, Germany, 2016; pp. 117–139. [Google Scholar]
- Lei, Z.H.U.; Zhang, F.; Li-Jun, Y.A.N.G.; Yang, G.E.; Qing-Fang, W.E.I.; Yu, O.U. EPSAH, an exopolysaccharide from Aphanothece halophytica GR02, improves both cellular and humoral immunity as a novel polysaccharide adjuvant. Chin. J. Nat. Med. 2016, 14, 541–548. [Google Scholar]
- Whitfield, C. Bacterial extracellular polysaccharides. Can. J. Microbiol. 1988, 34, 415–420. [Google Scholar] [CrossRef]
- Oerlemans, M.M.P.; Akkerman, R.; Ferrari, M.; Walvoort, M.T.C.; de Vos, P. Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. J. Funct. Foods 2021, 76, 104289. [Google Scholar] [CrossRef]
- Badel, S.; Bernardi, T.; Michaud, P. New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv. 2011, 29, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Cantabrana, C.; Sánchez, B.; Milani, C.; Ventura, M.; Margolles, A.; Ruas-Madiedo, P. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl. Environ. Microbiol. 2014, 80, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, C.; Li, D.; Zhao, Y.; Zhang, X.; Zeng, X.; Yang, Z.; Li, S. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 2013, 54, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ji, J.; Rui, X.; Yu, J.; Tang, W.; Chen, X.; Jiang, M.; Dong, M. Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT 2014, 59, 732–739. [Google Scholar] [CrossRef]
- Rühmann, B.; Schmid, J.; Sieber, V. Methods to identify the unexplored diversity of microbial exopolysaccharides. Front. Microbiol. 2015, 6, 145154. [Google Scholar] [CrossRef]
- Wang, W.; Ju, Y.; Liu, N.; Shi, S.; Hao, L. Structural characteristics of microbial exopolysaccharides in association with their biological activities: A review. Chem. Biol. Technol. Agric. 2023, 10, 137. [Google Scholar] [CrossRef]
- Macedo, M.G.; Lacroix, C.; Gardner, N.J.; Champagne, C.P. Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. Int. Dairy J. 2002, 12, 419–426. [Google Scholar] [CrossRef]
- Roberts, I.S. Biotechnology of Microbial Exopolysaccharides. Ian W. Sutherland. Q. Rev. Biol. 1992, 67, 527. [Google Scholar] [CrossRef]
- García, A.; Fernández-Sandoval, M.T.; Morales-Guzmán, D.; Martínez-Morales, F.; Trejo-Hernández, M.R. Advances in exopolysaccharide production from marine bacteria. J. Chem. Technol. Biotechnol. 2022, 97, 2694–2705. [Google Scholar] [CrossRef]
- González-García, Y.; Heredia, A.; Meza-Contreras, J.C.; Escalante, F.M.E.; Camacho-Ruiz, R.M.; Córdova, J. Biosynthesis of Extracellular Polymeric Substances by the Marine Bacterium Saccharophagus degradans under Different Nutritional Conditions. Int. J. Polym. Sci. 2015, 2015, 526819. [Google Scholar] [CrossRef]
- Islam, S.T.; Lam, J.S. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can. J. Microbiol. 2014, 60, 697–716. [Google Scholar] [CrossRef] [PubMed]
- Maczuga, N.; Tran, E.N.H.; Qin, J.; Morona, R. Interdependence of Shigella flexneri O Antigen and Enterobacterial Common Antigen Biosynthetic Pathways. J. Bacteriol. 2022, 204, e00546-21. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, S.; Yu, L.; Zhao, J.; Tian, F.; Chen, W.; Zhai, Q. Capsular polysaccarides of probiotics and their immunomodulatory roles. Food Sci. Hum. Wellness 2022, 11, 1111–1120. [Google Scholar] [CrossRef]
- Schmid, J. Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Curr. Opin. Biotechnol. 2018, 53, 130–136. [Google Scholar] [CrossRef]
- Liston, S.D.; McMahon, S.A.; Le Bas, A.; Suits, M.D.L.; Naismith, J.H.; Whitfield, C. Periplasmic depolymerase provides insight into ABC transporter-dependent secretion of bacterial capsular polysaccharides. Proc. Natl. Acad. Sci. USA 2018, 115, E4870–E4879. [Google Scholar] [CrossRef]
- Chang, S.-C. Biosynthesis of Bacterial Polysaccharides by Novel Glycosyltransferase Enzymes; KTH Royal Institute of Technology: Stockholm, Sweden, 2022. [Google Scholar]
- Willis, L.M.; Whitfield, C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr. Res. 2013, 378, 35–44. [Google Scholar] [CrossRef]
- Solis, M.A.; Chen, Y.H.; Wong, T.Y.; Bittencourt, V.Z.; Lin, Y.C.; Huang, L.L.H. Hyaluronan regulates cell behavior: A potential niche matrix for stem cells. Biochem. Res. Int. 2012, 2012, 11. [Google Scholar] [CrossRef]
- Hubbard, C.; McNamara, J.T.; Azumaya, C.; Patel, M.S.; Zimmer, J. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan. J. Mol. Biol. 2012, 418, 21–31. [Google Scholar] [CrossRef]
- Stephens, Z.; Wilson, L.F.L.; Zimmer, J. Diverse mechanisms of polysaccharide biosynthesis, assembly and secretion across kingdoms. Curr. Opin. Struct. Biol. 2023, 79, 102564. [Google Scholar] [CrossRef]
- Rehm, B.H.A.; Valla, S. Bacterial alginates: Biosynthesis and applications. Appl. Microbiol. Biotechnol. 1997, 48, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.F.; Blank, L.M.; Mclaughlin, R.; Nielsen, L.K. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol. 2005, 66, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Zannini, E.; Waters, D.M.; Coffey, A.; Arendt, E.K. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl. Microbiol. Biotechnol. 2016, 100, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.; Dangi, P.; Chaudhary, V.; Sablania, V.; Dewan, A.; Joshi, S.; Siddqui, S.; Yadav, A.N. Probiotics and bioactive metabolite production. In Probiotics for Human Nutrition in Health and Disease; Academic Press: Cambridge, MA, USA, 2022; pp. 171–198. ISBN 9780323899086. [Google Scholar]
- Kumar, M.A.; Anandapandian, K.T.K.; Parthiban, K. Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Brazilian Arch. Biol. Technol. 2011, 54, 259–265. [Google Scholar] [CrossRef]
- Schmid, J.; Sieber, V.; Rehm, B. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front. Microbiol. 2015, 6, 496. [Google Scholar] [CrossRef]
- Cirrincione, S.; Breuer, Y.; Mangiapane, E.; Mazzoli, R.; Pessione, E. ’Ropy’ phenotype, exopolysaccharides and metabolism: Study on food isolated potential probiotics LAB. Microbiol. Res. 2018, 214, 137–145. [Google Scholar] [CrossRef]
- Arun, J.; Selvakumar, S.; Sathishkumar, R.; Moovendhan, M.; Ananthan, G.; Maruthiah, T.; Palavesam, A. In vitro antioxidant activities of an exopolysaccharide from a salt pan bacterium Halolactibacillus miurensis. Carbohydr. Polym. 2017, 155, 400–406. [Google Scholar] [CrossRef]
- Llamas, I.; Amjres, H.; Mata, J.A.; Quesada, E.; Béjar, V. The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules 2012, 17, 7103–7120. [Google Scholar] [CrossRef]
- Poli, A.; Kazak, H.; Gürleyendaǧ, B.; Tommonaro, G.; Pieretti, G.; Öner, E.T.; Nicolaus, B. High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr. Polym. 2009, 78, 651–657. [Google Scholar] [CrossRef]
- Gu, D.; Jiao, Y.; Wu, J.; Liu, Z.; Chen, Q. Optimization of EPS production and characterization by a halophilic bacterium, Kocuria rosea ZJUQH from chaka salt lake with response surface methodology. Molecules 2017, 22, 814. [Google Scholar] [CrossRef]
- Biswas, J.; Paul, A.K. Production of Extracellular Polymeric Substances by Halophilic Bacteria of Solar Salterns. Chinese J. Biol. 2014, 2014, 205731. [Google Scholar] [CrossRef]
- Chikkanna, A.; Ghosh, D.; Kishore, A. Expression and characterization of a potential exopolysaccharide from a newly isolated halophilic thermotolerant bacteria Halomonas nitroreducens strain WB1. PeerJ 2018, 2018, e4684. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Shukla, L.; Khare, S.; Nain, L. Detection and Characterization of New Thermostable Endoglucanase from Aspergillus awamori Strain F 18. J. Mycol. Pl. Pathol. 2011, 41, 97–103. Available online: https://www.researchgate.net/profile/Surender-Singh-3/publication/235622352_Detection_and_Characterization_of_New_Thermostable_Endoglucanase_from_Aspergillus_awamori_Strain_F_18/links/0fcfd511f1ed739e11000000/Detection-and-Characterization-of-New-Thermost (accessed on 30 January 2024).
- Zhu, D.; Adebisi, W.A.; Ahmad, F.; Sethupathy, S.; Danso, B.; Sun, J. Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Front. Bioeng. Biotechnol. 2020, 8, 483. [Google Scholar] [CrossRef] [PubMed]
- Radchenkova, N.; Vassilev, S.; Panchev, I.; Anzelmo, G.; Tomova, I.; Nicolaus, B.; Kuncheva, M.; Petrov, K.; Kambourova, M. Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium aeribacillus pallidus 418. Appl. Biochem. Biotechnol. 2013, 171, 31–43. [Google Scholar] [CrossRef]
- Annamalai, N.; Rajeswari, M.V.; Balasubramanian, T. Thermostable and Alkaline Cellulases from Marine Sources. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Cellulase System Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2016; pp. 91–98. ISBN 9780444635150. [Google Scholar]
- Banerjee, A.; Breig, S.J.M.; Gómez, A.; Sánchez-Arévalo, I.; González-Faune, P.; Sarkar, S.; Bandopadhyay, R.; Vuree, S.; Cornejo, J.; Tapia, J.; et al. Optimization and Characterization of a Novel Exopolysaccharide from Bacillus haynesii CamB6 for Food Applications. Biomolecules 2022, 12, 834. [Google Scholar] [CrossRef]
- Kambourova, M.; Mandeva, R.; Dimova, D.; Poli, A.; Nicolaus, B.; Tommonaro, G. Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydr. Polym. 2009, 77, 338–343. [Google Scholar] [CrossRef]
- Wang, J.; Goh, K.M.; Salem, D.R.; Sani, R.K. Genome analysis of a thermophilic exopolysaccharide-producing bacterium—Geobacillus sp. WSUCF1. Sci. Rep. 2019, 9, 1608. [Google Scholar] [CrossRef]
- Laubach, J.M.; Sani, R.K. Thermophilic Exopolysaccharide Films: A Potential Device for Local Antibiotic Delivery. Pharmaceutics 2023, 15, 557. [Google Scholar] [CrossRef]
- Margesin, R.; Miteva, V. Diversity and ecology of psychrophilic microorganisms. Res. Microbiol. 2011, 162, 346–361. [Google Scholar] [CrossRef]
- Morita, R.Y. Psychrophilic bacteria. Bacteriol. Rev. 1975, 39, 144–167. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, S.; Collins, T.; Marx, J.C.; Feller, G.; Gerday, C. Psychrophilic microorganisms: Challenges for life. EMBO Rep. 2006, 7, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.S.; Nair, A.; Nivetha, K.; More, S.S.; More, V.S.; Anantharaju, K.S. Molecular adaptations in proteins and enzymes produced by extremophilic microorganisms. In Extremozymes and their Industrial Applications; Academic Press: Cambridge, MA, USA, 2022; pp. 205–230. ISBN 9780323902748. [Google Scholar]
- Sarmiento, F.; Peralta, R.; Blamey, J.M. Cold and hot extremozymes: Industrial relevance and current trends. Front. Bioeng. Biotechnol. 2015, 3, 148. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.S.; Cavicchioli, R. Cold-adapted enzymes. Annu. Rev. Biochem. 2006, 75, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Nagar, S.; Antony, R.; Thamban, M. highlighted in their review the crucial role of Extracellular Polymeric Substances (EPS) in Antarctic Environments. These EPS, produced by microbial and algal communities, contribute to resilience in extreme conditions, offering cryopr. Polar Sci. 2021, 30, 100686. [Google Scholar] [CrossRef]
- Ali, P.; Fucich, D.; Shah, A.A.; Hasan, F.; Chen, F. Cryopreservation of Cyanobacteria and Eukaryotic Microalgae Using Exopolysaccharide Extracted from a Glacier Bacterium. Microorganisms 2021, 9, 395. [Google Scholar] [CrossRef]
- Ferheen, I.; Ahmed, Z.; Alonazi, W.B.; Pessina, A.; Ibrahim, M.; Pucciarelli, S.; Bokhari, H. Diverse Repertoire and Relationship of Exopolysaccharide Genes in Cold-Adapted Acinetobacter sp. CUI-P1 Revealed by Comparative Genome Analysis. Microorganisms 2023, 11, 885. [Google Scholar] [CrossRef]
- Mohite, B.V.; Koli, S.H.; Narkhede, C.P.; Patil, S.N.; Patil, S.V. Prospective of Microbial Exopolysaccharide for Heavy Metal Exclusion. Appl. Biochem. Biotechnol. 2017, 183, 582–600. [Google Scholar] [CrossRef]
- Colvin, K.M.; Irie, Y.; Tart, C.S.; Urbano, R.; Whitney, J.C.; Ryder, C.; Howell, P.L.; Wozniak, D.J.; Parsek, M.R. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 2012, 14, 1913–1928. [Google Scholar] [CrossRef]
- Fusconi, R.; Godinho, M.J.L. Screening for exopolysaccharide-producing bacteria from sub-tropical polluted groundwater. Brazilian J. Biol. 2002, 62, 363–369. [Google Scholar] [CrossRef]
- Hindersah, R. Exopolysaccharide-Producing Azotobacter for Bioremediation of Heavy Metal-Contaminated Soil. In Advances in Agricultural and Industrial Microbiology: Volume-2: Applications of Microbes for Sustainable Agriculture and in-silico Strategies; Springer Nature: Berlin/Heidelberg, Germany, 2022; Volume 2, pp. 103–117. ISBN 9789811696824. [Google Scholar]
- Borel, M.; Lamarque, E.; Loing, E. Unique natural exopolysaccharides for biomimetic protective effect against urban pollution. In Proceedings of the Journal of Cosmetic Science; 2017; Volume 68, pp. 126–132. [Google Scholar]
- Finore, I.; Di Donato, P.; Mastascusa, V.; Nicolaus, B.; Poli, A. Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar. Drugs 2014, 12, 3005–3024. [Google Scholar] [CrossRef] [PubMed]
- Vaningelgem, F.; Zamfir, M.; Adriany, T.; De Vuyst, L. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium. J. Appl. Microbiol. 2004, 97, 1257–1273. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, H.M.; Rochfort, K.D.; Maye, S.; MacLeod, G.; Brabazon, D.; Loscher, C.; Freeland, B. Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. Nutrients 2022, 14, 2938. [Google Scholar] [CrossRef] [PubMed]
- Couto, S.R.; Sanromán, M.Á. Application of solid-state fermentation to food industry-A review. J. Food Eng. 2006, 76, 291–302. [Google Scholar] [CrossRef]
- Revin, V.V.; Liyaskina, E.V.; Parchaykina, M.V.; Kurgaeva, I.V.; Efremova, K.V.; Novokuptsev, N.V. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int. J. Mol. Sci. 2023, 24, 4608. [Google Scholar] [CrossRef]
- Ukaegbu-Obi, K. Citation: Kelechi M. Ukaegbu-Obi. Single Cell Protein: A Resort to Global Protein Challenge and Waste Management Single Cell Protein: A Resort to Global Protein Challenge and Waste Management. J. Microbiol. Microb. Technol. 2016, 1, 1–5. Available online: https://www.researchgate.net/profile/Kelechi-Ukaegbu-Obi/publication/318947586 (accessed on 28 March 2024).
- Solanki, P.; Putatunda, C.; Kumar, A.; Bhatia, R.; Walia, A. Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech 2021, 11, 428. [Google Scholar] [CrossRef]
- Su, C.A.; Xu, X.Y.; Liu, D.Y.; Wu, M.; Zeng, F.Q.; Zeng, M.Y.; Wei, W.; Jiang, N.; Luo, X. Isolation and characterization of exopolysaccharide with immunomodulatory activity from fermentation broth of Morchella conica. DARU J. Pharm. Sci. 2013, 21, 5. [Google Scholar] [CrossRef]
- Dávila Giraldo, L.R.; Villanueva Baez, P.X.; Zambrano Forero, C.J.; Arango, W.M. Production, Extraction, and Solubilization of Exopolysaccharides Using Submerged Cultures of Agaricomycetes. Bio-Protocol 2023, 13, e4841. [Google Scholar] [CrossRef]
- Rengifo, L.R.; Rosas, P.; Méndez, N.; Ludeña, Y.; Sirvas, S.; Samolski, I.; Villena, G.K. Comparison of Pigment Production by Filamentous Fungal Strains under Submerged (SmF) and Surface Adhesion Fermentation (SAF). J. Fungi 2023, 9, 48. [Google Scholar] [CrossRef]
- Shu, C.H.; Hsu, H.J. Production of schizophyllan glucan by Schizophyllum commune ATCC 38548 from detoxificated hydrolysate of rice hull. J. Taiwan Inst. Chem. Eng. 2011, 42, 387–393. [Google Scholar] [CrossRef]
- Zhong, K.; Liu, L.; Tong, L.; Zhong, X.; Wang, Q.; Zhou, S. Rheological properties and antitumor activity of schizophyllan produced with solid-state fermentation. Int. J. Biol. Macromol. 2013, 62, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Kumari Chitturi, C.M.; Lakshmi, V.V. Development of semi-solid state fermentation of Keratinase and optimization of process by cheaper and alternative agricultural wastes. Eur. J. Biotechnol. Biosci. 2016, 4, 2321–9122. Available online: https://www.researchgate.net/publication/304209791 (accessed on 28 March 2024).
- Mattedi, A.; Sabbi, E.; Farda, B.; Djebaili, R.; Mitra, D.; Ercole, C.; Cacchio, P.; Del Gallo, M.; Pellegrini, M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms 2023, 11, 1408. [Google Scholar] [CrossRef]
- Osemwegie, O.O.; Adetunji, C.O.; Ayeni, E.A.; Adejobi, O.I.; Arise, R.O.; Nwonuma, C.O.; Oghenekaro, A.O. Exopolysaccharides from bacteria and fungi: Current status and perspectives in Africa. Heliyon 2020, 6, e04205. [Google Scholar] [CrossRef]
- Zhong, J.J. Recent advances in bioreactor engineering. Korean J. Chem. Eng. 2010, 27, 1035–1041. [Google Scholar] [CrossRef]
- Coker, A.K. Fluid Mixing in Reactors. In Modeling of Chemical Kinetics and Reactor Design; Gulf Professional Publishing: Houston, TX, USA, 2001; pp. 552–662. [Google Scholar]
- Behin, J.; Amiri, P. A review of recent advances in airlift reactors technology with emphasis on environmental remediation. J. Environ. Manag. 2023, 335, 117560. [Google Scholar] [CrossRef]
- Usuldin, S.R.A.; Ilham, Z.; Jamaludin, A.A.; Ahmad, R.; Wan-Mohtar, W.A.A.Q.I. Enhancing Biomass-Exopolysaccharides Production of Lignosus rhinocerus in a High-Scale Stirred-Tank Bioreactor and Its Potential Lipid as Bioenergy. Energies 2023, 16, 2330. [Google Scholar] [CrossRef]
- Lawford, H.G.; Rousseau, J.D. Bioreactor design considerations in the production of high-quality microbial exopolysaccharide. Appl. Biochem. Biotechnol. 1991, 28–29, 667–684. [Google Scholar] [CrossRef]
- Hu, X.; Fu, H.; Bao, M.; Zhang, X.; Liu, W.; Sun, X.; Pan, Y. Temperature mediates metabolism switching of Bacillus sp. ZT-1: Analysis of the properties and structure of exopolysaccharides. Microbiol. Res. 2021, 251, 126839. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Shan, K.; Liu, W.; Xi, C.; Zhang, Y.; Wang, W.; Wang, C.; Cao, R.; Zhu, W.; Wang, H.; et al. Effect of Different Initial Fermentation pH on Exopolysaccharides Produced by Pseudoalteromonas agarivorans Hao 2018 and Identification of Key Genes Involved in Exopolysaccharide Synthesis via Transcriptome Analysis. Mar. Drugs 2022, 20, 89. [Google Scholar] [CrossRef] [PubMed]
- Moshabaki Isfahani, F.; Tahmourespour, A.; Hoodaji, M.; Ataabadi, M.; Mohammadi, A. Characterizing the new bacterial isolates of high yielding exopolysaccharides under hypersaline conditions. J. Clean. Prod. 2018, 185, 922–928. [Google Scholar] [CrossRef]
- Yan, M.; Wang, B.H.; Xu, X.; Der Meister, T.; Tabač, H.T.; Hwang, F.F.; Liu, Z. Extrusion of dissolved oxygen by exopolysaccharide from Leuconostoc mesenteroides and its implications in relief of the oxygen stress. Front. Microbiol. 2018, 9, 410979. [Google Scholar] [CrossRef]
- Kimmel, S.A.; Roberts, R.F.; Ziegler, G.R. Optimization of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus RR Grown in a Semidefined Medium. Appl. Environ. Microbiol. 1998, 64, 659. [Google Scholar] [CrossRef]
- Bil Der, T.; Ergene, E.; Avci, A. Tarım Bilimleri Dergisi Effects of Cultural Conditions on Exopolysaccharide Production by Bacillus sp. ZBP4. Tarim Bilim. Derg.-J. Agric. Sci. 2018, 24, 386–393. [Google Scholar] [CrossRef]
- Ghosh, D.; Gupta, A.; Mohapatra, S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World J. Microbiol. Biotechnol. 2019, 35, 90. [Google Scholar] [CrossRef]
- Mathivanan, K.; Chandirika, J.U.; Mathimani, T.; Rajaram, R.; Annadurai, G.; Yin, H. Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment. Ecotoxicol. Environ. Saf. 2021, 208, 111567. [Google Scholar] [CrossRef]
- Song, X.; Xiong, Z.; Kong, L.; Wang, G.; Ai, L. Relationship between putative eps genes and production of exopolysaccharide in lactobacillus casei LC2W. Front. Microbiol. 2018, 9, 400971. [Google Scholar] [CrossRef]
- Deo, D.; Davray, D.; Kulkarni, R. A diverse repertoire of exopolysaccharide biosynthesis gene clusters in Lactobacillus revealed by comparative analysis in 106 sequenced genomes. Microorganisms 2019, 7, 444. [Google Scholar] [CrossRef]
- van Hijum, S.A.F.T.; Kralj, S.; Ozimek, L.K.; Dijkhuizen, L.; van Geel-Schutten, I.G.H. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2006, 70, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.A.; Poulsen, V.K.; Janzen, T.; Buldo, P.; Derkx, P.M.F.; Øregaard, G.; Neves, A.R. Polysaccharide production by lactic acid bacteria: From genes to industrial applications. FEMS Microbiol. Rev. 2017, 41, S168–S200. [Google Scholar] [CrossRef] [PubMed]
- Laws, A.; Gu, Y.; Marshall, V. Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol. Adv. 2001, 19, 597–625. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Degeest, B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 1999, 23, 153–177. [Google Scholar] [CrossRef] [PubMed]
- To, V.H.P.; Nguyen, T.V.; Bustamante, H.; Vigneswaran, S. Effects of extracellular polymeric substance fractions on polyacrylamide demand and dewatering performance of digested sludges. Sep. Purif. Technol. 2020, 239, 116557. [Google Scholar] [CrossRef]
- Abedfar, A.; Hosseininezhad, M.; Sadeghi, A.; Raeisi, M.; Feizy, J. Investigation on “spontaneous fermentation” and the productivity of microbial exopolysaccharides by Lactobacillus plantarum and Pediococcus pentosaceus isolated from wheat bran sourdough. LWT 2018, 96, 686–693. [Google Scholar] [CrossRef]
- Farnworth, E.R. Handbook of Fermented Functional Foods; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780203009727. [Google Scholar]
- Korcz, E.; Varga, L. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci. Technol. 2021, 110, 375–384. [Google Scholar] [CrossRef]
- Guerrero, B.G.; Santos, K.d.L.; Kamimura, E.S.; de Oliveira, C.A.F. Application of microbial exopolysaccharides in packaging films for the food industry: A review. Int. J. Food Sci. Technol. 2024, 59, 17–29. [Google Scholar] [CrossRef]
- Moradi, M.; Guimarães, J.T.; Sahin, S. Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Curr. Opin. Food Sci. 2021, 40, 33–39. [Google Scholar] [CrossRef]
- Lopes Neto, J.H.P.; Soares, S.; Leite, K.S.; Campos, M.I.F.; Grisi, C.V.B.; Ribeiro, J.E.S.; Sobral, M.V.; Amorim, G.M.W.; Luciano, W.A.; Gadelha, T.S.; et al. Bioactivity evaluation of microbial exopolysaccharide and its use as an encapsulating agent for Lactobacillus acidophilus (LA-3). Food Biosci. 2023, 55, 102946. [Google Scholar] [CrossRef]
- Shen, S.; Chen, X.; Shen, Z.; Chen, H. Marine polysaccharides for wound dressings application: An overview. Pharmaceutics 2021, 13, 1666. [Google Scholar] [CrossRef] [PubMed]
- Encyclopedia of Environmental Microbiology; Wiley: New York, NY, USA, 2003.
- DeAngelis, P.L.; White, C.L. Identification and molecular cloning of a heparosan synthase from Pasteurella multocida Type D. J. Biol. Chem. 2002, 277, 7209–7213. [Google Scholar] [CrossRef] [PubMed]
- Silver, R.P.; Aaronson, W.; Vann, W.F. The K1 capsular polysaccharide of Escherichia coli. Rev. Infect. Dis. 1988, 10 (Suppl. S2), S282–S286. [Google Scholar] [CrossRef] [PubMed]
- Roberts, I.S. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 1996, 50, 285–315. [Google Scholar] [CrossRef]
- Nwodo, U.U.; Green, E.; Okoh, A.I. Bacterial exopolysaccharides: Functionality and prospects. Int. J. Mol. Sci. 2012, 13, 14002–14015. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, J.H.; Kim, C.J.; Oh, D.K. Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotechnol. Lett. 1996, 18, 1161–1164. [Google Scholar] [CrossRef]
- Muller, D.; Simeonova, D.D.; Riegel, P.; Mangenot, S.; Koechler, S.; Lièvremont, D.; Bertin, P.N.; Lett, M.C. Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. Int. J. Syst. Evol. Microbiol. 2006, 56, 1765–1769. [Google Scholar] [CrossRef]
- Marchal, M.; Briandet, R.; Koechler, S.; Kammerer, B.; Bertin, P.N. Effect of arsenite on swimming motility delays surface colonization in Herminiimonas arsenicoxydans. Microbiology 2010, 156, 2336–2342. [Google Scholar] [CrossRef]
- Kalita, D.; Joshi, S.R. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol. Rep. 2017, 16, 48–57. [Google Scholar] [CrossRef]
- Concórdio-Reis, P.; Reis, M.A.M.; Freitas, F. Biosorption of heavy metals by the bacterial exopolysaccharide fucopol. Appl. Sci. 2020, 10, 6708. [Google Scholar] [CrossRef]
- Awasthi, S. Application of EPS in Agriculture: An Important Natural Resource for Crop Improvement. Agric. Res. Technol. Open Access J. 2017, 8, 555731. [Google Scholar] [CrossRef]
- El-Ghany, M.F.A.; Attia, M. Effect of exopolysaccharide-producing bacteria and melatonin on faba bean production in saline and non-saline soil. Agronomy 2020, 10, 316. [Google Scholar] [CrossRef]
- Babu, R.P.; O’Connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Sena, R.F.; Costelli, M.C.; Gibson, L.H.; Coughlin, R.W. Enhanced production of pullulan by two strains of A. pullulans with different concentrations of soybean oil in sucrose solution in batch fermentations. Brazilian J. Chem. Eng. 2006, 23, 507–515. [Google Scholar] [CrossRef]
- Tian, G.; Ji, Q.; Quan, F.; Xia, Y. Influence of calcium ion on thermal degradation and flame retardance behaviour of alginate fiber. Adv. Mater. Res. 2013, 631–632, 447–451. [Google Scholar] [CrossRef]
- Freitas, F.; Alves, V.D.; Reis, M.A.M. Bacterial polysaccharides: Production and applications in cosmetic industry. In Polysaccharides: Bioactivity and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 2017–2043. ISBN 9783319162980. [Google Scholar]
Extremophile | Growth Characteristics | Microbial Genus | References |
---|---|---|---|
Acidophile | Microorganisms exhibiting optimal growth conditions at or below a pH range of 3–4. | Sulpholobus, Picrophilus | [30] |
Alkalophile | Organism thriving with optimal growth conditions at pH values exceeding 10. | Bacillus, Pseudoalteromonas | [31,32] |
Halophile | Microorganisms necessitating a minimum salt concentration of 1 M for optimal growth. | Halobacterium, Haloferax, Halococcus | [33] |
Hypolith | Organism adapted to residing within rocks in cold desert environments. | Nostoc, Bryum, Hennediella, Stichococcus mirabilis, Ichthyosporea | [34,35] |
Metalophile | Organism exhibiting remarkable resistance to towering levels of heavy metal concentrations, such as Zn, Cu, Cd, and As. | Ralstonia | [36] |
Microaerophile | A microorganism, often bacteria, which thrives in environments characterized by low oxygen levels. | Campylobacter | [37] |
Oligotroph | Organism demonstrating the ability to thrive and grow in nutritionally depleted habitats. | Caulobacter crescentus | [38] |
Piezophile | Organism thriving optimally in environments with hydrostatic force reaching forty MPa or more. | Shewanella, Moritella | [39,40] |
Psychrophile | Organism exhibiting an optimal growth temperature around 10 °C or lesser, with a ceiling temperature tolerance capped at 20 °C. | Psychrobacter, Alteromonas | [41,42] |
Radiophile | Organism displaying resistance to elevated levels of ionizing radiation | Deinococcus, Thermococcus | [43] |
Thermophiles | “Moderate thermophile”—Organism having optimal growth between 45 °C and 65 °C of temperature. | Pseudomonas, Bacillus, Geobacillus | [44] |
“Thermophile”—Organism thriving within 65 °C to 85 °C of temperature. | Thermotoga, Clostridium, Geobacillus, Thermus, Aquifex Bacillus | ||
“Hyperthermophile”—Organism adapted to extreme temperatures exceeding 85 °C. | Sulfolobus, Pyrolobus, Thermophilum | ||
Xerophile | Organism resistant to severe desiccation and able to thrive at low water activity levels. | Aphanothece halophytica | [45] |
Key Factors | Effect on EPS Production | References |
---|---|---|
Temperature | Temperature affects EPS production by modulating biosynthetic pathways and gene expression in extremophiles. Changes in temperature result in distinct EPS characteristics, altering composition, viscosity, and structural properties. | [124] |
pH | pH levels directly modulate EPS production in extremophiles. Elevated pH conditions trigger the upregulation of key EPS-associated genes, including those for glucose/galactose transport and enzymes involved in biosynthesis. This molecular response complicatedly adjusts the EPS production efficiency, revealing how pH acts as a direct regulator of the genetic and molecular processes governing EPS synthesis. | [125] |
Salinity | The salt concentration in the growth medium significantly impacts EPS synthesis. Microbes exhibit heightened EPS production, with a pronounced increase under preeminent salt concentrations. | [126] |
Nutrient Availability | Nutrient availability, particularly the concentration of lactose, intricately influences EPS synthesis in extremophiles. Under stimulating conditions shift in protein expression patterns was observed. This shift in protein expression suggests a strategic reallocation of cellular resources from anabolism and protein synthesis towards EPS-mediated protection in response to a hyperosmotic environment. | |
Oxygen Levels | Oxygen levels exert a significant influence on EPS production in extremophiles, with specific extremophiles exhibiting preferential synthesis under distinct oxygen conditions A notable growth advantage is observed in microbes when cultivated in sucrose medium under aerobic conditions, compared to glucose medium. | [127] |
Substrate Concentration | The type and concentration of carbon sources in the growth medium affect EPS yield and composition. | [128,129] |
Pressure and Osmotic Stress | Under osmotic stress, microbes exhibited growth and proliferation, albeit at slower rates compared to non-stressed conditions. Importantly, microbes release elevated levels of both exopolysaccharides (EPS) and phytohormones in response to osmotic stress, showcasing the multifaceted adaptive mechanisms of extremophiles; sometimes expressions vary in response to stress. | [130] |
Metal Ions | The incidence of specific metal ions within the environment profoundly influences EPS production in extremophiles. Generally, under metal-amended conditions, microbes exhibit increased EPS production in response to metal stress. | [131] |
Genetic Factors | The genetic composition of extremophiles intricately determines their capacity to create extracellular polymeric substances (EPSs). The core genes, eps A, B, C, D, and E, displayed a greater degree of conservation, whereas gt, wzx, and wzy exhibited variability. This suggests that eps gene clusters in microbes are highly diverse, with different features corresponding to specific habitats. Additionally, certain key genes in the EPS biosynthetic gene cluster, namely glucose-1-phosphate thymidyltranseferase (LC2W_2179), uncharacterized EPS biosynthesis protein (LC2W_2188), and EPS biosynthesis protein (LC2W_2189), were found to have a significant impact on EPS production. The removal of these genes caused a reduction in EPS concentration, but their overexpression resulted in an increase in EPS synthesis. | [132,133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyaya, C.; Patel, H.; Patel, I.; Upadhyaya, T. Extremophilic Exopolysaccharides: Bioprocess and Novel Applications in 21st Century. Fermentation 2025, 11, 16. https://doi.org/10.3390/fermentation11010016
Upadhyaya C, Patel H, Patel I, Upadhyaya T. Extremophilic Exopolysaccharides: Bioprocess and Novel Applications in 21st Century. Fermentation. 2025; 11(1):16. https://doi.org/10.3390/fermentation11010016
Chicago/Turabian StyleUpadhyaya, Chandni, Hiren Patel, Ishita Patel, and Trushit Upadhyaya. 2025. "Extremophilic Exopolysaccharides: Bioprocess and Novel Applications in 21st Century" Fermentation 11, no. 1: 16. https://doi.org/10.3390/fermentation11010016
APA StyleUpadhyaya, C., Patel, H., Patel, I., & Upadhyaya, T. (2025). Extremophilic Exopolysaccharides: Bioprocess and Novel Applications in 21st Century. Fermentation, 11(1), 16. https://doi.org/10.3390/fermentation11010016