Involvement of the Methyltransferase CcLaeA in Regulating Laccase Production in Curvularia clavata J1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strain and Culture Media
2.2. Search for the CclaeA Gene in C. clavata J1 and Sequence Analyses
2.3. Construction of Cassettes for CRISPR/Cas9-Mediated Genome Editing
2.4. PEG-Mediated Transformation of C. clavata J1 and Selection of Transformants
2.5. Enzyme Activity Assays
2.6. Growth Test
2.7. RNA Sequencing and mRNA Expression Analysis
3. Results
3.1. Isolation and Identification of C. clavata Strain J1
3.2. Analysis of the CclaeA Gene and Its Deduced Protein
3.3. Disruption of CclaeA Gene in C. clavata J1 Using CRISPR-Cas9 System
3.4. Comparative Transcriptional Analysis of the WT Strain and the CclaeA Mutant
4. Discussion
5. Conclusions
6. Patent
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 2018, 93, 233–269. [Google Scholar]
- Wang, Z.; Deuss, P.J. The isolation of lignin with native-like structure. Biotechnol. Adv. 2023, 68, 108230. [Google Scholar]
- Beaucamp, A.; Muddasar, M.; Crawford, T.; Collins, M.N.; Culebras, M. Sustainable lignin precursors for tailored porous carbon-based supercapacitor electrodes. Int. J. Biol. Macromol. 2022, 221, 1142–1149. [Google Scholar] [PubMed]
- Jędrzejczak, P.; Podkościelna, B.; Janczarek, M.; Kosmalska-Olańska, A.; Collins, M.N.; Masek, A.; Klapiszewski, Ł. Tailoring TiO2-lignin hybrid materials as a bio-filler for the synthesis of composites based on epoxy resin. Int. J. Biol. Macromol. 2023, 235, 123876. [Google Scholar]
- Li, J.; Jiang, F.; Pi, C.; Bao, T.; Gao, L.; Wu, X. Multi-omic profiling of a novel Myrothecium species reveals its potential mechanism of lignin degradation. Int. J. Biol. Macromol. 2024, 282, 137134. [Google Scholar]
- Mao, Z.; Yang, P.; Liu, H.; Mao, Y.; Lei, Y.; Hou, D.; Ma, H.; Liao, X.; Jiang, W. Whole-genome sequencing and analysis of the white-rot fungus Ceriporia lacerata reveals its phylogenetic status and the genetic basis of lignocellulose degradation and terpenoid synthesis. Front. Microbiol. 2022, 13, 880946. [Google Scholar]
- Gao, L.; Jiang, F.; Zhang, Z.; Bao, T.; Zhu, D.; Wu, X. Unlocking lignin valorization and harnessing lignin-based raw materials for bio-manufacturing. Sci. China Life Sci. 2025, 68, 994–1009. [Google Scholar]
- Ullah, M.A.; Bedford, C.T.; Evans, C.S. Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl. Microbiol. Biotechnol. 2000, 53, 230–234. [Google Scholar]
- Jiang, N.; Sun, N.; Xiao, D.; Pan, J.; Wang, Y.; Zhu, X. A copper-responsive factor gene CUF1 is required for copper induction of laccase in Cryptococcus neoformans. FEMS Microbiol. Lett. 2009, 296, 84–90. [Google Scholar]
- Guo, M.; Guo, W.; Chen, Y.; Dong, S.; Zhang, X.L.; Zhang, H.; Song, W.; Wang, W.; Wang, Q.; Lv, R.; et al. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae. Mol. Plant Microbe Interact. 2010, 23, 1053–1068. [Google Scholar] [CrossRef]
- Álvarez, J.M.; Canessa, P.; Mancilla, R.A.; Polanco, R.; Santibáñez, P.A.; Vicuña, R. Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal. Genet. Biol. 2009, 46, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Cañero, D.C.; Roncero, M.I.G. Functional analyses of laccase genes from Fusarium oxysporum. Phytopathology 2008, 98, 509–518. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Wu, K.; Liu, S.; Li, X.; Zhu, C.; Xiao, Y.; Fang, Z.; Liu, J. Two Zn2Cys6-type transcription factors respond to aromatic compounds and regulate the expression of laccases in the white-rot fungus Trametes hirsuta. Appl. Environ. Microbiol. 2024, 90, e0054524. [Google Scholar]
- Zhang, Y.; Wu, Y.; Yang, X.; Yang, E.; Xu, H.; Chen, Y.; Chagan, I.; Yan, J. Alternative splicing of heat shock transcription factor 2 regulates expression of the laccase gene family in response to copper in Trametes trogii. Appl. Environ. Microbiol. 2021, 87, e00055-21. [Google Scholar]
- Kadooka, C.; Nakamura, E.; Mori, K.; Okutsu, K.; Yoshizaki, Y.; Takamine, K.; Goto, M.; Tamaki, H.; Futagami, T. LaeA controls citric acid production through regulation of the citrate exporter-encoding cexA gene in Aspergillus luchuensis mut. kawachii. Appl. Environ. Microbiol. 2020, 86, e01950-19. [Google Scholar] [PubMed]
- Zhao, Z.; Gu, S.; Liu, D.; Liu, D.; Chen, B.; Li, J.; Tian, C. The putative methyltransferase LaeA regulates mycelium growth and cellulase production in Myceliophthora thermophila. Biotechnol. Biofuels Bioprod. 2023, 16, 58. [Google Scholar]
- Zhang, X.; Yang, Y.; Wang, L.; Qin, Y. Histone H2B lysine 122 and lysine 130, as the putative targets of Penicillium oxalicum LaeA, play important roles in asexual development, expression of secondary metabolite gene clusters, and extracellular glycoside hydrolase synthesis. World J. Microbiol. Biotechnol. 2024, 40, 179. [Google Scholar]
- Takao, K.; Akagi, Y.; Tsuge, T.; Harimoto, Y.; Yamamoto, M.; Kodama, M. The global regulator LaeA controls biosynthesis of host-specific toxins, pathogenicity and development of Alternaria alternata pathotypes. J. Gen. Plant Pathol. 2016, 82, 121–131. [Google Scholar] [CrossRef]
- Bok, J.W.; Keller, N.P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 2004, 3, 527–535. [Google Scholar] [CrossRef]
- Kosalková, K.; García-Estrada, C.; Ullán, R.V.; Godio, R.P.; Feltrer, R.; Teijeira, F.; Mauriz, E.; Martín, J.F. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 2009, 91, 214–225. [Google Scholar] [CrossRef]
- Metzenberg, R.L. Vogel’s Medium N salts: Avoiding the need for ammonium nitrate. Fungal Genet. Rep. 2003, 50, 14. [Google Scholar]
- Wu, D.; Oide, S.; Zhang, N.; Choi, M.Y.; Turgeon, B.G. ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathog. 2012, 8, e1002542. [Google Scholar]
- Cao, Y.; Cai, Q.; Li, C.; Song, G.; Lu, N.; Yang, Z. Genome sequence resource of Curvularia clavata causing leaf spot disease on tobacco by Oxford Nanopore PromethION. Plant Dis. 2023, 107, 1916–1919. [Google Scholar] [CrossRef]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar]
- Xie, S.; Shen, B.; Zhang, C.; Huang, X.; Zhang, Y. sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE 2014, 9, e100448. [Google Scholar]
- Li, J.; Wang, Y.; Yang, K.; Wang, X.; Wang, Y.; Zhang, H.; Huang, H.; Su, X.; Yao, B.; Luo, H.; et al. Development of an efficient protein expression system in the thermophilic fungus Myceliophthora thermophila. Microb. Cell Fact. 2023, 22, 236. [Google Scholar]
- Liu, Q.; Gao, R.; Li, J.; Lin, L.; Zhao, J.; Sun, W.; Tian, C. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol. Biofuels 2017, 10, 1. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zou, J.; Yang, K.; Wang, X.; Wang, Y.; Zhang, H.; Huang, H.; Su, X.; Yao, B.; et al. Identification and characterization of the determinants of copper resistance in the acidophilic fungus Acidomyces richmondensis MEY-1 using the CRISPR/Cas9 system. Appl. Environ. Microbiol. 2023, 89, e0210722. [Google Scholar] [CrossRef]
- Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar]
- Neoh, C.H.; Lam, C.Y.; Lim, C.K.; Yahya, A.; Ibrahim, Z. Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata. Environ. Sci. Pollut. Res. Int. 2013, 21, 4397–4408. [Google Scholar]
- Neoh, C.H.; Lam, C.Y.; Lim, C.K.; Yahya, A.; Bay, H.H.; Ibrahim, Z.; Noor, Z.Z. Biodecolorization of recalcitrant dye as the sole sourceof nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes. Environ. Sci. Pollut. Res. Int. 2015, 22, 11669–11678. [Google Scholar] [PubMed]
- Yamaguchi, S.; Fujioka, T.; Yoshimi, A.; Kumagai, T.; Umemura, M.; Abe, K.; Machida, M.; Kawai, K. Discovery of a gene cluster for the biosynthesis of novel cyclic peptide compound, KK-1, in Curvularia clavata. Front. Fungal Biol. 2023, 3, 1081179. [Google Scholar] [CrossRef]
- Hou, X.; Liu, L.; Xu, D.; Lai, D.; Zhou, L. Involvement of LaeA and Velvet proteins in regulating the production of mycotoxins and other fungal secondary metabolites. J. Fungi 2024, 10, 561. [Google Scholar] [CrossRef]
- Calvo, A.M.; Dabholkar, A.; Wyman, E.M.; Lohmar, J.M.; Cary, J.W. Beyond morphogenesis and secondary metabolism: Function of Velvet proteins and LaeA in fungal pathogenesis. Appl. Environ. Microbiol. 2024, 90, e0081924. [Google Scholar]
- Li, Q.; Chai, C.; Du, Y.; Cai, J.; Zhao, L. Recombinant laccase production optimization in Pichia pastoris by response surface methodology and its application in the biodegradation of octyl phenol and 4-tert-octylphenol. Catal. Lett. 2022, 152, 1086–1099. [Google Scholar]
- Li, Q.; Pei, J.; Zhao, L.; Xie, J.; Cao, F.; Wang, G. Overexpression and characterization of laccase from Trametes versicolor in Pichia pastoris. Appl. Biochem. Microbiol. 2014, 50, 140–147. [Google Scholar] [CrossRef]
- Nakade, K.; Watanabe, H.; Sakamoto, Y.; Sato, T. Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence. Microbiol. Res. 2011, 166, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Ranjan, B.; McHunu, N.; Le Roes-Hill, M.; Kudanga, T. Enhancing the expression of recombinant small laccase in Pichia pastoris by a double promoter system and application in antibiotics degradation. Folia Microbiol. 2021, 66, 917–930. [Google Scholar] [CrossRef]
- Kilaru, S.; Hoegger, P.J.; Majcherczyk, A.; Burns, C.; Shishido, K.; Bailey, A.; Foster, G.D.; Kües, U. Expression of laccase gene lcc1 in Coprinopsis cinerea under control of various basidiomycetous promoters. Appl. Microbiol. Biotechnol. 2006, 71, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Geisler, L.; Majcherczyk, A.; Rühl, M. Signal peptide replacement resulted in recombinant homologous expression of laccase Lcc8 in Coprinopsis cinerea. AMB Express 2019, 9, 36. [Google Scholar] [CrossRef]
- Zhu, J.; Song, S.; Lian, L.; Shi, L.; Ren, A.; Zhao, M. Improvement of laccase activity by silencing PacC in Ganoderma lucidum. World J. Microbiol. Biotechnol. 2022, 38, 32. [Google Scholar] [CrossRef]
- Yan, L.; Xu, R.; Bian, Y.; Li, H.; Zhou, Y. Expression profile of laccase gene family in white-rot basidiomycete Lentinula edodes under different environmental stresses. Genes 2019, 10, 1045. [Google Scholar] [CrossRef]
- Chen, J.; Ye, Y.; Chi, Y.; Hao, X.; Zhao, Q. Transcriptomics and co-expression network analysis revealing candidate genes for the laccase activity of Trametes gibbosa. BMC Microbiol. 2023, 23, 29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pi, C.; Li, J.; Jiang, F.; Zhang, J.; Bao, T.; Zhao, S.; Chen, G. Involvement of the Methyltransferase CcLaeA in Regulating Laccase Production in Curvularia clavata J1. Fermentation 2025, 11, 178. https://doi.org/10.3390/fermentation11040178
Pi C, Li J, Jiang F, Zhang J, Bao T, Zhao S, Chen G. Involvement of the Methyltransferase CcLaeA in Regulating Laccase Production in Curvularia clavata J1. Fermentation. 2025; 11(4):178. https://doi.org/10.3390/fermentation11040178
Chicago/Turabian StylePi, Changyu, Jinyang Li, Fangting Jiang, Jintong Zhang, Tongtong Bao, Shengguo Zhao, and Guoshun Chen. 2025. "Involvement of the Methyltransferase CcLaeA in Regulating Laccase Production in Curvularia clavata J1" Fermentation 11, no. 4: 178. https://doi.org/10.3390/fermentation11040178
APA StylePi, C., Li, J., Jiang, F., Zhang, J., Bao, T., Zhao, S., & Chen, G. (2025). Involvement of the Methyltransferase CcLaeA in Regulating Laccase Production in Curvularia clavata J1. Fermentation, 11(4), 178. https://doi.org/10.3390/fermentation11040178