Regulation and Mechanisms of L-Lactic Acid and D-Lactic Acid Production in Baijiu Brewing: Insights for Flavor Optimization and Industrial Application
Abstract
:1. Introduction
2. The Production Mechanism of the Two Chiral Forms of Lactic Acid in Baijiu
3. The Impact of the Two Chiral Forms of Lactic Acid on the Sensory Attributes of Baijiu
4. The Metabolic Roles of the Two Chiral Forms of Lactic Acid in the Human Body
5. The Content and Ratio Difference of the Two Chiral Forms of Lactic Acid in Baijiu
5.1. The D-Lactic Acid Content in Baijiu Is Generally Higher than That of L-Lactic Acid
5.2. The Content of the Two Chiral Forms of Lactic Acid and the L:D Ratio Vary Significantly Among Different Aroma Types of Baijiu
6. Control Measures to Balance the Two Chiral Forms of Lactic Acid Production in Baijiu Brewing
6.1. The Impact of Brewing Raw Materials on the Production of the Two Chiral Forms of Lactic Acid in Baijiu
6.1.1. High-Quality Rice Increases the L-Lactic Acid Content in Baijiu
6.1.2. Corn Reduces the D-Lactic Acid Content in Baijiu
6.2. The Impact of Lactic Acid Bacteria in Qu on the Production of the Two Chiral Forms of Lactic Acid in Baijiu
6.3. The Impact of Lactic Acid Bacteria in Fermentation Mash on the Production of the Two Chiral Forms of Lactic Acid in Baijiu
6.4. The Impact of the Fermentation Process on the Production of the Two Chiral Forms of Lactic Acid
6.5. The Impact of Fermentation Temperature on the Production of the Two Chiral Forms of Lactic Acid
6.6. The Impact of High L-Lactic Acid-Producing Strain Selection and Application on the Production of the Two Chiral Forms of Lactic Acid
6.7. The Impact of Distillation on the Content of the Two Chiral Forms of Lactic Acid
6.8. The Impact of Pit Mud on the Production of the Two Chiral Forms of Lactic Acid
6.9. Environmental Implications and Sustainability Considerations
7. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.; Miao, Z.; Yan, R.; Wang, X.; Cheng, Z.; Yang, J.; Wang, B.; Sun, J.; Li, Z.; Zhang, Y.; et al. Daqu regulates the balance of saccharification and alcoholic fermentation to promote Chinese baijiu fermentation. Food Biosci. 2024, 61, 104723. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, Y.; Chen, H.; Wang, J.; Zhang, C.; Zhao, Z.; Ao, R.; Huang, H.; Hong, J.; Zhao, D.; et al. “Key Factor” for Baijiu Quality: Research Progress on Acid Substances in Baijiu. Foods 2022, 11, 2959. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Qiu, S.; Dai, Y.; Wu, Y.; Zeng, X. Distribution and Quantification of Lactic Acid Enantiomers in Baijiu. Foods 2022, 11, 2607. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhao, Z.; Nie, Y.; Li, Q.; Liu, S.; Wang, H. Chiral separation and determination of L-and D-lactic acid in Baijiu by high-performance liquid chromatography. Brew. Sci. Technol. 2019, 9, 93–97. [Google Scholar]
- Han, J.; Xiao, D. L-lactic acid fermentation process for Baijiu production. Food Ferment. Ind. 2019, 45, 134–139. [Google Scholar]
- Nanjo, Y.; Yano, T.; Hayashi, R.; Yao, T. Optically specific detection of D- and L-lactic acids by a flow-injection dual biosensor system with on-line microdialysis sampling. Anal. Sci. 2006, 22, 1135–1138. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.X.; Wang, Z.; Yu, T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef]
- Zhao, H. Acid production characteristics of Lactobacillus acetotolerans and its response mechanism to acid stress. Master’s Thesis, Guizhou University, Guiyang, China, 2022. [Google Scholar]
- Yang, F. Lactic Acid Metabolic Mechanism Investigation and Control Strategy Development during Chinese Jiang-Flavor Liquor Making. Ph.D. Thesis, Jiangnan Univeristy, Wuxi, China, 2020. [Google Scholar]
- Neves, A.R.; Pool, W.A.; Kok, J.; Kuipers, O.P.; Santos, H. Overview on sugar metabolism and its control in Lactococcus lactis—The input from in vivo NMR. FEMS Microbiol. Rev. 2005, 29, 531–554. [Google Scholar] [CrossRef]
- Neves, A.R.; Ramos, A.; Shearman, C.; Gasson, M.J.; Almeida, J.S.; Santos, H. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur. J. Biochem. 2000, 267, 3859–3868. [Google Scholar] [CrossRef]
- Gaspar, P.; Neves, A.R.; Shearman, C.A.; Gasson, M.J.; Baptista, A.M.; Turner, D.L.; Soares, C.M.; Santos, H. The lactate dehydrogenases encoded by the ldh and ldhB genes in Lactococcus lactis exhibit distinct regulation and catalytic properties—Comparative modeling to probe the molecular basis. FEBS J. 2007, 274, 5924–5936. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, C.; Lyu, P.; Wang, Y.; Wang, L.; Yu, B. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans. Sci. Rep. 2016, 6, 37916. [Google Scholar] [CrossRef] [PubMed]
- Senedese, A.L.; Maciel Filho, R.; Maciel, M.R. L-lactic acid production by Lactobacillus rhamnosus ATCC 10863. Sci. World J. 2015, 2015, 501029. [Google Scholar] [CrossRef] [PubMed]
- Karnaouri, A.; Asimakopoulou, G.; Kalogiannis, K.G.; Lappas, A.; Topakas, E. Efficient d-lactic acid production by Lactobacillus delbrueckii subsp. bulgaricus through conversion of organosolv pretreated lignocellulosic biomass. Biomass Bioenergy 2020, 140, 105672. [Google Scholar] [CrossRef]
- Chelladhurai, K.; Ayyash, M.; Turner, M.S.; Kamal-Eldin, A. Lactobacillus helveticus: Health effects, current applications, and future trends in dairy fermentation. Trends Food Sci. Technol. 2023, 136, 159–168. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.; Harris, H.M.B.; Mattarelli, P.; O′Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 1466–5034. [Google Scholar] [CrossRef]
- Gu, S.A.; Jun, C.; Joo, J.C.; Kim, S.; Lee, S.H.; Kim, Y.H. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis. Enzym. Microb. Technol. 2014, 58–59, 29–35. [Google Scholar] [CrossRef]
- Jia, J. Bioconversion of phenylpyruvate to phenyllactate: Gene cloning, expression and characterization of lactate dehydrogenases. Master’s Thesis, Jiangnan University, Wuxi, China, 2009. [Google Scholar]
- Wang, L.; Zhao, B.; Li, F.; Xu, K.; Ma, C.; Tao, F.; Li, Q.; Xu, P. Highly efficient production of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl. Microbiol. Biotechnol. 2011, 89, 1009–1017. [Google Scholar] [CrossRef]
- Xiao, N. Application of Angel Active Dry Yeast in the Production of Chixiang Baijiu. Liquor. Mak. Sci. Technol. 2019, 12, 105–107. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Xu, D.; Zhao, J. Research on the Relations between Temperature Rise Range in Lu-type Liquor Pits and Strong Fermentation Time. Liquor. Mak. Sci. Technol. 2008, 60–61, 64. [Google Scholar]
- Pu, L.; Li, L.; Qiu, S.; You, L.; Xie, S.; Xu, D.; Ni, B.; Shui, L.; Shen, L.; Feng, X. Effects on Main Flavor Compounds Forming by Temperature Controlling in Strong-flavor Chinese Liquor Fermentation. Food Ferment. Ind. 2011, 37, 126–129. [Google Scholar]
- Cao, Y.; Zhang, H.; Du, H.; Yuan, C.; Xu, Y. Microorganisms and metabolic characteristics of temperature-dependent fermentation during Sauce-flavor Baijiu production. Food Biosci. 2025, 63, 105787. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Rao, Z.; Si, G.; Zhang, X.; Gao, C.; Ye, M.; Zhou, P. Sesame flavour baijiu: A review. J. Inst. Brew. 2020, 126, 224–232. [Google Scholar] [CrossRef]
- Fellner, M.; Rankin, J.A.; Hu, J.; Hausinger, R.P. Lactate Racemase. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley: Hoboken, NJ, USA, 2017; pp. 1–8. [Google Scholar]
- Desguin, B.; Goffin, P.; Bakouche, N.; Diman, A.; Viaene, E.; Dandoy, D.; Fontaine, L.; Hallet, B.; Hols, P. Enantioselective Regulation of Lactate Racemization by LarR in Lactobacillus plantarum. J. Bacteriol. 2014, 197, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, T.; Fukui, S.; Kitahara, K. Purification and properties of lactate racemase from Lactobacillus sake. J. Biochem. 1968, 64, 99–107. [Google Scholar] [CrossRef]
- Stetter, K.O.; Kandler, O. Formation of DL-lactic acid by lactobacilli and characterization of a lactic acid racemase from several streptobacteria. Arch. Mikrobiol. 1973, 94, 221–247. [Google Scholar] [CrossRef]
- Kyla-Nikkila, K.; Hujanen, M.; Leisola, M.; Palva, A. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. Appl. Environ. Microbiol. 2000, 66, 3835–3841. [Google Scholar] [CrossRef]
- Goffin, P.; Deghorain, M.; Mainardi, J.L.; Tytgat, I.; Champomier-Verges, M.C.; Kleerebezem, M.; Hols, P. Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J. Bacteriol. 2005, 187, 6750–6761. [Google Scholar] [CrossRef]
- Vishnu Prasad, J.; Sahoo, T.K.; Naveen, S.; Jayaraman, G. Evolutionary engineering of Lactobacillus bulgaricus reduces enzyme usage and enhances conversion of lignocellulosics to D-lactic acid by simultaneous saccharification and fermentation. Biotechnol. Biofuels 2020, 13, 171. [Google Scholar] [CrossRef]
- Iino, T.; Uchimura, T.; Komagata, K. The effect of sodium acetate on the activity of L- and D-lactate dehydrogenases in Lactobacillus sakei NRIC 1071(T) and other lactic acid bacteria. J. Gen. Appl. Microbiol. 2003, 49, 51–58. [Google Scholar] [CrossRef]
- Dai, J.; Luo, W.; Liao, Z.; Luo, Z.; Wen, C.; Xu, Y.; Wu, Z.; Taikei, S.; Zhang, W. Caproic acid metabolism pathway of aged pit mud. China Brew. 2019, 38, 148–152. [Google Scholar]
- Desguin, B.; Goffin, P.; Viaene, E.; Kleerebezem, M.; Martin-Diaconescu, V.; Maroney, M.J.; Declercq, J.P.; Soumillion, P.; Hols, P. Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nat. Commun. 2014, 5, 3615. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hua, J. Current Updates on Lactic Acid Production and Control during Baijiu Brewing. Fermentation 2024, 10, 505. [Google Scholar] [CrossRef]
- Wang, M.; Fan, Z.; Chen, D.; Yu, B.; He, J.; Yu, J.; Mao, X.; Huang, Z.; Luo, Y.; Luo, J.; et al. Dietary lactate supplementation can alleviate DSS-induced colitis in piglets. Biomed. Pharmacother. 2023, 158, 114148. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Yan, Y.; Zheng, X.; Wang, M.; Zhang, H.; Li, H.; Chen, W. Dietary Lactate Supplementation Protects against Obesity by Promoting Adipose Browning in Mice. J. Agric. Food Chem. 2020, 68, 14841–14849. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Yousefi, M.; Afzali-Kordmahalleh, A.; Pagheh, E.; Taheri Mirghaed, A. Effects of Dietary Lactic Acid Supplementation on the Activity of Digestive and Antioxidant Enzymes, Gene Expressions, and Bacterial Communities in the Intestine of Common Carp, Cyprinus carpio. Animals 2023, 13, 1934. [Google Scholar] [CrossRef]
- Iraporda, C.; Errea, A.; Romanin, D.E.; Cayet, D.; Pereyra, E.; Pignataro, O.; Sirard, J.C.; Garrote, G.L.; Abraham, A.G.; Rumbo, M. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 2015, 220, 1161–1169. [Google Scholar] [CrossRef]
- Iraporda, C.; Romanin, D.E.; Rumbo, M.; Garrote, G.L.; Abraham, A.G. The role of lactate on the immunomodulatory properties of the nonbacterial fraction of kefir. Food Res. Int. 2014, 62, 247–253. [Google Scholar] [CrossRef]
- Garrote, G.L.; Abraham, A.G.; Rumbo, M. Is lactate an undervalued functional component of fermented food products? Front. Microbiol. 2015, 6, 629. [Google Scholar] [CrossRef]
- Jha, M.K.; Lee, I.K.; Suk, K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci. Biobehav. Rev. 2016, 68, 1–19. [Google Scholar] [CrossRef]
- Brown, T.P.; Ganapathy, V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol. Ther. 2020, 206, 107451. [Google Scholar] [CrossRef]
- Gladden, L.B. A lactatic perspective on metabolism. Med. Sci. Sports Exerc. 2008, 40, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Duffy, A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J. Nutr. 2017, 147, 1468S–1475S. [Google Scholar] [CrossRef] [PubMed]
- Cai, H. The Mechanism by Which Nutritional L-lactate Supplementation Ameliorates Diet-induced Obesity and Related Metabolic Dysfunction in Mice. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2022. [Google Scholar]
- Pohanka, M. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. Biomed. Res. Int. 2020, 2020, 3419034. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Yang, Q.; Zhang, H.; Hettinga, K.; Li, H.; Chen, W. Dietary d-Lactate Intake Facilitates Inflammatory Resolution by Modulating M1 Macrophage Polarization. Mol. Nutr. Food Res. 2022, 66, e2200196. [Google Scholar] [CrossRef]
- Cai, H.; Wang, X.; Zhang, Z.; Chen, J.; Wang, F.; Wang, L.; Liu, J. Moderate l-lactate administration suppresses adipose tissue macrophage M1 polarization to alleviate obesity-associated insulin resistance. J. Biol. Chem. 2022, 298, 101768. [Google Scholar] [CrossRef]
- Harada, N.; Hirano, I.; Inui, H.; Yamaji, R. Stereoselective effects of lactate enantiomers on the enhancement of 3T3-L1 adipocyte differentiation. Biochem. Biophys. Res. Commun. 2018, 498, 105–110. [Google Scholar] [CrossRef]
- Zhou, Y.; Hua, J.; Huang, Z. Effects of beer, wine, and baijiu consumption on non-alcoholic fatty liver disease: Potential implications of the flavor compounds in the alcoholic beverages. Front. Nutr. 2022, 9, 1022977. [Google Scholar] [CrossRef]
- Cao, X.; Shen, C.; Mao, J.; Liu, S.; Deng, B.; Ao, Z. Research progress on drinking comfortableness of Baijiu. China Brew. 2021, 40, 1–6. [Google Scholar]
- Li, K.; Xiong, Q.; Fu, Y.; Hu, X.; Peng, S.; Xie, X. Effects of Premium Rice / Regular Rice on the Quality and the Yield of Texiang Baijiu. Liquor. Mak. Sci. Technol. 2016, 6, 84–87. [Google Scholar] [CrossRef]
- GB/T 1354-2018; National Standard for Rice. China’s State Administration for Market Regulation (SAMR): Beijing, China, 2018.
- Li, L.; Xiao, C.; Lu, Z.; Zhang, X.; Wang, S.; Shen, C.; Shi, J.; Xu, Z. Origin, Succession and Potential Function of Lactic Acid Bacteria in Fermented Grains of Luzhou-Flavor Liquor. J. Food Sci. Biotechnol. 2018, 37, 1242–1247. [Google Scholar]
- Li, L. Diversity and Metabolic Characteristics of Lactic Acid Bacteria and Lactate-Degrading Bacteria in Fermented Grains of Luzhou-Flavor Liquor. Master’s Thesis, Jiangnan University, Wuxi, China, 2016. [Google Scholar]
- Liang, Z. Study on the Microorganisms and Flavor Substances in the Fermentation of Soybean-flavor Liquor. Master’s Thesis, Zhongkai University of Agriculture and Engineering, Guangzhou, China, 2020. [Google Scholar]
- Li, X. Study on the Isolation and Metabolic Characteristics of Lactic Acid Bacteria in Sauce-flavor Baijiu. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2021. [Google Scholar]
- Wang, Q. The Role, Value and Status of the “Four High and Two Long” Theory of Maotai Flavor Baijiu. China Food Saf. Mag. 2023, 4, 168–170. [Google Scholar]
- Cui, L. My Opinion on the Role, Value and Status of the “Four High and Two Long” Theory in Maotai-flavor Liquor Making. Liquor. Making 2022, 49, 3–6. [Google Scholar]
- Ding, H. Application of Lactobacillus Casei in Laobaigan Flavor Liquor. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2013. [Google Scholar]
- Huang, T.; Qi, H.; Zhang, S.; Ren, L.; Zhai, Q.; Zhu, R.; Guo, L.; Zhang, Z. Study on the Changing Law of Acetic Acid and Lactic Acid in Xifeng Liquor Daqu and Fermented Grains. Liquor Mak. 2021, 48, 45–49. [Google Scholar]
- He, F.; Duan, J.; Zhao, J.; Li, H.; Sun, J.; Huang, M.; Sun, B. Different distillation stages Baijiu classification by temperature-programmed headspace-gas chromatography-ion mobility spectrometry and gas chromatography-olfactometry-mass spectrometry combined with chemometric strategies. Food Chem. 2021, 365, 130430. [Google Scholar] [CrossRef]
- Zhang, H. Analysis of the Brewing Process and Microorganisms in Strong and Sauce-Aroma Blended-Style Baiyunbian Baijiu. Master’s Thesis, Wuhan Institute of Technology, Wuhan, China, 2015. [Google Scholar]
- Chen, X.; Zhang, W.; Quek, S.Y.; Zhao, L. Flavor–food ingredient interactions in fortified or reformulated novel food: Binding behaviors, manipulation strategies, sensory impacts, and future trends in delicious and healthy food design. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4004–4029. [Google Scholar] [CrossRef]
- Zhang, N.; Ma, G. Nutritional characteristics and health effects of regional cuisines in China. J. Ethn. Foods 2020, 7, 7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Hua, J. Regulation and Mechanisms of L-Lactic Acid and D-Lactic Acid Production in Baijiu Brewing: Insights for Flavor Optimization and Industrial Application. Fermentation 2025, 11, 213. https://doi.org/10.3390/fermentation11040213
Zhou Y, Hua J. Regulation and Mechanisms of L-Lactic Acid and D-Lactic Acid Production in Baijiu Brewing: Insights for Flavor Optimization and Industrial Application. Fermentation. 2025; 11(4):213. https://doi.org/10.3390/fermentation11040213
Chicago/Turabian StyleZhou, Yabin, and Jin Hua. 2025. "Regulation and Mechanisms of L-Lactic Acid and D-Lactic Acid Production in Baijiu Brewing: Insights for Flavor Optimization and Industrial Application" Fermentation 11, no. 4: 213. https://doi.org/10.3390/fermentation11040213
APA StyleZhou, Y., & Hua, J. (2025). Regulation and Mechanisms of L-Lactic Acid and D-Lactic Acid Production in Baijiu Brewing: Insights for Flavor Optimization and Industrial Application. Fermentation, 11(4), 213. https://doi.org/10.3390/fermentation11040213