Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate and Inoculum
2.1.1. Organic Fraction Municipal Solid Waste (OFMSW)
2.1.2. Inoculum
2.2. Experimental Scheme and Operational Procedure
2.2.1. Biochemical Hydrogen Potential and Reactor Configuration
2.2.2. Operational Conditions
2.3. Biohydrogen Production and Composition
2.4. Diversity Community Analysis
3. Results and Discussion
3.1. Biogas Production
3.2. Biohydrogen Production
3.3. Microbial Community Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, R.; Panwar, N.L.; Jain, S.K.; Gupta, T.; Agarwal, C.; Meena, S.S. Bio-Hydrogen Production through Dark Fermentation: An Overview. Biomass Convers. Biorefinery 2022, 14, 12699–12724. [Google Scholar] [CrossRef]
- UNEP. UNEP Food Waste Index Report. Available online: https://www.oneplanetnetwork.org/knowledge-centre/resources/unep-food-waste-index-report (accessed on 24 May 2024).
- Alibardi, L.; Cossu, R. Composition Variability of the Organic Fraction of Municipal Solid Waste and Effects on Hydrogen and Methane Production Potentials. Waste Manag. 2015, 36, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.Y.; Cord-Ruwisch, R.; Ho, G. Limitations of Bio-Hydrogen Production by Anaerobic Fermentation Process: An Overview. AIP Conf. Proc. 2007, 941, 264–269. [Google Scholar] [CrossRef]
- Kapdan, I.K.; Kargi, F. Bio-Hydrogen Production from Waste Materials. Enzym. Microb. Technol. 2006, 38, 569–582. [Google Scholar] [CrossRef]
- Kim, S.H.; Han, S.K.; Shin, H.S. Feasibility of Biohydrogen Production by Anaerobic Co-Digestion of Food Waste and Sewage Sludge. Int. J. Hydrogen Energy 2004, 29, 1607–1616. [Google Scholar] [CrossRef]
- WEC. Hydrogen Demand and Cost Dynamics; Working Paper; WEC: London, UK, 2021. [Google Scholar]
- IEA. Global Hydrogen Review 2023; IEA: Paris, France, 2023. [Google Scholar] [CrossRef]
- Dong, L.; Zhenhong, Y.; Yongming, S.; Xiaoying, K.; Yu, Z. Hydrogen Production Characteristics of the Organic Fraction of Municipal Solid Wastes by Anaerobic Mixed Culture Fermentation. Int. J. Hydrogen Energy 2009, 34, 812–820. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiao, Y.; He, C.; Ruan, R.; Hu, J.; Ren, J.; Toniolo, S.; Jiang, D.; Lu, C.; Li, Y.; et al. Biological Fermentation Pilot-Scale Systems and Evaluation for Commercial Viability towards Sustainable Biohydrogen Production. Nat. Commun. 2024, 15, 4539. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, D.; Li, X.; Yang, Q.; Xu, Q.; Ni, B.J.; Wang, Q.; Liu, X. Towards Hydrogen Production from Waste Activated Sludge: Principles, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110283. [Google Scholar] [CrossRef]
- Capson-Tojo, G.; Trably, E.; Rouez, M.; Crest, M.; Bernet, N.; Steyer, J.P.; Delgenès, J.P.; Escudié, R. Cardboard Proportions and Total Solids Contents as Driving Factors in Dry Co-Fermentation of Food Waste. Bioresour. Technol. 2018, 248, 229–237. [Google Scholar] [CrossRef]
- Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different Aspects of Dry Anaerobic Digestion for Bio-Energy: An Overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Soares, J.F.; Confortin, T.C.; Todero, I.; Mayer, F.D.; Mazutti, M.A. Dark Fermentative Biohydrogen Production from Lignocellulosic Biomass: Technological Challenges and Future Prospects. Renew. Sustain. Energy Rev. 2020, 117, 109484. [Google Scholar] [CrossRef]
- Elsamadony, M.; Tawfik, A. Potential of Biohydrogen Production from Organic Fraction of Municipal Solid Waste (OFMSW) Using Pilot-Scale Dry Anaerobic Reactor. Bioresour. Technol. 2015, 196, 9–16. [Google Scholar] [CrossRef]
- Yeshanew, M.M.; Paillet, F.; Barrau, C.; Frunzo, L.; Lens, P.N.L.; Esposito, G.; Escudie, R.; Trably, E. Co-Production of Hydrogen and Methane from the Organic Fraction of Municipal Solid Waste in a Pilot Scale Dark Fermenter and Methanogenic Biofilm Reactor. Front. Environ. Sci. 2018, 6, 41. [Google Scholar] [CrossRef]
- UNEP. Developing Integrated Solid Waste Managment Plan/Volume 1: Waste Characterization and Quantification with Projections for Future; UNEP: Osaka/Shiga, Japan, 2009; Volume 1. [Google Scholar]
- Silva-Martínez, R.D.; Díaz-Jiménez, L.; Aguilar-Juárez, O.; Carlos-Hernández, S. Characterization of Municipal Solid Waste with the Perspective of Biofuels and Bioproducts Recovery in Northeast Mexico. J. Mater. Cycles Waste Manag. 2024, 26, 3665–3680. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources; WILEY-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2008; ISBN 978-3-527-31841-4. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Raposo, F.; De La Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. Anaerobic Digestion of Solid Organic Substrates in Batch Mode: An Overview Relating to Methane Yields and Experimental Procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- NMX-AA-016-1984; Protección al Ambiente—Contaminación del Suelo-Residuos Sólidos Municipales—Determinación de Humedad. Secretaría de Comercio y Fomento Industrial—Dirección General de Normas: Mexico City, Mexico, 1984.
- NREL/TP-510-42621; Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. U.S. Department of Energy Office of Energy Efficiency & Renewable Energy: Washington, DC, USA, 2008.
- NREL/TP-510-42622; Determination of Ash in Biomass. U.S. Department of Energy Office of Energy Efficiency & Renewable Energy: Washington, DC, USA, 2005; pp. 1–6.
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2003; ISBN 0-444-89249-4. [Google Scholar]
- Forster-Carneiro, T.; Pérez, M.; Romero, L.I.; Sales, D. Dry-Thermophilic Anaerobic Digestion of Organic Fraction of the Municipal Solid Waste: Focusing on the Inoculum Sources. Bioresour. Technol. 2007, 98, 3195–3203. [Google Scholar] [CrossRef]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic Co-Digestion of Food Waste and Straw for Biogas Production. Renew. Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- André, L.; Pauss, A.; Ribeiro, T. Solid Anaerobic Digestion: State-of-Art, Scientific and Technological Hurdles. Bioresour. Technol. 2018, 247, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Sanghvi, A.H.; Manjoo, A.; Rajput, P.; Mahajan, N.; Rajamohan, N.; Abrar, I. Advancements in Biohydrogen Production—A Comprehensive Review of Technologies, Lifecycle Analysis, and Future Scope. RSC Adv. 2024, 14, 36868–36885. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Galindo, E.; Moreno-Andrade, I. Bioaugmentation on Hydrogen Production from Food Waste. Int. J. Hydrogen Energy 2021, 46, 25985–25994. [Google Scholar] [CrossRef]
- Favaro, L.; Alibardi, L.; Lavagnolo, M.C.; Casella, S.; Basaglia, M. Effects of Inoculum and Indigenous Microflora on Hydrogen Production from the Organic Fraction of Municipal Solid Waste. Int. J. Hydrogen Energy 2013, 38, 11774–11779. [Google Scholar] [CrossRef]
- Yang, G.; Yin, Y.; Wang, J. Microbial Community Diversity during Fermentative Hydrogen Production Inoculating Various Pretreated Cultures. Int. J. Hydrogen Energy 2019, 44, 13147–13156. [Google Scholar] [CrossRef]
- Zhu, H.; Parker, W.; Basnar, R.; Proracki, A.; Falletta, P.; Béland, M.; Seto, P. Biohydrogen Production by Anaerobic Co-Digestion of Municipal Food Waste and Sewage Sludges. Int. J. Hydrogen Energy 2008, 33, 3651–3659. [Google Scholar] [CrossRef]
- Zhou, P.; Elbeshbishy, E.; Nakhla, G. Optimization of Biological Hydrogen Production for Anaerobic Co-Digestion of Food Waste and Wastewater Biosolids. Bioresour. Technol. 2013, 130, 710–718. [Google Scholar] [CrossRef]
- Silva, F.M.S.; Mahler, C.F.; Oliveira, L.B.; Bassin, J.P. Hydrogen and Methane Production in a Two-Stage Anaerobic Digestion System by Co-Digestion of Food Waste, Sewage Sludge and Glycerol. Waste Manag. 2018, 76, 339–349. [Google Scholar] [CrossRef]
- Kim, S.; Choi, K.; Kim, J.O.; Chung, J. Biological Hydrogen Production by Anaerobic Digestion of Food Waste and Sewage Sludge Treated Using Various Pretreatment Technologies. Biodegradation 2013, 24, 753–764. [Google Scholar] [CrossRef]
- Sreela-Or, C.; Plangklang, P.; Imai, T.; Reungsang, A. Co-Digestion of Food Waste and Sludge for Hydrogen Production by Anaerobic Mixed Cultures: Statistical Key Factors Optimization. Int. J. Hydrogen Energy 2011, 36, 14227–14237. [Google Scholar] [CrossRef]
- Tarazona, Y.; Vargas, A.; Quijano, G.; Moreno-Andrade, I. Influence of the Initial Proportion of Carbohydrates, Proteins, and Lipids on Biohydrogen Production by Dark Fermentation: A Multi-Response Optimization Approach. Int. J. Hydrogen Energy 2022, 47, 30128–30139. [Google Scholar] [CrossRef]
- Chojnacka, A.; Szczęsny, P.; Błaszczyk, M.K.; Zielenkiewicz, U.; Detman, A.; Salamon, A.; Sikora, A. Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation. PLoS ONE 2015, 10, e0128008. [Google Scholar] [CrossRef] [PubMed]
- Detman, A.; Bucha, M.; Treu, L.; Chojnacka, A.; Pleśniak, Ł.; Salamon, A.; Łupikasza, E.; Gromadka, R.; Gawor, J.; Gromadka, A.; et al. Evaluation of Acidogenesis Products’ Effect on Biogas Production Performed with Metagenomics and Isotopic Approaches. Biotechnol. Biofuels 2021, 14, 125. [Google Scholar] [CrossRef]
- Rey, F.E.; Faith, J.J.; Bain, J.; Muehlbauer, M.J.; Stevens, R.D.; Newgard, C.B.; Gordon, J.I. Dissecting the in Vivo Metabolic Potential of Two Human Gut Acetogens. J. Biol. Chem. 2010, 285, 22082–22090. [Google Scholar] [CrossRef]
- Ghiotto, G.; Detman-Ignatowska, A.; Chojnacka, A.; Orellana, E.; de Bernardini, N.; Fraulini, S.; Treu, L.; Sikora, A.; Campanaro, S. Decipher Syntrophies within C2-C4 Organic Acids-Degrading Anaerobic Microbiomes: A Multi-Omic Exploration. Chem. Eng. J. 2024, 489, 151390. [Google Scholar] [CrossRef]
- Nobu, M.K.; Narihiro, T.; Rinke, C.; Kamagata, Y.; Tringe, S.G.; Woyke, T.; Liu, W.T. Microbial Dark Matter Ecogenomics Reveals Complex Synergistic Networks in a Methanogenic Bioreactor. ISME J. 2015, 9, 1710–1722. [Google Scholar] [CrossRef]
- Parameswaran, P.; Zhang, H.; Torres, C.I.; Rittmann, B.E.; Krajmalnik-Brown, R. Microbial Community Structure in a Biofilm Anode Fed with a Fermentable Substrate: The Significance of Hydrogen Scavengers. Biotechnol. Bioeng. 2010, 105, 69–78. [Google Scholar] [CrossRef]
- Oude Elferink, S.J.W.H. Sulfate-Reducing Bacteria in Anaerobic Bioreactors; Wageningen University and Research: Wageningen, The Netherlands, 1998. [Google Scholar]
- Shimada, T.; Morgenroth, E.; Tandukar, M.; Pavlostathis, S.G.; Smith, A.; Raskin, L.; Kilian, R.E. Syntrophic Acetate Oxidation in Two-Phase (Acid-Methane) Anaerobic Digesters. Water Sci. Technol. 2011, 64, 1812–1820. [Google Scholar] [CrossRef]
- Zhu, X.; Campanaro, S.; Treu, L.; Kougias, P.G.; Angelidaki, I. Novel Ecological Insights and Functional Roles during Anaerobic Digestion of Saccharides Unveiled by Genome-Centric Metagenomics. Water Res. 2019, 151, 271–279. [Google Scholar] [CrossRef]
- Zhu, X.; Campanaro, S.; Treu, L.; Seshadri, R.; Ivanova, N.; Kougias, P.G.; Kyrpides, N.; Angelidaki, I. Metabolic Dependencies Govern Microbial Syntrophies during Methanogenesis in an Anaerobic Digestion Ecosystem. Microbiome 2020, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Nandi, R.; Sengupta, S. Microbial Production of Hydrogen: An Overview. Crit. Rev. Microbiol. 1998, 24, 61–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hoefel, D.; Saint, C.P.; Monis, P.T.; Jin, B. The Isolation and Microbial Community Analysis of Hydrogen Producing Bacteria from Activated Sludge. J. Appl. Microbiol. 2007, 103, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yin, Y. Progress in Microbiology for Fermentative Hydrogen Production from Organic Wastes. Crit. Rev. Environ. Sci. Technol. 2019, 49, 825–865. [Google Scholar] [CrossRef]
- Etchebehere, C.; Castelló, E.; Wenzel, J.; del Pilar Anzola-Rojas, M.; Borzacconi, L.; Buitrón, G.; Cabrol, L.; Carminato, V.M.; Carrillo-Reyes, J.; Cisneros-Pérez, C.; et al. Microbial Communities from 20 Different Hydrogen-Producing Reactors Studied by 454 Pyrosequencing. Appl. Microbiol. Biotechnol. 2016, 100, 3371–3384. [Google Scholar] [CrossRef]
- Zhao, X.; Xing, D.; Fu, N.; Liu, B.; Ren, N. Hydrogen Production by the Newly Isolated Clostridium beijerinckii RZF-1108. Bioresour. Technol. 2011, 102, 8432–8436. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Khanna, N.; Dasgupta, C.N. Biohydrogen Production; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781466518001. [Google Scholar]
- Villanueva-Galindo, E.; Vital-Jácome, M.; Moreno-Andrade, I. Dark Fermentation for H2 Production from Food Waste and Novel Strategies for Its Enhancement. Int. J. Hydrogen Energy 2023, 48, 9957–9970. [Google Scholar] [CrossRef]
- Sharma, P.; Melkania, U. Effect of Bioaugmentation on Hydrogen Production from Organic Fraction of Municipal Solid Waste. Int. J. Hydrogen Energy 2018, 43, 7290–7298. [Google Scholar] [CrossRef]
- Chung Han Chua, E.; Wee, S.K.; Kansedo, J.; Lau, S.Y.; Lim, K.H.; Dol, S.S.; Lipton, A.N. Biological Hydrogen Energy Production by Novel Strains Bacillus paramycoides and Cereibacter azotoformans through Dark and Photo Fermentation. Energies 2023, 16, 3807. [Google Scholar] [CrossRef]
- Kotay, S.M.; Das, D. Microbial Hydrogen Production with Bacillus coagulans IIT-BT S1 Isolated from Anaerobic Sewage Sludge. Bioresour. Technol. 2007, 98, 1183–1190. [Google Scholar] [CrossRef]
- Lertsriwong, S.; Glinwong, C. Newly-Isolated Hydrogen-Producing Bacteria and Biohydrogen Production by Bacillus coagulans MO11 and Clostridium beijerinckii CN on Molasses and Agricultural Wastewater. Int. J. Hydrogen Energy 2020, 45, 26812–26821. [Google Scholar] [CrossRef]
- Kalia, V.C.; Jain, S.R.; Kumar, A.; Joshi, A.P. Frementation of Biowaste to H2 by Bacillus licheniformis. World J. Microbiol. Biotechnol. 1994, 10, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.T.; Favaro, L.; Alibardi, L.; Cagnin, L.; Sandon, A.; Cossu, R.; Casella, S.; Basaglia, M. Bacillus Sp. Strains to Produce Bio-Hydrogen from the Organic Fraction of Municipal Solid Waste. Appl. Energy 2016, 176, 116–124. [Google Scholar] [CrossRef]
- Sikora, A.; Baszczyk, M.; Jurkowski, M.; Zielenkiewicz, U. Lactic Acid Bacteria in Hydrogen-Producing Consortia: On Purpose or by Coincidence? In Lactic Acid Bacteria—R & D for Food, Health and Livestock Purposes; Intech: London, UK, 2013. [Google Scholar] [CrossRef]
- Si, B.; Li, J.; Li, B.; Zhu, Z.; Shen, R.; Zhang, Y.; Liu, Z. The Role of Hydraulic Retention Time on Controlling Methanogenesis and Homoacetogenesis in Biohydrogen Production Using Upflow Anaerobic Sludge Blanket (UASB) Reactor and Packed Bed Reactor (PBR). Int. J. Hydrogen Energy 2015, 40, 11414–11421. [Google Scholar] [CrossRef]
- Muyzer, G.; Stams, A.J.M. The Ecology and Biotechnology of Sulphate-Reducing Bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Aüllo, T.; Ranchou-Peyruse, A.; Ollivier, B.; Magot, M. Desulfotomaculum Spp. and Related Gram-Positive Sulfate-Reducing Bacteria in Deep Subsurface Environments. Front. Microbiol. 2013, 4, 362. [Google Scholar] [CrossRef]
- Kristjansson, J.K.; Schönheit, P.; Thauer, R.K. Different Ks Values for Hydrogen of Methanogenic Bacteria and Sulfate Reducing Bacteria: An Explanation for the Apparent Inhibition of Methanogenesis by Sulfate. Arch. Microbiol. 1982, 131, 278–282. [Google Scholar] [CrossRef]
- Dar, S.A.; Kleerebezem, R.; Stams, A.J.M.; Kuenen, J.G.; Muyzer, G. Competition and Coexistence of Sulfate-Reducing Bacteria, Acetogens and Methanogens in a Lab-Scale Anaerobic Bioreactor as Affected by Changing Substrate to Sulfate Ratio. Appl. Microbiol. Biotechnol. 2008, 78, 1045–1055. [Google Scholar] [CrossRef]
- Mugnai, G.; Borruso, L.; Mimmo, T.; Cesco, S.; Luongo, V.; Frunzo, L.; Fabbricino, M.; Pirozzi, F.; Cappitelli, F.; Villa, F. Dynamics of Bacterial Communities and Substrate Conversion during Olive-Mill Waste Dark Fermentation: Prediction of the Metabolic Routes for Hydrogen Production. Bioresour. Technol. 2021, 319, 124157. [Google Scholar] [CrossRef]
- Stabel, M.; Haack, K.; Lübbert, H.; Greif, M.; Gorenflo, P.; Aliyu, H.; Ochsenreither, K. Metabolic Shift towards Increased Biohydrogen Production during Dark Fermentation in the Anaerobic Fungus Neocallimastix cameroonii G341. Biotechnol. Biofuels Bioprod. 2022, 15, 96. [Google Scholar] [CrossRef]
- Gong, H.; Liu, M.; Li, K.; Li, C.; Xu, G.; Wang, K. Optimizing Dry Anaerobic Digestion at Pilot Scale for Start-up Strategy and Long-Term Operation: Organic Loading Rate, Temperature and Co-Digestion. Bioresour. Technol. 2020, 316, 123828. [Google Scholar] [CrossRef] [PubMed]
- Vasmara, C.; Pindo, M.; Micheletti, D.; Marchetti, R. Initial PH Influences Microbial Communities Composition in Dark Fermentation of Scotta Permeate. Int. J. Hydrogen Energy 2018, 43, 8707–8717. [Google Scholar] [CrossRef]
- Bru, K.; Blazy, V.; Joulian, C.; Trably, E.; Latrille, E.; Quéméneur, M.; Dictor, M.C. Innovative CO2 Pretreatment for Enhancing Biohydrogen Production from the Organic Fraction of Municipal Solid Waste (OFMSW). Int. J. Hydrogen Energy 2012, 37, 14062–14071. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, T.; Bao, M.; Su, H.; Xu, P. Microbial Production of Hydrogen by Mixed Culture Technologies: A Review. Biotechnol. J. 2020, 15, 1900297. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
pH | 5.33 | N (%TS) | 2.74 |
Humidity (%) | 74.99 | S (%TS) | 0.097 |
TS (%) | 25.01 | P (%TS) | 0.3872 |
VS (%) | 22.09 | C/N Ratio | 16.45 |
VS (%TS) | 88.17 | Fats (%) | 12.27 |
Ash (%TS) | 11.83 | Proteins (%) | 16.74 |
C (%TS) | 44.72 | Carbohydrates (%) | 70.98 |
H (%TS) | 6.03 | Raw fiber (%) | 43.93 |
O (%TS) | 32.55 |
Parameter | Value |
---|---|
Floating material | Absence |
pH | 6.98 ± 0.18 |
Turbidity (NTU) | 88.96 ± 41.41 |
Fats, oils, and grease (mg/L) | 12.05 ± 10.95 |
Total Suspended Solids (mg/L) | 91.10 ± 50.36 |
Settleable solids (mg/L) | 0.54 ± 0.54 |
Biological Oxygen Demand (mg/L) | 196.50 ± 57.80 |
Chemical Oxygen Demand (mg/L) | 497.60 ± 43.44 |
Total Coliforms (×105) (CFU/100 mL) | 110.60 ± 80.63 |
Fecal Coliforms (×105) (CFU/100 mL) | 60.42 ± 63.94 |
Total Nitrogen (mg/L) | 229.74 ± 167.16 |
Total Phosphorus (mg/L) | 10.50 ± 2.41 |
E. coli (×105) (CFU/100 mL) | 60.42 ± 63.94 |
Residual chlorine (mg/L) | CELL |
Color (Pt-Co.) | 572.20 ± 309.13 |
Parameter | Hydrolysis/Acidogenesis | Methane Formation |
---|---|---|
Temperature | 25–35 °C | Mesophilic: 32–42 °C/Thermophilic: 50–58 °C |
pH value | 5.2–6.3 | 6.5–7.5 |
C:N ratio | 10–45 | 20–30 |
DM content | <40% DM | <30% DM |
Redox potential | +400 to −300 mV | <−250 mV |
Required C:N:P:S ratio | 500:15:5:3 | 600:15:5:3 |
Trace elements | No special requirements | Essential: Ni, Co, Mo, Se |
Biogas | Biohydrogen | Units | ||
---|---|---|---|---|
HMAX | Maximal potential production | 49.23 | 17.1 | L |
Generated by activated sludge | 2.84 | - | ||
Total generated by OFMSW | 46.39 | 17.1 | ||
RMAX | Production rate | 110.62 | 38.4 | (NmL/gVS OFMSW) |
Production rate by activated sludge | 9.56 | - | ||
Production rate by OFMSW | 101.06 | 38.4 |
Phylums | Genus | Sewage Sludge (%) | Liquid Digestate (%) | Metabolic Pathway * | Main Products | Main Function |
---|---|---|---|---|---|---|
Firmicutes | Anaerosalibacter | 6.008 | 6.952 | Hydrolysis and Acidogenesis (Stickland-like fermentation) | Acetate, H2, CO2, fatty acids | Performs Stickland-like fermentation; contributes to early-stage amino acid catabolism. |
Firmicutes | Anaerosporobacter | 1.40 | 1.04 | Hydrolysis and Acidogenesis (Stickland-like fermentation) | Acetate, butyrate, H2, CO2 | Anaerobic amino acid fermenter; contributes to hydrogen and short-chain fatty acid production. |
Firmicutes | Bacillus | 45.11 | 0.46 | Hydrolysis and Acidogenesis (glucose mineralization) | Acetate, butyrate, H2 | Sugar fermenter via glucose mineralization; produces acidogenic intermediates including H2. |
Firmicutes | Caldicoprobacter | 1.096 | 1.305 | Hydrolysis and Acidogenesis (protein and carbohydrate breakdown) | Lactate, acetate, VFAs | Thermotolerant fermenter of protein and starch; associated with lactate accumulation. |
Firmicutes | Caproiciproducens | 0.48 | 42.19 | Hydrolysis and Acidogenesis (beta-oxidation) | Caproate, acetate, H2 | Chain elongator; converts lactate/ethanol into caproate under syntrophic conditions. |
Firmicutes | Clostridiales | 0.301 | 8.420 | Hydrolysis and Acidogenesis (mixed fermentation) | Acetate, butyrate, H2 | Diverse fermenters; involved in mixed substrate fermentation under anaerobic conditions. |
Firmicutes | Clostridium | 1.49 | 11.27 | Hydrolysis and Acidogenesis (amino acid fermentation and lactate oxidation) | Acetate, H2, CO2 | Key acidogenic genus; ferments amino acids and sugars into hydrogen and VFAs. |
Firmicutes | Desulfotomaculum | 1.513 | 1.330 | Sulfate Reduction (butyrate/acetate to H2S) | H2S, isobutyrate | Sulfate-reducing bacteria convert VFAs to H2S, reducing methanogenic efficiency. |
Firmicutes | Eubacterium | 1.18 | 0.00 | Acetogenesis and Hydrogen Metabolism (Wood–Ljungdahl) | Acetate, ethanol, H2 | Performs acetogenesis via Wood–Ljungdahl; contributes to acetate and ethanol pools. |
Firmicutes | Lactobacillus | 0.509 | 3.346 | Hydrolysis and Acidogenesis (lactate production) | Lactate, minor acetate | Produces lactate under anaerobic conditions; may lower pH and inhibit hydrogen producers. |
Bacteroidota | Proteiniphilum | 2.771 | 0.000 | Hydrolysis and Acidogenesis (protein degradation) | Acetate, H2, CO2 | Proteolytic anaerobe; participates in amino acid fermentation and syntrophic acetate oxidation. |
Proteobacteria | Proteus | 3.625 | 0.000 | Hydrolysis and Acidogenesis (fermentation of amino acids/lactate) | Acetate, H2, CO2 | Opportunistic fermenter of amino acids/lactate; possible participant in cross-feeding reactions. |
Firmicutes | Rhabdanaerobium | 0.013 | 5.150 | Hydrolysis and Acidogenesis (mixed substrate fermentation) | Acetate, butyrate, VFAs | Strict anaerobe; ferments mixed substrates to butyrate and acetate. |
Firmicutes | Sedimentibacter | 1.68 | 0.00 | Hydrolysis and Acidogenesis (lactate oxidation) | Acetate, H2, CO2 | Ferments lactate into acetate and hydrogen under thermophilic conditions. |
Firmicutes | Sporanaerobacter | 7.670 | 0.115 | Hydrolysis and Acidogenesis (fermentation under stress) | Caproate, butyrate, H2 | Ferments ethanol/lactate under stress; involved in caproate production via chain elongation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Martínez, R.D.; Aguilar-Juárez, O.; Díaz-Jiménez, L.; Valdez-Guzmán, B.E.; Aranda-Jaramillo, B.; Carlos-Hernández, S. Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge. Fermentation 2025, 11, 398. https://doi.org/10.3390/fermentation11070398
Silva-Martínez RD, Aguilar-Juárez O, Díaz-Jiménez L, Valdez-Guzmán BE, Aranda-Jaramillo B, Carlos-Hernández S. Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge. Fermentation. 2025; 11(7):398. https://doi.org/10.3390/fermentation11070398
Chicago/Turabian StyleSilva-Martínez, Rodolfo Daniel, Oscar Aguilar-Juárez, Lourdes Díaz-Jiménez, Blanca Estela Valdez-Guzmán, Brenda Aranda-Jaramillo, and Salvador Carlos-Hernández. 2025. "Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge" Fermentation 11, no. 7: 398. https://doi.org/10.3390/fermentation11070398
APA StyleSilva-Martínez, R. D., Aguilar-Juárez, O., Díaz-Jiménez, L., Valdez-Guzmán, B. E., Aranda-Jaramillo, B., & Carlos-Hernández, S. (2025). Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge. Fermentation, 11(7), 398. https://doi.org/10.3390/fermentation11070398