In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology
Abstract
1. Introduction
2. Mechanisms of Microbiota–Host Interactions and Current Approaches to Probiotic Modulation
Current Understandings of the Role of the Microbiota in Health and Disease
Genus | Notable Species | Strain | Oxygen Requirement | Key Functions in the Gut | Notable Metabolites | References |
---|---|---|---|---|---|---|
Lactobacillus (now includes Lacticaseibacillus) | Lacticaseibacillus rhamnosus Lactobacillus acidophilus | GG NCFM | Facultative anaerobe | Acidification, pathogen inhibition, immune modulation | Lactic acid, bacteriocins, SCFAs | [49,50] |
Bifidobacterium | Bifidobacterium breve, Bifidobacterium longum | M-16V BB536 | Obligate anaerobe | Fiber fermentation, vitamin synthesis, immune development | Acetate, lactate, folate | [51,52] |
Bacillus | Bacillus subtilis, Weizmannia coagulans | DE111 GBI-30 | Aerobe/facultative | Enzyme production, pathogen exclusion, immune activation | Proteases, lipopeptides, IgA stimulation | [53,54] |
Streptococcus | Streptococcus thermophiles | TH-4 | Facultative anaerobe | Lactose hydrolysis, anti-inflammatory action | β-Galactosidase, EPS | [55] |
Enterococcus | Enterococcus faecium | SF68 | Facultative anaerobe | Bile salt hydrolysis, antimicrobial activity, lipid metabolism | Enterocins, BSH enzymes | [56] |
3. Metabolic Modeling of Bacterial Systems for Biotechnological Applications
3.1. Metabolic Modeling of Single Bacterial Species for Biotechnological Purposes
3.2. Modeling of Multi-Species Bacterial Communities
3.3. Metabolic Modeling of Probiotics: CBM, FBA, and MFA Approaches and Their Practical Applications
3.4. Modeling of Probiotic Fermentation Processes: From Mechanistic to Data-Driven Approaches
4. Future Research Perspectives
4.1. Integration of Multi-Omics Data
4.2. Personalized Nutrition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FBA | Flux balance analysis |
MFA | Metabolic flux analysis |
dFBA | Dynamic flux balance analysis |
GEM | Genome-scale metabolic model |
GSMM | Genome-scale metabolic modeling |
CBM | Constraint-based modeling |
SCFA | Short-chain fatty acids |
EPS | Exopolysaccharides |
BSH | Bile salt hydrolase |
AI | Artificial Intelligence |
ML | Machine Learning |
Treg | Regulatory T cells |
FMT | Fecal microbiota transplantation |
GABA | Gamma-aminobutyric acid |
EMP | Embden–Meyerhof–Parnas pathway |
HMM | Hidden Markov Model |
COMETS | Computation Of Microbial Ecosystems in Time and Space |
AGORA | Assembly of Gut Organisms through Reconstruction and Analysis |
CFD | Computational fluid dynamics |
References
- Sonnenburg, J.L.; Bäckhed, F. Diet–microbiota interactions. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef]
- Vila Chã Losa, J. Bridging the gap between metabolism and the physics of cytoplasm. Curr. Opin. Syst. Biol. 2022, 29, 100400. [Google Scholar]
- Van Leeuwen, P.T.; Brul, S.; Zhang, J.; Wortel, M.T. Synthetic microbial communities (SynComs) of the human gut: Design, assembly, and applications. FEMS Microbiol. Rev. 2023, 47, fuad012. [Google Scholar] [CrossRef]
- Colarusso, A.V.; Goodchild-Michelman, I.; Rayle, M.; Zomorrodi, A.R. Computational modeling of metabolism in microbial communities on a genome-scale. Curr. Opin. Syst. Biol. 2021, 26, 46–57. [Google Scholar] [CrossRef]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef]
- Rangel, A.E.T.; Gomez Ramírez, J.M.; González Barrios, A.F. From industrial byproducts to value-added compounds: The design of efficient microbial cell factories by coupling systems metabolic engineering and bioprocesses. Biofuels Bioprod. Biorefin. 2020, 14, 1228–1238. [Google Scholar] [CrossRef]
- Anand, S.; Mukherjee, K.; Padmanabhan, P. An insight to flux-balance analysis for biochemical networks. Biotechnol. Genet. Eng. Rev. 2020, 36, 32–55. [Google Scholar] [CrossRef]
- Babaei, P.; Shoaie, S.; Ji, B.; Nielsen, J. Challenges in modeling the human gut microbiome. Nat. Biotechnol. 2018, 36, 682–686. [Google Scholar] [CrossRef]
- Gianchandani, E.P.; Chavali, A.K.; Papin, J.A. The application of flux balance analysis in systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2, 72–382. [Google Scholar] [CrossRef]
- Magnúsdóttir, S.; Heinken, A.; Kutt, L.; Ravcheev, D.A.; Bauer, E.; Noronha, A.; Greenhalgh, K.; Jäger, C.; Baginska, J.; Wilmes, P.; et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 2017, 35, 81–89. [Google Scholar] [CrossRef]
- Machado, D.; Andrejev, S.; Tramontano, M.; Patil, K.R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 2018, 46, 7542–7553. [Google Scholar] [CrossRef]
- Westfall, S.; Carracci, F.; Estill, M.; Zhao, D.; Wu, Q.; Shen, L.; Simon, J.; Pasinetti, G.M. Optimization of probiotic therapeutics using machine learning in an artificial human gastrointestinal tract. Sci. Rep. 2021, 11, 1067. [Google Scholar] [CrossRef]
- Korem, T.; Zeevi, D.; Zmora, N.; Weissbrod, O.; Bar, N.; Lotan-Pompan, M.; Avnit-Sagi, T.; Kosower, N.; Malka, G.; Rein, M.; et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 2017, 25, 1243–1253.e5. [Google Scholar] [CrossRef]
- Gokhale, S.; Bhaduri, A. Provitamin D3 modulation through prebiotics supplementation: Simulation based assessment. Sci. Rep. 2019, 9, 19267. [Google Scholar] [CrossRef]
- Devika, N.T.; Jangam, A.K.; Katneni, V.K.; Patil, P.K.; Nathamuni, S.; Shekhar, M.S. In silico prediction of novel probiotic species limiting pathogenic Vibrio growth using constraint-based genome scale metabolic modeling. Front. Cell Infect. Microbiol. 2021, 11, 752477. [Google Scholar] [CrossRef]
- Namrak, T.; Raethong, N.; Jatuponwiphat, T.; Nitisinprasert, S.; Vongsangnak, W.; Nakphaichit, M. Probing genome-scale model reveals metabolic capability and essential nutrients for growth of probiotic Limosilactobacillus reuteri KUB-AC5. Biology 2022, 11, 294. [Google Scholar] [CrossRef]
- Bertorello, S.; Cei, F.; Fink, D.; Niccolai, E.; Amedei, A. The future exploring of gut microbiome-immunity interactions: From in vivo/vitro models to in silico innovations. Microorganisms 2024, 12, 1828. [Google Scholar] [CrossRef]
- Michelini, S.; Balakrishnan, B.; Parolo, S.; Matone, A.; Mullaney, J.A.; Young, W.; Gasser, O.; Wall, C.; Priami, C.; Lombardo, R.; et al. A reverse metabolic approach to weaning: In silico identification of immune-beneficial infant gut bacteria, mining their metabolism for prebiotic feeds and sourcing these feeds in the natural product space. Microbiome 2018, 6, 171. [Google Scholar] [CrossRef]
- McBurney, M.I.; Davis, C.; Fraser, C.M.; Schneeman, B.O.; Huttenhower, C.; Verbeke, K.; Walter, J.; Latulippe, M.E. Establishing what constitutes a healthy human gut microbiome: State of the science, regulatory considerations, and future directions. J. Nutr. 2019, 149, 1882–1895. [Google Scholar] [CrossRef]
- Shoaie, S.; Nielsen, J. Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front Genet. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raajaraam, L.; Raman, K. Modeling microbial communities: Perspective and challenges. Am. Chem. Soc. 2024, 3, 2260–2270. [Google Scholar] [CrossRef]
- Jansma, J.; El Aidy, S. Understanding the host-microbe interactions using metabolic modeling. Microbiome 2021, 9, 16. [Google Scholar] [CrossRef]
- Liu, Y.; Alookaran, J.J.; Rhoads, J.M. Probiotics in autoimmune and inflammatory disorders. Nutrients 2018, 10, 1537. [Google Scholar] [CrossRef]
- Bar, N.; Korem, T.; Weissbrod, O.; Zeevi, D.; Rothschild, D.; Leviatan, S.; Kosower, N.; Lotan-Pompan, M.; Weinberger, A.; Roy, C.I.L.; et al. A reference map of potential determinants for the human serum metabolome. Nature 2020, 588, 135–140. [Google Scholar] [CrossRef]
- Sharma, V.R.; Singh, M.; Kumar, V.; Yadav, M.; Sehrawat, N.; Sharma, D.K.; Sharma, A.K. Microbiome dysbiosis in cancer: Exploring therapeutic strategies to counter the disease. Semin. Cancer Biol. 2021, 70, 61–70. [Google Scholar] [CrossRef]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Blacher, E.; Levy, M.; Tatirovsky, E.; Elinav, E. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol. 2017, 198, 572–580. [Google Scholar] [CrossRef]
- Śliżewska, K.; Markowiak-Kopeć, P.; Śliżewska, W. The role of probiotics in cancer prevention. Cancers 2021, 13, 20. [Google Scholar] [CrossRef]
- Nagpal, R.; Kumar, A.; Kumar, M.; Behare, P.V.; Jain, S.; Yadav, H. Probiotics, their health benefits and applications for developing healthier foods: A review. FEMS Microbiol. Lett. 2012, 334, 1–15. [Google Scholar] [CrossRef]
- Indira, M.; Venkateswarulu, T.C.; Abraham Peele, K.; Nazneen Bobby, M.; Krupanidhi, S. Bioactive molecules of probiotic bacteria and their mechanism of action: A review. 3 Biotech. 2019, 9, 306. [Google Scholar] [CrossRef]
- El Kholy, M.; El Shinawy, S.; Meshref, A.; Korny, A. Screening of antagonistic activity of probiotic bacteria against some food-borne pathogens. J. Food Biosci. Technol. 2014, 4, 1–14. [Google Scholar]
- Lin, T.L.; Shu, C.C.; Lai, W.F.; Tzeng, C.M.; Lai, H.C.; Lu, C.C. Investiture of next generation probiotics on amelioration of diseases–strains do matter. Med. Microecol. 2019, 1, 100002. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of action of probiotics. Adv. Nutr. 2019, 10, 49–66. [Google Scholar] [CrossRef]
- Yeşilyurt, N.; Yılmaz, B.; Ağagündüz, D.; Capasso, R. Involvement of probiotics and postbiotics in the immune system modulation. Biologics 2021, 1, 89–110. [Google Scholar] [CrossRef]
- Fakruddina, M.; Shishirb, M.A.; Yousufa, Z.; Khanc, M.S.S. Next-generation probiotics-the future of biotherapeutics. Microb. Bioact. 2022, 5, 156–163. [Google Scholar]
- Wolfe, W.; Xiang, Z.; Yu, X.; Li, P.; Chen, H.; Yao, M.; Fei, Y.; Huang, Y.; Yin, Y.; Xiao, H. The challenge of applications of probiotics in gastrointestinal diseases. Adv. Gut Microbiome Res. 2023, 2023, 1984200. [Google Scholar] [CrossRef]
- Wang, G.; Huang, S.; Wang, Y.; Cai, S.; Yu, H.; Liu, H.; Zeng, X.; Zhang, G.; Qiao, S. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol. Life Sci. 2019, 76, 3917–3937. [Google Scholar] [CrossRef] [PubMed]
- Martinez, K.B.; Leone, V.; Chang, E.B. Western diets, gut dysbiosis, and metabolic diseases: Are they linked? Gut Microbes. 2017, 8, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Hirahara, K.; Nakayama, T. CD4+ T-cell subsets in inflammatory diseases: Beyond the Th1/Th2 paradigm. Int. Immunol. 2016, 28, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, S.; Hwang, U.S.; Choi, H.; Park, Y.S. Immunostimulatory activity of Lactococcus lactis subsp. lactis CAB701 isolated from Jeju cabbage. Microorganisms 2023, 11, 1718. [Google Scholar] [CrossRef]
- Haller, D.; Antoine, J.M.; Bengmark, S.; Enck, P.; Rijkers, G.T.; Lenoir-Wijnkoop, I. Guidance for substantiating the evidence for beneficial effects of probiotics: Probiotics in chronic inflammatory bowel disease and the functional disorder irritable bowel syndrome. J. Nutr. 2010, 140, 690–697. [Google Scholar] [CrossRef]
- Jakubczyk, D.; Leszczyńska, K.; Górska, S. The effectiveness of probiotics in the treatment of inflammatory bowel disease (IBD)—A critical review. Nutrients 2020, 12, 1973. [Google Scholar] [CrossRef]
- So, D.; Quigley, E.M.M.; Whelan, K. Probiotics in irritable bowel syndrome and inflammatory bowel disease: Review of mechanisms and effectiveness. Curr. Opin. Gastroenterol. 2023, 39, 103–109. [Google Scholar] [CrossRef]
- Axelsson, L. Lactic acid bacteria: Classification and physiology. In Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd ed.; Salminen, S., von Wright, A., Ouwehand, A., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 1–66. [Google Scholar]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Singh, T.P.; Natraj, B.H. Next-generation probiotics: A promising approach towards designing personalized medicine. Crit. Rev. Microbiol. 2021, 47, 479–498. [Google Scholar] [CrossRef] [PubMed]
- Shehata, H.R.; Newmaster, S.G. Enumeration of Probiotic Strain Lacticaseibacillus rhamnosus GG (ATCC 53103) Using Viability Real-time PCR. Probiotics Antimicrob Proteins. 2021, 13, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Ren, F.; Qin, H.; Bukhari, I.; Yang, J.; Gao, D.; Ouwehand, A.C.; Lehtinen, M.J.; Zheng, P.; Mi, Y. Lactobacillus acidophilus NCFM and Lactiplantibacillus plantarum Lp-115 inhibit Helicobacter pylori colonization and gastric inflammation in a murine model. Front Cell Infect Microbiol. 2023, 13, 1196084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, C.B.; Iwabuchi, N.; Xiao, J.Z. Exploring the Science behind Bifidobacterium breve M-16V in Infant Health. Nutrients 2019, 11, 1724. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sato, S.; Arai, S.; Kato, K.; Yoshida, K.; Iwabuchi, N.; Sagami, T.; Tanaka, M. Effects of Bifidobacterium longum BB536 and Bifidobacterium breve MCC1274 on Body Composition in Normal and Overweight Adults in Randomized Placebo-Controlled Study. Nutrients 2024, 16, 815. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colom, J.; Freitas, D.; Simon, A.; Khokhlova, E.; Mazhar, S.; Buckley, M.; Phipps, C.; Deaton, J.; Brodkorb, A.; Rea, K. Acute physiological effects following Bacillus subtilis DE111 oral ingestion—A randomised, double blinded, placebo-controlled study. Benef Microbes. 2023, 14, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Purpura, M.; Farmer, S.; Cash, H.A.; Keller, D. Probiotic Bacillus coagulans GBI-30, 6086 Improves Protein Absorption and Utilization. Probiotics Antimicrob Proteins 2018, 10, 611–615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Brook, C.L.; Whittaker, A.L.; Lawrence, A.; Yazbeck, R.; Howarth, G.S. Effects of Streptococcus thermophilus TH-4 in a rat model of doxorubicin-induced mucositis. Scand J. Gastroenterol. 2013, 48, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, W.; Arini, A.; Aeschbacher, M.; Coppolecchia, R.; Pot, B. Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics. Benef. Microbes. 2018, 9, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Tachon, S. Environmental factors influencing the efficacy of probiotic bacteria. Curr. Opin. Biotechnol. 2013, 24, 207–213. [Google Scholar] [CrossRef]
- Heinken, A.; Sahoo, S.; Fleming, R.M.T.; Thiele, I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes. 2013, 4, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Cho, Y.; Jeong, S.Y.; Kim, S.Y. Short-chain fatty acid-producing microbes and their potential role in gut health: A Korean perspective. Microbiol. Biotechnol. Lett. 2022, 50, 304–312. [Google Scholar]
- Binnendijk, K.A.; Rijkers, G.T. What is a healthy microbiota? A definition based on human interventional studies, microbial ecology and basic science. Benef. Microbes. 2013, 4, 69–73. [Google Scholar]
- Ma, T.; Shi, M.; Wang, Y.; Kong, F. Targeting gut microbiota and metabolism as the major probiotic mechanism. Trends Food Sci. Technol. 2023, 133, 190–202. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, Y.; Qian, W.; Zhou, J.; Li, J.; Zhao, D. The metabolites of lactic acid bacteria: Classification, biosynthesis, and modulation of gut microbiota. Microb. Cell Fact. 2023, 22, 49. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Zhang, X.; Wang, Z.; Tang, W. Fructo-oligosaccharide promotes probiotic growth and intestinal health: Mechanistic insights and clinical relevance. Nutrition 2022, 96, 111570. [Google Scholar]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Trends Food Sci. Technol. 2021, 114, 410–426. [Google Scholar] [CrossRef]
- Cummings, J.H.; Macfarlane, G.T. Gastrointestinal effects of prebiotics. Br. J. Nutr. 2002, 87, S145–S151. [Google Scholar] [CrossRef]
- Shoaie, S.; Karlsson, A.M.; Mardinoglu, A.; Nookaew, I.; Bordel, J.; Nielsen, J. Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 2013, 3, 2532. [Google Scholar] [CrossRef]
- Abouelela, M.E.; Helmy, Y.A. Next-generation probiotics as novel therapeutics for improving human health: Current trends and future perspectives. Microorganisms 2024, 12, 430. [Google Scholar] [CrossRef]
- Yadav, M.K.; Kumari, I.; Singh, B.; Sharma, K.K.; Tiwari, S.K. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Appl. Microbiol. Biotechnol. 2022, 106, 505–521. [Google Scholar] [CrossRef]
- Sen, P. Flux balance analysis of metabolic networks for efficient engineering of microbial cell factories. Biotechnol. Genet. Eng. Rev. 2022, 40, 3682–3715. [Google Scholar] [CrossRef]
- Frioux, C.; Singh, D.; Korcsmaros, T.; Hildebrand, F. From bag-of-genes to bag-of-genomes: Metabolic modelling of communities in the era of metagenome-assembled genomes. Comput. Struct. Biotechnol. J. 2020, 18, 1722–1734. [Google Scholar] [CrossRef]
- Dukovski, I.; Bajić, D.; Mehta, P. A spatially explicit model for microbial communities with metabolic trade-offs. PLoS Comput. Biol. 2021, 17, e1008962. [Google Scholar]
- Taffi, M.; Paoletti, N.; Angione, C.; Pucciarelli, S.; Marini, M.; Lio, P. Bioremediation in marine ecosystems: A computational study combining ecological modeling and flux balance analysis. Front. Genet. 2014, 5, 319. [Google Scholar] [CrossRef]
- Hollinshead, W.; He, L.; Tang, Y.J. Biofuel production: An odyssey from metabolic engineering to fermentation scale-up. Front. Res. Found. 2014, 5, 344. [Google Scholar] [CrossRef]
- Senne de Oliveira Lino, F.; Bajic, D.; Vila, J.C.C.; Sánchez, A.; Sommer, M.O.A. Complex yeast–bacteria interactions affect the yield of industrial ethanol fermentation. Nat. Commun. 2021, 12, 1498. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Sim, Y.B.; Park, J.H.; Pandey, A.; Kim, S.H. Novel dynamic membrane metabolic flux balance PICRUSt analysis for high-rate biohydrogen production at various substrate concentrations. Chem. Eng. J. 2021, 420, 127685. [Google Scholar]
- Golomysova, M.; Gomelsky, M.; Ivanov, P.S. Flux balance analysis of photoheterotrophic growth of purple nonsulfur bacteria relevant to biohydrogen production. Int. J. Hydrogen Energy 2010, 35, 12751–12760. [Google Scholar] [CrossRef]
- Majidian, P.; Tabatabaei, M.; Zeinolabedini, M.; Naghshbandi, M.P.; Chisti, Y. Metabolic engineering of microorganisms for biofuel production. Renew. Sustain. Energy Rev. 2018, 82, 3863–3885. [Google Scholar] [CrossRef]
- Gowen, C.M.; Fong, S.S. Applications of systems biology towards microbial fuel production. Trends Microbiol. 2011, 19, 516–524. [Google Scholar] [CrossRef]
- Wang, S.; Sun, X.; Yuan, Q. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. Bioresour. Technol. 2018, 258, 302–309. [Google Scholar] [CrossRef]
- Nikdel, A.; Braatz, R.D.; Budman, H.M. A systematic approach for finding the objective function and active constraints for dynamic flux balance analysis. Bioprocess. Biosyst. Eng. 2018, 41, 641–655. [Google Scholar] [CrossRef]
- Brunner, J.D.; Chia, N. Minimizing the number of optimizations for efficient community dynamic flux balance analysis. PLoS Comput. Biol. 2020, 16, e1007786. [Google Scholar] [CrossRef]
- Khandelwal, R.A.; Olivier, B.G.; Roling, W.F.M.; Teusink, B.; Bruggeman, F.J. Community flux balance analysis for microbial consortia at balanced growth. PLoS ONE 2013, 8, e64567. [Google Scholar] [CrossRef]
- Zaramela, L.S.; Moyne, O.; Kumar, M.; Zuniga, C.; Tibocha-Bonilla, J.D.; Zengler, K. The sum is greater than the parts: Exploiting microbial communities to achieve complex functions. Curr. Opin. Biotechnol. 2021, 67, 149–157. [Google Scholar] [CrossRef]
- Tarzi, C.; Zampieri, G.; Sullivan, N.; Angione, C. Emerging methods for genome-scale metabolic modeling of microbial communities. Trends Endocrinol. Metab. 2024, 35, 533–548. [Google Scholar] [CrossRef]
- Mattei, M.R.; Frunzo, L.; D’Acunto, B.; Esposito, G.; Pirozzi, F. Modelling microbial population dynamics in multispecies biofilms including Anammox bacteria. Ecol. Model. 2015, 304, 44–58. [Google Scholar] [CrossRef]
- Iyengar, G.; Perry, M. Game-theoretic flux balance analysis model for predicting stable community composition. IEEE/ACM Trans. Comput. Biol. Bioinf. 2024, 21, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.; Zimmermann, J.; Baldini, F.; Thiele, I.; Kaleta, C. BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 2017, 13, e1005544. [Google Scholar] [CrossRef]
- Henry, C.S.; DeJongh, M.; Best, A.A.; Frybarger, P.M.; Linsay, B.; Stevens, R.L. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 2010, 28, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef]
- Li, P.; Roos, S.; Luo, H.; Ji, B.; Nielsen, J. Metabolic engineering in human gut microbiome: Recent developments and future perspectives. Metab. Eng. 2023, 79, 1–13. [Google Scholar] [CrossRef]
- Rosario, D.; Benfeitas, R.; Bidkhori, G.; Zhang, C.; Uhlen, M.; Shoaie, S.; Mardinoglu, A. Understanding the representative gut microbiota dysbiosis in metformin-treated Type 2 diabetes patients using genome-scale metabolic modeling. Front. Physiol. 2018, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- Marinos, G.; Hamerich, I.K.; Debray, R.; Obeng, N.; Petersen, C.; Taubenheim, J.; Zimmermann, J.; Blackburn, D.; Samuel, B.S.; Dierking, K.; et al. Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics. Microbiol. Spectr. 2024, 12, e01144-23. [Google Scholar] [CrossRef] [PubMed]
- Helmy, M.; Smith, D.; Selvarajoo, K. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab. Eng. Commun. 2020, 11, e00149. [Google Scholar] [CrossRef]
- Rojas López, A.; Barberis, M. Metabolic modeling for probiotic and prebiotic production to treat inflammatory disorders. Chem. Eng. J. 2024, 502, 157852. [Google Scholar] [CrossRef]
- Koduru, L.; Lakshmanan, M.; Lee, Y.Q.; Ho, P.-L.; Lim, P.-Y.; Ler, W.X.; Ng, S.K.; Kim, D.; Park, D.-S.; Banu, M.; et al. Systematic evaluation of genome-wide metabolic landscapes in lactic acid bacteria reveals diet- and strain-specific probiotic idiosyncrasies. Cell Rep. 2022, 41, 111735. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.; Ahmed, H.Y.; Zongo, A.; Korin, A.; Zhan, F.; Hady, E.; Umair, M.; Shahid Riaz Rajoka, M.; Xiong, Y.; Li, B. Probiotic supplements: Their strategies in the therapeutic and prophylactic of human life-threatening diseases. Int. J. Mol. Sci. 2021, 22, 11290. [Google Scholar] [CrossRef]
- Brunner, J.D.; Chia, N. Metabolic model-based ecological modeling for probiotic design. Elife 2024, 13, e83690. [Google Scholar] [CrossRef]
- Harcombe, W.R.; Riehl, W.J.; Dukovski, I.; Granger, B.R.; Betts, A.; Lang, A.H.; Segre, D. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 2014, 7, 1104–1115. [Google Scholar] [CrossRef]
- Kaur, H.; Ali, S.A. Probiotics and gut microbiota: Mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct. 2022, 13, 7423–7447. [Google Scholar] [CrossRef]
- Thoda, C.; Touraki, M. Immunomodulatory properties of probiotics and their derived bioactive compounds. Appl. Sci. 2023, 13, 4726. [Google Scholar] [CrossRef]
- Du, Y.-H.; Wang, M.-Y.; Yang, L.-H.; Tong, L.-L.; Guo, D.-S.; Ji, X.-J. Optimization and scale-up of fermentation processes driven by models. Bioengineering 2022, 9, 473. [Google Scholar] [CrossRef]
- Bordbar, A.; Monk, J.M.; King, Z.A.; Palsson, B.O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 2014, 15, 107–120. [Google Scholar] [CrossRef]
- Papoutsakis, E.T. Equations and calculations for fermentations of butyric acid bacteria. Biotechnol. Bioeng. 1984, 26, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.; Thiele, I.; Palsson, B. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef]
- Takaç, S.; Elmas, S.; Çalık, P.; Özdamar, T.H. Separation of the protease enzymes of Bacillus licheniformis from the fermentation medium by crossflow ultrafiltration. J. Chem. Technol. Biotechnol. 2000, 75, 491–499. [Google Scholar] [CrossRef]
- Heirendt, L.; Arreckx, S.; Pfau, T.; Mendoza, S.N.; Richelle, A.; Heinken, A.; Haraldsdóttir, H.S.; Wachowiak, J.; Keating, S.M.; Vlasov, V.; et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 2019, 14, 639–702. [Google Scholar] [CrossRef]
- Kuriya, Y.; Araki, M. Dynamic flux balance analysis to evaluate the strain production performance on shikimic acid production in Escherichia coli. Metabolites 2020, 10, 198. [Google Scholar] [CrossRef]
- Heinken, A.; Hertel, J.; Acharya, G.; Ravcheev, D.A.; Nyga, M.; Okpala, O.E.; Hogan, M.; Magnúsdóttir, S.; Martinelli, F.; Nap, B.; et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat Biotechnol. 2023, 41, 1320–1331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choi, Y.M.; Lee, Y.Q.; Song, H.S.; Lee, D.Y. Genome scale metabolic models and analysis for evaluating probiotic potentials. Biochem. Soc. Trans. 2020, 48, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Shih, W.; Chai, S. Data-driven vs. hypothesis-driven research: Making sense of big data. Acad. Manag. J. 2016, 2016, 14843. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Xu, Z.; Feng, E. Parameter identification model with the control term in batch anaerobic fermentation. In Proceedings of the 2nd International Conference on Advanced Design and Manufacturing Engineering (ADME 2012), Taiyuan, China, 24–26 August 2012; pp. 1535–1540. [Google Scholar]
- Chen, L.; Liu, F. Recursive parameter identification for fermentation processes with the multiple model technique. Appl. Math. Model. 2012, 36, 2275–2285. [Google Scholar] [CrossRef]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef]
- Xu, R.Z.; Cao, J.S.; Wu, Y.; Wang, S.N.; Luo, J.Y.; Chen, X.; Fang, F. An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process. Water Res. 2020, 184, 116103. [Google Scholar] [CrossRef] [PubMed]
- de Vazelhes, W.; Carey, C.J.; Tang, Y.; Vauquier, N.; Bellet, A. Metric-learn: Metric learning algorithms in Python. J. Mach. Learn. Res. 2020, 1, 138–141. [Google Scholar]
- Wilkinson, D.J. Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 2009, 10, 122–133. [Google Scholar] [CrossRef]
- Fang, X.; Lloyd, C.J.; Palsson, B.O. Reconstructing organisms in silico: Genome-scale models and their emerging applications. Nat. Rev. Microbiol. 2020, 18, 731–743. [Google Scholar] [CrossRef]
- Zampieri, M.; Sekar, K.; Zamboni, N.; Sauer, U. Frontiers of high-throughput metabolomics. Curr. Opin. Chem. Biol. 2017, 36, 15–23. [Google Scholar] [CrossRef]
- Sabater, C.; Ruiz, L.; Margolles, A. A machine learning approach to study glycosidase activities from Bifidobacterium. Microorganisms. 2021, 9, 1034. [Google Scholar] [CrossRef]
- Bartell, J.A.; Blazier, A.S.; Yen, P.; Thøgersen, J.C.; Jelsbak, L.; Goldberg, J.B.; Papin, J.A. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat. Commun. 2017, 8, 14631. [Google Scholar] [CrossRef]
- Kumar, M.; Ji, B.; Babaei, P.; Das, P.; Lappa, D.; Ramakrishnan, G.; Fox, T.E.; Haque, R.; Petri, W.A.; Bäckhed, F.; et al. Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metab. Eng. 2018, 49, 128–142. [Google Scholar] [CrossRef]
- Lin, C.; Culver, J.; Weston, B.; Underhill, E.; Gorky, J.; Dhurjati, P. GutLogo: Agent-based modeling framework to investigate spatial and temporal dynamics in the gut microbiome. PLoS ONE 2018, 13, e0207072. [Google Scholar] [CrossRef]
- Shah, A.R.; Oehmen, C.S.; Webb-Robertson, B.J. SVM-HUSTLE—An iterative semi-supervised machine learning approach for pairwise protein remote homology detection. Bioinformatics 2008, 24, 783–790. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Rahman, P.K.S.M.; Angione, C. A hybrid flux balance analysis and machine learning pipeline elucidates metabolic adaptation in cyanobacteria. iScience 2020, 23, 101818. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Misra, B.B.; Langefeld, C.; Olivier, M.; Cox, L.A. Integrated omics: Tools, advances and future approaches. J. Mol. Endocrinol. 2019, 62, R21–R45. [Google Scholar] [CrossRef] [PubMed]
- Franzosa, E.A.; Morgan, X.C.; Segata, N.; Waldron, L.; Reyes, J.; Earl, A.M.; Giannoukos, G.; Boylan, M.R.; Ciulla, D.; Gevers, D.; et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl. Acad. Sci. USA 2014, 111, E2329–E2338. [Google Scholar] [CrossRef] [PubMed]
- Topçuoğlu, B.D.; Lesniak, N.A.; Ruffin, M.T.; Wiens, J.; Schloss, P.D. A framework for effective application of machine learning to microbiome-based classification problems. mBio 2020, 11, e00434-20. [Google Scholar] [CrossRef]
- Zhou, W.; Sailani, M.R.; Contrepois, K.; Zhou, Y.; Ahadi, S.; Leopold, S.R.; Zhang, M.J.; Rao, V.; Avina, M.; Mishra, T.; et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 2019, 569, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Eddy, J.A.; Price, N.D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 2012, 6, 153. [Google Scholar] [CrossRef]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized nutrition by prediction of glycemic responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef]
- Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.; Walter, J.; et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019, 25, 789–802.e5. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Castellanos, J.F.; Serrano-Villar, S.; Latorre, A.; Artacho, A.; Ferrús, M.L.; Madrid, N.; Vallejo, A.; Sainz, T.; Martínez-Botas, J.; Ferrando-Martínez, S.; et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol. 2015, 8, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Henson, M.A.; Hanly, T.J. Dynamic flux balance analysis for synthetic microbial communities. IET Syst. Biol. 2014, 8, 214–229. [Google Scholar] [CrossRef]
- Rieckmann, J.C.; Geiger, R.; Hornburg, D.; Wolf, T.; Kveler, K.; Jarrossay, D.; Sallusto, F.; Shen-Orr, S.S.; Lanzavecchia, A.; Mann, M.; et al. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat. Immunol. 2017, 18, 583–593. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Price, N.D. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks. Proc. Natl. Acad. Sci. USA 2010, 107, 17845–17850. [Google Scholar] [CrossRef]
- Moškon, M.; Režen, T. Context-Specific Genome-Scale Metabolic Modelling and Its Application to the Analysis of COVID-19 Metabolic Signatures. Metabolites 2023, 13, 126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pacheco, M.P.; Pfau, T.; Sauter, T. Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms. Front. Physiol. 2016, 6, 410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- E Lewis, N.; Hixson, K.K.; Conrad, T.M.; A Lerman, J.; Charusanti, P.; Polpitiya, A.D.; Adkins, J.N.; Schramm, G.; O Purvine, S.; Lopez-Ferrer, D.; et al. Omic data from evolved E. coli are consistent with computed optimal growth. Mol. Syst. Biol. 2010, 6, 390. [Google Scholar] [CrossRef]
- Nielsen, J.; Oliver, S. The next wave in metabolome analysis. Trends Biotechnol. 2005, 23, 544–546. [Google Scholar] [CrossRef]
- Zampieri, M.; Vijayakumar, S.; Yaneske, E.; Angione, C. Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput. Biol. 2019, 15, e1007084. [Google Scholar] [CrossRef]
- Ryu, J.Y.; Kim, H.U.; Lee, S.Y. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc. Natl. Acad. Sci. USA 2019, 116, 13996–14001. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, C.; Wagner, A.E. Impact of food-derived bioactive compounds on intestinal immunity. Biomolecules 2021, 11, 1901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yin, A.; Li, H.; Wang, R.; Wu, G.; Shen, J.; Zhang, M.; Wang, L.; Hou, Y.; Ouyang, H.; et al. Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine 2015, 2, 968–984. [Google Scholar] [CrossRef]
- Joseph, C.; Zafeiropoulos, H.; Bernaerts, K.; Faust, K. Predicting microbial interactions with approaches based on flux balance analysis: An evaluation. BMC Bioinform. 2024, 25, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Johns, N.I.; Blazejewski, T.; Gomes, A.L.; Wang, H.H. Principles for designing synthetic microbial communities. Curr. Opin. Microbiol. 2016, 31, 146–153. [Google Scholar] [CrossRef]
- Martinelli, F.; Heinken, A.; Henning, A.K.; Ulmer, M.A.; Hensen, T.; González, A.; Arnold, M.; Asthana, S.; Budde, K.; Engelman, C.D.; et al. Whole-Body Metabolic Modelling Reveals Microbiome and Genomic Interactions on Reduced Urine Formate Levels in Alzheimer’s Disease. Sci. Rep. 2024, 14, 6095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Nielsen, J.; Chen, Y. Personalized Gut Microbial Community Modeling by Leveraging Genome-Scale Metabolic Models and Metagenomics. Curr. Opin. Biotechnol. 2025, 91, 103248. [Google Scholar] [CrossRef] [PubMed]
- Alessi, D.S.; McCreery, C.V.; Zomorrodi, A.R. In Silico Dietary Interventions Using Whole-Body Metabolic Models Reveal Sex-Specific and Differential Dietary Risk Profiles for Metabolic Syndrome. Front. Physiol. 2025, 16, 1586750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Criterion | FBA (Flux Balance Analysis) | MFA (Metabolic Flux Analysis) | dFBA (Dynamic Flux Balance Analysis) |
---|---|---|---|
Model type | Static, stoichiometric. | Experimental, statistical. | Dynamic, kinetic. |
Use of experimental data | No (based on stoichiometry and constraints). | Yes (requires metabolite concentrations, 13C-labeling, etc.). | Partial (combines theoretical models with experimental data). |
Temporal resolution | Not considered. | Indirectly, via discrete time-point measurements. | Explicitly incorporated; models time-course dynamics. |
Applicability to GM strains | Limited, especially in “knockout” scenarios. | High, provided experimental data is available. | High, particularly when integrated with machine learning. |
Complexity level | Low to moderate. | Moderate. | High. |
Advantages | Rapid estimation of theoretical yield. Effective for pathway optimization. | Reflects actual cellular behavior. Suitable for industrial strain analysis. | Incorporates kinetics and dynamic behavior. Enables more realistic system-level predictions. |
Limitations | Ignores system dynamics. Limited accuracy under stress or mutation. | High data requirement. Complex interpretation. | Computationally intensive. Requires accurate parameterization and calibration. |
Typical applications | Theoretical optimization of biosynthetic pathways (e.g., biofuels, amino acids). | Fermentation condition optimization (e.g., β-lactamase, organic acids). | Dynamic system modeling (e.g., shikimic acid production, protein secretion). |
Representative studies | [103] | [105] | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baimakhanova, B.B.; Sadanov, A.K.; Ratnikova, I.A.; Baimakhanova, G.B.; Orasymbet, S.E.; Amitova, A.A.; Aitkaliyeva, G.S.; Kakimova, A.B. In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology. Fermentation 2025, 11, 458. https://doi.org/10.3390/fermentation11080458
Baimakhanova BB, Sadanov AK, Ratnikova IA, Baimakhanova GB, Orasymbet SE, Amitova AA, Aitkaliyeva GS, Kakimova AB. In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology. Fermentation. 2025; 11(8):458. https://doi.org/10.3390/fermentation11080458
Chicago/Turabian StyleBaimakhanova, Baiken B., Amankeldi K. Sadanov, Irina A. Ratnikova, Gul B. Baimakhanova, Saltanat E. Orasymbet, Aigul A. Amitova, Gulzat S. Aitkaliyeva, and Ardak B. Kakimova. 2025. "In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology" Fermentation 11, no. 8: 458. https://doi.org/10.3390/fermentation11080458
APA StyleBaimakhanova, B. B., Sadanov, A. K., Ratnikova, I. A., Baimakhanova, G. B., Orasymbet, S. E., Amitova, A. A., Aitkaliyeva, G. S., & Kakimova, A. B. (2025). In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology. Fermentation, 11(8), 458. https://doi.org/10.3390/fermentation11080458