Physicochemical Exploration of Cocoa Butter During Spontaneous Fermentation: A Comparative Study Across Three Latin American Countries
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Spontaneous Fermentation of Cocoa Beans and Sampling
2.3. Cocoa Bean Sampling
2.4. ATR FT-IR Spectra
2.5. Nuclear Magnetic Resonance (NMR) Spectra
2.5.1. Estimation of Iodine Value ()
2.5.2. Saponification Value ()
2.6. Lipidomic Profiling (GC/MS)
2.7. Crystallization and Melting Behavior
2.8. Isothermal Crystallization and Kinetic Modeling
2.9. Data Analysis
3. Results and Discussion
3.1. Cocoa Butter Lipidomics
3.2. Thermal Profile of Cocoa Butter (DSC)
3.3. Spectral Characterization and Multivariate Assessment Using ATR FT-IR
3.4. Characterization of Cocoa Butter by Nuclear Magnetic Resonance (NMR)
3.4.1. 1H NMR Spectra Acquired from Cocoa Butter of Three Varieties
3.4.2. Analysis of 13C NMR Spectra in Cocoa Butter
3.4.3. Iodine Value (IV) and Saponification Value (SV)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, C.-H.; Otani, C.; Hoshina, H. Characterization of Different Types of Crystallization from Cocoa Butter by Using Terahertz Spectroscopy. Appl. Sci. 2024, 14, 35. [Google Scholar] [CrossRef]
- Lanaro, M.; Desselle, M.R.; Woodruff, M.A. 3D Printing Chocolate: Properties of Formulations for Extrusion, Sintering, Binding and Ink Jetting. In Fundamentals of 3D Food Printing and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 151–173. ISBN 978-0-12-814564-7. [Google Scholar]
- Li, L.; Liu, G. Engineering Effect of Oleogels with Different Structuring Mechanisms on the Crystallization Behavior of Cocoa Butter. Food Chem. 2023, 422, 136292. [Google Scholar] [CrossRef]
- Achaw, O.-W.; Danso-Boateng, E. Cocoa Processing and Chocolate Manufacture. In Chemical and Process Industries: With Examples of Industries in Ghana; Achaw, O.-W., Danso-Boateng, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 267–292. ISBN 978-3-030-79139-1. [Google Scholar]
- Herrera-Rocha, F.; Cala, M.P.; León-Inga, A.M.; Aguirre Mejía, J.L.; Rodríguez-López, C.M.; Florez, S.L.; Chica, M.J.; Olarte, H.H.; Duitama, J.; González Barrios, A.F.; et al. Lipidomic Profiling of Bioactive Lipids during Spontaneous Fermentations of Fine-Flavor Cocoa. Food Chem. 2022, 397, 133845. [Google Scholar] [CrossRef] [PubMed]
- Golodnizky, D.; Bernardes, C.E.S.; Davidovich-Pinhas, M. Isotropic Liquid State of Cocoa Butter. Food Chem. 2024, 439, 138066. [Google Scholar] [CrossRef]
- Chang, Y.; Chan, L.Y.; Kong, F.; Zhang, G.; Peng, H. An Innovative Approach for Real-Time Authentication of Cocoa Butter Using a Combination of Rapid Evaporative Ionization Mass Spectrometry and Chemometrics. Food Control 2022, 133, 108617. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Dolatowska-Żebrowska, K.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Comparison of Thermal Characteristics and Fatty Acids Composition in Raw and Roasted Cocoa Beans from Peru (Criollo) and Ecuador (Forastero). Appl. Sci. 2021, 11, 2698. [Google Scholar] [CrossRef]
- Ramos, M.R.; García, V.A.; Borroni, V.; Candal, R.J.; Herrera, M.L. Crystallization and Polymorphic Behaviors of Cocoa Butter Alternatives: A Review. J. Am. Oil Chem. Soc. 2023, 100, 759–773. [Google Scholar] [CrossRef]
- Febrianto, N.A.; Wang, S.; Zhu, F. Chemical and Biological Properties of Cocoa Beans Affected by Processing: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 8403–8434. [Google Scholar] [CrossRef]
- Alvarez, M.D.; Cofrades, S.; Espert, M.; Sanz, T.; Salvador, A. Development of Chocolates with Improved Lipid Profile by Replacing Cocoa Butter with an Oleogel. Gels 2021, 7, 220. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.; Meng, Y. Characterization and Yield of Crude Cocoa Butter Extracted from Taiwanese Cocoa Beans under Different Fermentation Degree and Roasting Conditions. J. Food Nutr. Res. 2022, 10, 151–157. [Google Scholar] [CrossRef]
- Golodnizky, D.; Shmidov, Y.; Bitton, R.; Bernardes, C.E.S.; Davidovich-Pinhas, M. Isotropic Liquid State of Triacylglycerols. J. Mol. Liq. 2022, 353, 118703. [Google Scholar] [CrossRef]
- Loganathan, R.; Nagapan, G.; Teng, K.-T.; Voon, P.T.; Yap, S.Y.; Ng, Y.T.; Ng, T.K.W.; Choo, Y.M.; Ong, A.S.H.; Ong, S.H.; et al. Diets Enriched with Palm Olein, Cocoa Butter, and Extra Virgin Olive Oil Exhibited Similar Lipid Response: A Randomized Controlled Study in Young Healthy Adults. Nutr. Res. 2022, 105, 113–125. [Google Scholar] [CrossRef]
- Yucel, E.; Tirpanci Sivri, G.; Palabiyik, I.; Tasan, M. A Rheometer-Based Method to Determine the Crystal Types of Cocoa Butter in White Chocolate. Eur. Food Res. Technol. 2022, 248, 1635–1644. [Google Scholar] [CrossRef]
- Şekeroğlu, G.; Kaya, A. Effects of Shear and Cooling Rates on the Crystallization Behavior of Cocoa Butter. Harran Tarım Ve Gıda Bilim. Derg. 2021, 25, 120–130. [Google Scholar] [CrossRef]
- Ramel, P.R.; Campos, R.; Marangoni, A.G. Effects of Shear and Cooling Rate on the Crystallization Behavior and Structure of Cocoa Butter: Shear Applied During the Early Stages of Nucleation. Cryst. Growth Des. 2018, 18, 1002–1011. [Google Scholar] [CrossRef]
- Mokbul, M.; Cheow, Y.L.; Siow, L.F. Characterization of Cocoa Butter Replacer Developed from Agricultural Waste of Mango Kernel and Rice Bran. J. Food Process. Preserv. 2023, 2023, 9994657. [Google Scholar] [CrossRef]
- da Silva, T.L.T.; Grimaldi, R.; Gonçalves, L.A.G. Effect of Cocoa Butter Equivalent on Cocoa Butter Crystallization Behavior and on Dark Chocolate. Braz. J. Food Res. 2019, 10, 149. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Jin, J.; Jin, Q.; Akoh, C. Formation of Dark Chocolate Fats with Improved Heat Stability and Desirable Miscibility by Blending Cocoa Butter with Mango Kernel Fat Stearin and Hard Palm-Mid Fraction. LWT—Food Sci. Technol. 2022, 156, 113066. [Google Scholar] [CrossRef]
- Bergenholm, D.; Gossing, M.; Wei, Y.; Siewers, V.; Nielsen, J. Modulation of Saturation and Chain Length of Fatty Acids in Saccharomyces Cerevisiae for Production of Cocoa Butter-like Lipids. Biotechnol. Bioeng. 2018, 115, 932–942. [Google Scholar] [CrossRef]
- Bonilha, R.M. Polymorphic Forms of Chocolate: Application of Solid-State Characterization in the Food Industry. Braz. J. Anal. Chem. 2021, 8, 11–13. [Google Scholar] [CrossRef]
- Ghazani, S.M.; Marangoni, A.G. Facile Lipase-Catalyzed Synthesis of a Chocolate Fat Mimetic. Sci. Rep. 2018, 8, 15271. [Google Scholar] [CrossRef]
- Wille, R.L.; Lutton, E.S. Polymorphism of Cocoa Butter. J. Americ Oil Chem. Soc. 1966, 43, 491–496. [Google Scholar] [CrossRef]
- Takeguchi, S.; Sato, A.; Hondoh, H.; Aoki, M.; Uehara, H.; Ueno, S. Multiple β Forms of Saturated Monoacid Triacylglycerol Crystals. Molecules 2020, 25, 5086. [Google Scholar] [CrossRef]
- Sonwai, S.; Ornla-Ied, P.; Aneknun, T. Lauric Fat Cocoa Butter Replacer from Krabok (Irvingia malayana) Seed Fat and Coconut Oil. J. Oleo Sci. 2015, 64, 357–365. [Google Scholar] [CrossRef]
- Müller, M.; Careglio, E. Influence of Free Fatty Acids as Additives on the Crystallization Kinetics of Cocoa Butter. J. Food Res. 2018, 7, 86. [Google Scholar] [CrossRef]
- Servent, A.; Boulanger, R.; Davrieux, F.; Pinot, M.-N.; Tardan, E.; Forestier-Chiron, N.; Hue, C. Assessment of Cocoa (Theobroma cacao L.) Butter Content and Composition throughout Fermentations. Food Res. Int. 2018, 107, 675–682. [Google Scholar] [CrossRef]
- Peña-Correa, R.F.; Mogol, B.A.; Fogliano, V. Fluidized Bed Roasting Modifying the Microstructure of Cocoa Nibs and Improving Cocoa Butter Quality. J. Am. Oil Chem. Soc. 2023, 100, 815–827. [Google Scholar] [CrossRef]
- Khairy, H.L.; Saadoon, A.F.; Zzaman, W.; Yang, T.A.; Mat Easa, A. Identification of Flavor Compounds in Rambutan Seed Fat and Its Mixture with Cocoa Butter Determined by SPME-GCMS. J. King Saud. Univ. Sci. 2018, 30, 316–323. [Google Scholar] [CrossRef]
- Castro-Alayo, E.M.; Torrejón-Valqui, L.; Medina-Mendoza, M.; Cayo-Colca, I.S.; Cárdenas-Toro, F.P. Kinetics Crystallization and Polymorphism of Cocoa Butter throughout the Spontaneous Fermentation Process. Foods 2022, 11, 1769. [Google Scholar] [CrossRef]
- de Souza, P.A.; Moreira, L.F.; Sarmento, D.H.A.; da Costa, F.B. Cacao—Theobroma Cacao. In Exotic Fruits; Rodrigues, S., de Oliveira Silva, E., de Brito, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 69–76. ISBN 978-0-12-803138-4. [Google Scholar]
- Rocha, S.O.d.S.B.d.; Vilhena, M.d.P.S.P.; de Souza, J.N.S.; Balcázar-Zumaeta, C.R.; Castro-Alayo, E.M.; Pajuelo-Muñoz, A.J.; da Silva, B.S.F.; Trindade, M.J.d.S.; Chagas-Junior, G.C.A.; Ferreira, N.R. Can Different Fermentation Boxes Improve the Nutritional Composition and the Antioxidant Activity of Fermented and Dried Floodplain Cocoa Beans in the Brazilian Amazon? Foods. 2025, 14, 1391. [Google Scholar] [CrossRef]
- Balcázar-Zumaeta, C.R.; Castro-Alayo, E.M.; Cayo-Colca, I.S.; Idrogo-Vásquez, G.; Muñoz-Astecker, L.D. Metabolomics during the Spontaneous Fermentation in Cocoa (Theobroma cacao L.): An Exploraty Review. Food Res. Int. 2023, 163, 112190. [Google Scholar] [CrossRef]
- Chagas Junior, G.C.A.; Ferreira, N.R.; Gloria, M.B.A.; Martins, L.H.D.S.; Lopes, A.S. Chemical Implications and Time Reduction of On-Farm Cocoa Fermentation by Saccharomyces cerevisiae and Pichia kudriavzevii. Food Chem. 2021, 338, 127834. [Google Scholar] [CrossRef]
- Balcázar-Zumaeta, C.R.; Pajuelo-Muñoz, A.J.; Trigoso-Rojas, D.F.; Iliquin-Chavez, A.F.; Fernández-Romero, E.; Yoplac, I.; Muñoz-Astecker, L.D.; Rodríguez-Hamamura, N.; Maza Mejía, I.M.; Cayo-Colca, I.S.; et al. Reduction in the Cocoa Spontaneous and Starter Culture Fermentation Time Based on the Antioxidant Profile Characterization. Foods 2023, 12, 3291. [Google Scholar] [CrossRef]
- Jiménez-Rodríguez, D.J.; García-Alamilla, P.; Márquez-Rocha, F.J.; Vázquez-Medina, R.; Carrera-Lanestosa, A.; González-Alejo, F.A.; Sánchez-Ramos, C.A.; Ruiz-Santiago, F.L. Temperature Effect of Cocoa (Theobroma cacao L.) Drying on Energy Consumption, Bioactive Composition and Vibrational Changes. Processes 2024, 12, 2523. [Google Scholar] [CrossRef]
- Balcázar-Zumaeta, C.R.; Fernández-Romero, E.; Lopes, A.S.; Ferreira, N.R.; Chagas-Júnior, G.C.A.; Yoplac, I.; López-Trigoso, H.A.; Tuesta-Occ, M.L.; Maldonado-Ramirez, I.; Maicelo-Quintana, J.L.; et al. Amino Acid Profile Behavior during the Fermentation of Criollo Cocoa Beans. Food Chem. X 2024, 22, 101486. [Google Scholar] [CrossRef]
- Abbas, S.; Shahbaz, M.; Ahmad, S.; Imran, M.; Naeem, H.; Hussain, M.; Mujtaba, A.; Mubeen, K.; Afzal, M.I.; Akram, Q.; et al. Utilization of Mango Seed Oil as a Cocoa Butter Replacer for the Development of Innovative Chocolate. Int. J. Food Prop. 2023, 26, 3226–3240. [Google Scholar] [CrossRef]
- da Silva, B.S.F.; Ferreira, N.R.; Alamar, P.D.; de Melo e Silva, T.; Pinheiro, W.B.D.S.; dos Santos, L.N.; Alves, C.N. FT-MIR-ATR Associated with Chemometrics Methods: A Preliminary Analysis of Deterioration State of Brazil Nut Oil. Molecules 2023, 28, 6878. [Google Scholar] [CrossRef]
- Amorim, T.L.; Duarte, L.M.; de Oliveira, M.A.L.; de la Fuente, M.A.; Gómez-Cortés, P. Prediction of Fatty Acids in Chocolates with an Emphasis on C18:1 Trans Fatty Acid Positional Isomers Using ATR-FTIR Associated with Multivariate Calibration. J. Agric. Food Chem. 2020, 68, 10893–10901. [Google Scholar] [CrossRef]
- Colella, M.F.; Marino, N.; Oliviero Rossi, C.; Seta, L.; Caputo, P.; De Luca, G. Triacylglycerol Composition and Chemical-Physical Properties of Cocoa Butter and Its Derivatives: NMR, DSC, X-Ray, Rheological Investigation. Int. J. Mol. Sci. 2023, 24, 2090. [Google Scholar] [CrossRef]
- Pinheiro, W.B.S.; Pinheiro Neto, J.R.; Botelho, A.S.; Dos Santos, K.I.P.; Da Silva, G.A.; Muribeca, A.J.B.; Pamplona, S.G.S.R.; Fonseca, S.S.S.; Silva, M.N.; Arruda, M.S.P. The Use of Bagassa guianensis Aubl. Forestry Waste as an Alternative for Obtaining Bioproducts and Bioactive Compounds. Arab. J. Chem. 2022, 15, 103813. [Google Scholar] [CrossRef]
- Silva Da Costa, R.; Pinheiro, W.B.D.S.; Arruda, M.S.P.; Costa, C.E.F.; Converti, A.; Ribeiro Costa, R.M.; Silva Júnior, J.O.C. Thermoanalytical and Phytochemical Study of the Cupuassu (Theobroma grandiflorum Schum.) Seed by-Product in Different Processing Stages. J. Therm. Anal. Calorim. 2022, 147, 275–284. [Google Scholar] [CrossRef]
- Tomazi, R.; Figueira, Â.C.; Ferreira, A.M.; Ferreira, D.Q.; de Souza, G.C.; de Souza Pinheiro, W.B.; Pinheiro Neto, J.R.; da Silva, G.A.; de Lima, H.B.; da Silva Hage-Melim, L.I.; et al. Hypoglycemic Activity of Aqueous Extract of Latex from Hancornia speciosa Gomes: A Study in Zebrafish and In Silico. Pharmaceuticals 2021, 14, 856. [Google Scholar] [CrossRef]
- Kumar, R.; Bansal, V.; Patel, M.B.; Sarpal, A.S. 1H Nuclear Magnetic Resonance (NMR) Determination of the Iodine Value in Biodiesel Produced from Algal and Vegetable Oils. Energy Fuels 2012, 26, 7005–7008. [Google Scholar] [CrossRef]
- Reda, S.Y.; Carneiro, P.I.B. Parâmetros físico-químicos do óleo de milho in natura e sob aquecimento calculado pelo programa Proteus RMN H1. Publ. UEPG: Ciências Exatas E Da Terra Agrárias E Eng. 2006, 12, 31–36. [Google Scholar] [CrossRef]
- Rivera-Barrera, D.; Rueda-Chacón, H.; López, L.J.; Vivas-Báez, J.C.; Molina-Velasco, D. 1H NMR Spectra Modeling for Predicting the Acid, Saponification, and Iodine Values of Bio-Waxes Derived from Vegetable Oils. Food Chem. 2025, 483, 143901. [Google Scholar] [CrossRef]
- Nascimento, G.O.; Souza, D.P.; Santos, A.S.; Batista, J.F.; Rathinasabapathi, B.; Gagliardi, P.R.; Gonçalves, J.F.C. Lipidomic Profiles from Seed Oil of Carapa guianensis Aubl. and Carapa vasquezii Kenfack and Implications for the Control of Phytopathogenic Fungi. Ind. Crops Prod. 2019, 129, 67–73. [Google Scholar] [CrossRef]
- Barra, I.M.M.; Silva Dos Reis, A.; Miyagawa, H.K.; Berkov, S.; Santos, A.S. Systematic Investigation and Lipidomic Profiles Composition Characterization in Leaves of Five Amaryllidaceae Species by HRGC-MS Technique. South. Afr. J. Bot. 2021, 142, 25–33. [Google Scholar] [CrossRef]
- Castro-Alayo, E.M.; Balcázar-Zumaeta, C.R.; Torrejón-Valqui, L.; Medina-Mendoza, M.; Cayo-Colca, I.S.; Cárdenas-Toro, F.P. Effect of Tempering and Cocoa Butter Equivalents on Crystallization Kinetics, Polymorphism, Melting, and Physical Properties of Dark Chocolates. LWT 2023, 173, 114402. [Google Scholar] [CrossRef]
- Fernandes, V.A.; Müller, A.J.; Sandoval, A.J. Thermal, Structural and Rheological Characteristics of Dark Chocolate with Different Compositions. J. Food Eng. 2013, 116, 97–108. [Google Scholar] [CrossRef]
- Rashid, N.; Chiew, C.; Chong, C.; Omar, Z. Crystallisation Kinetics of Palm Stearin, Palm Kernel Olein and Their Blends. LWT—Food Sci. Technol. 2012, 46, 571–573. [Google Scholar] [CrossRef]
- Alvarez, M.D.; Cofrades, S.; Espert, M.; Salvador, A.; Sanz, T. Thermorheological Characterization of Healthier Reduced-Fat Cocoa Butter Formulated by Substitution with a Hydroxypropyl Methylcellulose (HPMC)-Based Oleogel. Foods 2021, 10, 793. [Google Scholar] [CrossRef]
- da Silva Santos, V.; Badan Ribeiro, A.P.; Andrade Santana, M.H. Solid Lipid Nanoparticles as Carriers for Lipophilic Compounds for Applications in Foods. Food Res. Int. 2019, 122, 610–626. [Google Scholar] [CrossRef]
- Floeter, E.; Haeupler, M.; Sato, K. Molecular Interactions and Mixing Phase Behavior of Lipid Crystals. In Crystallization of Lipids; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 61–104. ISBN 978-1-118-59388-2. [Google Scholar]
- Suri, T.; Basu, S. Heat Resistant Chocolate Development for Subtropical and Tropical Climates: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5603–5622. [Google Scholar] [CrossRef]
- Barišić, V.; Kopjar, M.; Jozinović, A.; Flanjak, I.; Ačkar, Đ.; Miličević, B.; Šubarić, D.; Jokić, S.; Babić, J. The Chemistry behind Chocolate Production. Molecules 2019, 24, 3163. [Google Scholar] [CrossRef]
- Calvo, A.M.; Botina, B.L.; García, M.C.; Cardona, W.A.; Montenegro, A.C.; Criollo, J. Dynamics of Cocoa Fermentation and Its Effect on Quality. Sci. Rep. 2021, 11, 16746. [Google Scholar] [CrossRef]
- Lapčík, L.; Lapčíkova, B.; Gautam, S.; Vašina, M.; Valenta, T.; Řepka, D.; Čépe, K.; Rudolf, O. Acoustic and Mechanical Testing of Commercial Cocoa Powders. Int. J. Food Prop. 2022, 25, 2184–2197. [Google Scholar] [CrossRef]
- Fibrianto, K.; Azhar, L.O.M.F.; Widyotomo, S.; Harijono, H. Effect of Cocoa Bean Origin and Conching Time on the Physicochemical and Microstructural Properties of Indonesian Dark Chocolate. Braz. J. Food Technol. 2021, 24, e2019249. [Google Scholar] [CrossRef]
- Rostami, O.; Saberi, F.; Mohammadi, A.; Kamalirousta, L.; Rosell, C.M.; Gasparre, N. Modelling Thermal Characteristics of Cocoa Butter Using a Feed-Forward Artificial Neural Network Based on Multilayer Perceptron. Int. J. Food Sci. Technol. 2024, 59, 8520–8528. [Google Scholar] [CrossRef]
- Silveira, P.T.d.S.; Rodrigues, E.P.; Ribeiro, A.P.B.; Braga, A.V.U.; Martins, M.O.P.; Efraim, P. Composition and Physicochemical Properties of Cocoa Butter and Cocoa Liquor from Two Varieties Obtained at Different Harvesting Times. J. Food Compos. Anal. 2025, 139, 107122. [Google Scholar] [CrossRef]
- Podchong, P.; Aumpai, K.; Sonwai, S.; Rousseau, D. Rice Bran Wax Effects on Cocoa Butter Crystallisation and Tempering. Food Chem. 2022, 397, 133635. [Google Scholar] [CrossRef]
- Iswari, K.; Atman; Marlina, L.; Riska; Antarlina, S.S.; Arief, R.W.; Waryat; Suwarda, R.; Sjafrina, N.; Yani, A.; et al. Steaming Maintains Fatty Acids, Antioxidants, and Proximate Content in Snack Bar Products from Cocoa Beans. Sci. World J. 2024, 2024, 1406858. [Google Scholar] [CrossRef]
- Sabahannur, S.; Alimuddin, S. Identification of Fatty Acids in Virgin Coconut Oil (VCO), Cocoa Beans, Crude Palm Oil (CPO), and Palm Kernel Beans Using Gas Chromatography. IOP Conf. Ser. Earth Environ. Sci. 2022, 1083, 012036. [Google Scholar] [CrossRef]
- Viriato, R.L.S.; Queirós, M.d.S.; Ribeiro, A.P.B.; Gigante, M.L. Potential of Milk Fat to Structure Semisolid Lipidic Systems: A Review. J. Food Sci. 2019, 84, 2024–2030. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Maiti, M.K. Lipid Production by Oleaginous Yeasts. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 116, pp. 1–98. ISBN 978-0-12-824594-1. [Google Scholar]
- Venn-Watson, S.; Lumpkin, R.; Dennis, E.A. Efficacy of Dietary Odd-Chain Saturated Fatty Acid Pentadecanoic Acid Parallels Broad Associated Health Benefits in Humans: Could It Be Essential? Sci. Rep. 2020, 10, 8161. [Google Scholar] [CrossRef]
- Cooney, J.; Hilton, I.; Marsh, M.; Jones, A.; Martini, S. Crystallization Behavior of Milk Fat, Palm Oil, Palm Kernel Oil, and Cocoa Butter with and without the Addition of Cannabidiol. J. Am. Oil Chem. Soc. 2023, 100, 225–236. [Google Scholar] [CrossRef]
- Figueira, A.C.; Luccas, V. Physicochemical Characterization of National and Commercial Cocoa Butter Used in Brazil to Make Chocolate. Braz. J. Food Technol. 2022, 25, e2022033. [Google Scholar] [CrossRef]
- Joshi, B.L.; Zielbauer, B.I.; Vilgis, T.A. Comparative Study on Mixing Behavior of Binary Mixtures of Cocoa Butter/Tristearin (CB/TS) and Cocoa Butter/Coconut Oil (CB/CO). Foods 2020, 9, 327. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Rabiej, D.; Pawłowicz, R. Comparison of the Crystallization Behaviors of Different Types of Cocoa Butters and Chocolates. J. Food Process. Preserv. 2017, 41, e13154. [Google Scholar] [CrossRef]
- Ray, J.; Smith, K.W.; Bhaggan, K.; Stapley, A.G.F. Crystallization and Polymorphism of Cocoa Butter Equivalents from Blends of Palm Mid Fraction and Hard Stearins Produced by Enzymatic Acidolysis of High Oleic Sunflower Oil. Eur. J. Lipid Sci. Technol. 2022, 124, 2100228. [Google Scholar] [CrossRef]
- Liu, W.; Liu, D.; Yao, Y.; Li, C. Effects of Low-Melting-Point Fractions of Cocoa Butter on Rice Bran Wax-Corn Oil Mixtures: Thermal, Crystallization and Rheological Properties. J. Oleo Sci. 2021, 70, 491–502. [Google Scholar] [CrossRef]
- Norazlina, M.R.; Hasmadi, M.; Jahurul, M.H.A. Production of Cocoa Butter Alternatives from Blending Bambangan Kernel Fat Stearin and Palm Stearin for Potential Applications. J. Food Meas. Charact. 2024, 18, 6900–6911. [Google Scholar] [CrossRef]
- Carta, S.; Tsiplakou, E.; Mitsiopoulou, C.; Pulina, G.; Nudda, A. Cocoa Husks Fed to Lactating Dairy Ewes Affect Milk Fatty Acid Profile and Oxidative Status of Blood and Milk. Small Rumin. Res. 2022, 207, 106599. [Google Scholar] [CrossRef]
- Zheng, X.; Xie, J.; Chen, W.; Liu, M.; Xie, L. Boosting Anaerobic Digestion of Long Chain Fatty Acid with Microbial Electrolysis Cell Combining Metal Organic Framework as Cathode: Biofilm Construction and Metabolic Pathways. Bioresour. Technol. 2024, 395, 130284. [Google Scholar] [CrossRef]
- Chire-Fajardo, G.C.; Ureña-Peralta, M.O.; Hartel, R.W. Fatty Acid Profile and Solid Fat Content of Peruvian Cacao for Optimal Production of Trade Chocolate. Rev. Chil. Nutr. 2020, 47, 50–56. [Google Scholar] [CrossRef]
- Bayés-García, L.; Yoshikawa, S.; Aguilar-Jiménez, M.; Ishibashi, C.; Ueno, S.; Calvet, T. Heterogeneous Nucleation Effects of Talc Particles on Polymorphic Crystallization of Cocoa Butter. Cryst. Growth Des. 2022, 22, 213–227. [Google Scholar] [CrossRef]
- Aumpai, K.; Tan, C.P.; Huang, Q.; Sonwai, S. Production of Cocoa Butter Equivalent from Blending of Illipé Butter and Palm Mid-Fraction. Food Chem. 2022, 384, 132535. [Google Scholar] [CrossRef]
- Nelis, V.; Declerck, A.; De Neve, L.; Moens, K.; Dewettinck, K.; Van der Meeren, P. Fat Crystallization and Melting in W/O/W Double Emulsions: Comparison between Bulk and Emulsified State. Colloids Surf. A Physicochem. Eng. Asp. 2019, 566, 196–206. [Google Scholar] [CrossRef]
- Pirouzian, H.R.; Konar, N.; Palabiyik, I.; Oba, S.; Toker, O.S. Pre-Crystallization Process in Chocolate: Mechanism, Importance and Novel Aspects. Food Chem. 2020, 321, 126718. [Google Scholar] [CrossRef]
- Bayés-García, L.; Aguilar-Jiménez, M.; Calvet, T.; Koyano, T.; Sato, K. Crystallization and Melting Behavior of Cocoa Butter in Lipid Bodies of Fresh Cacao Beans. Cryst. Growth Des. 2019, 19, 4127–4137. [Google Scholar] [CrossRef]
- dos Santos, C.A.; Carpenter, C.S.; Arid, J.D.; da Silva, Á.Á.; Cardoso, L.P.; Ribeiro, A.P.B.; Efraim, P. Production and Characterization of Promising β-Stable Seed Crystals to Modulate the Crystallization of Fat-Based Industrial Products. Food Res. Int. 2020, 130, 108900. [Google Scholar] [CrossRef]
- Golodnizky, D.; Davidovich-Pinhas, M. New Insights into the Thermodynamics and Kinetics of Triacylglycerols Crystallization. Innov. Food Sci. Emerg. Technol. 2022, 81, 103115. [Google Scholar] [CrossRef]
- Declerck, A.; Nelis, V.; Danthine, S.; Dewettinck, K.; Van der Meeren, P. Characterisation of Fat Crystal Polymorphism in Cocoa Butter by Time-Domain NMR and DSC Deconvolution. Foods 2021, 10, 520. [Google Scholar] [CrossRef]
- Hendrik, N.; Marchesini, F.; Van de Walle, D.; Dewettinck, K. Chocolate Tempering in a Rheometer: Monitoring Rheological Properties During and After Crystallization of Cocoa Butter. Food Anal. Methods 2023, 16, 1555–1570. [Google Scholar] [CrossRef]
- Simoes, S.; Lelaj, E.; Rousseau, D. The Presence of Crystalline Sugar Limits the Influence of Emulsifiers on Cocoa Butter Crystallization. Food Chem. 2021, 346, 128848. [Google Scholar] [CrossRef]
- Gomes, M.; Rodrigues, K.R.R.d.; Cardoso, L.P.; Badan, A.P. Effect of Stabilization and Fatty Acids Chain Length on the Crystallization Behavior of Interesterified Blends during Storage. Food Res. Int. 2022, 157, 111208. [Google Scholar] [CrossRef]
- Lorenzo, A.T.; Arnal, M.L.; Albuerne, J.; Müller, A.J. DSC Isothermal Polymer Crystallization Kinetics Measurements and the Use of the Avrami Equation to Fit the Data: Guidelines to Avoid Common Problems. Polym. Test. 2007, 26, 222–231. [Google Scholar] [CrossRef]
- Zhao, H.; James, B.J. Fat Bloom Formation on Model Chocolate Stored under Steady and Cycling Temperatures. J. Food Eng. 2019, 249, 9–14. [Google Scholar] [CrossRef]
- Basu, S. Crystallization Kinetics and Applications to Food and Biopolymers. In Glass Transition and Phase Transitions in Food and Biological Materials; Ahmed, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 183–206. ISBN 978-1-118-93568-2. [Google Scholar]
- Ghazani, S.M.; Marangoni, A.G. Molecular Origins of Polymorphism in Cocoa Butter. Annu. Rev. Food Sci. Technol. 2021, 12, 567–590. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; da Silva, T.L.T.; Martini, S.; Joyner, H.S. Numerical Modeling of Wear Behavior of Solid Fats. J. Food Eng. 2019, 260, 12–21. [Google Scholar] [CrossRef]
- Caballero-Tovar, A.F.; Sandoval-Aldana, A.P.; Fernández-Quintero, A. Effect of the Incorporation of Sugars and Citric Acid in Low Cocoa Butter Emulsions. J. Food Eng. 2024, 360, 111722. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. Fourier Transform Infrared (FTIR) Spectroscopy. In Membrane Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–29. ISBN 978-0-444-63776-5. [Google Scholar]
- Pirutin, S.K.; Jia, S.; Yusipovich, A.I.; Shank, M.A.; Parshina, E.Y.; Rubin, A.B. Vibrational Spectroscopy as a Tool for Bioanalytical and Biomonitoring Studies. Int. J. Mol. Sci. 2023, 24, 6947. [Google Scholar] [CrossRef]
- Kunbhar, S.; Talpur, F.N.; Mahesar, S.A.; Afridi, H.I.; Fareed, G.; Razzaque, N.; Nisa, M. Application of ATR-FTIR and Chemometrics for Rapid Lard Adulteration Assessment in Confectionery. Vib. Spectrosc. 2025, 136, 103762. [Google Scholar] [CrossRef]
- Contreras-Gallegos, E.; Cruz-San Martin, V.; Domínguez-Pacheco, F.A.; Hernández-Aguilar, C.; Salazar-Montoya, J.A.; Ramos-Ramírez, E.G.; Cruz-Orea, A. Study of the Physicochemical and Thermal Properties of Butter and Clarified Butter Blended with Different Vegetable Oils. Therm. Adv. 2025, 2, 100013. [Google Scholar] [CrossRef]
- Maurer, N.E.; Rodriguez-Saona, L. Rapid Assessment of Quality Parameters in Cocoa Butter Using ATR-MIR Spectroscopy and Multivariate Analysis. J. Am. Oil Chem. Soc. 2013, 90, 475–481. [Google Scholar] [CrossRef]
- Antony, B.; Sharma, S.; Mehta, B.M.; Ratnam, K.; Aparnathi, K.D. Study on FT-MIR Spectra of Ghee (Anhydrous Milk Fat). Br. Food J. 2017, 119, 181–189. [Google Scholar] [CrossRef]
- Deus, V.L.; Resende, L.M.; Bispo, E.S.; Franca, A.S.; Gloria, M.B.A. FTIR and PLS-Regression in the Evaluation of Bioactive Amines, Total Phenolic Compounds and Antioxidant Potential of Dark Chocolates. Food Chem. 2021, 357, 129754. [Google Scholar] [CrossRef] [PubMed]
- Kędzierska-Matysek, M.; Teter, A.; Florek, M.; Matwijczuk, A.; Niemczynowicz, A.; Matwijczuk, A.; Czernel, G.; Skałecki, P.; Gładyszewska, B. Use of Physicochemical, FTIR and Chemometric Analysis for Quality Assessment of Selected Monofloral Honeys. J. Apic. Res. 2023, 62, 863–872. [Google Scholar] [CrossRef]
- Candoğan, K.; Altuntas, E.G.; İğci, N. Authentication and Quality Assessment of Meat Products by Fourier-Transform Infrared (FTIR) Spectroscopy. Food Eng. Rev. 2021, 13, 66–91. [Google Scholar] [CrossRef]
- Ariza-Ortega, J.A.; Ramos-Cassellis, M.E.; Vargas Bello Pérez, E.; Betanzos Cabrera, G.; Molina Trinidad, E.M.; Alanís García, E.; Suárez Diéguez, T.; Díaz-Reyes, J. Lipid Authentication of Butter and Margarine Using Fourier Transform Infrared Spectroscopy (FTIR). Meas. Food 2023, 11, 100095. [Google Scholar] [CrossRef]
- Bresson, S.; Lecuelle, A.; Bougrioua, F.; El Hadri, M.; Baeten, V.; Courty, M.; Pilard, S.; Rigaud, S.; Faivre, V. Comparative Structural and Vibrational Investigations between Cocoa Butter (CB) and Cocoa Butter Equivalent (CBE) by ESI/MALDI-HRMS, XRD, DSC, MIR and Raman Spectroscopy. Food Chem. 2021, 363, 130319. [Google Scholar] [CrossRef]
- Hadri, M.E.; Bresson, S.; Lecuelle, A.; Bougrioua, F.; Baeten, V.; Nguyen, V.H.; Faivre, V.; Courty, M. Structural and Vibrational Investigations of Mixtures of Cocoa Butter (CB), Cocoa Butter Equivalent (CBE) and Anhydrous Milk Fat (AMF) to Understand Fat Bloom Process. Appl. Sci. 2022, 12, 6594. [Google Scholar] [CrossRef]
- Enders, A.A.; North, N.M.; Fensore, C.M.; Velez-Alvarez, J.; Allen, H.C. Functional Group Identification for FTIR Spectra Using Image-Based Machine Learning Models. Anal. Chem. 2021, 93, 9711–9718. [Google Scholar] [CrossRef] [PubMed]
- Sonvanshi, V.; Gandhi, K.; Ramani, A.; Sharma, R.; Seth, R. ATR-FTIR Coupled with Chemometric Techniques to Detect Vanaspati Ghee (Hydrogenated Vegetable Oil) Adulteration in Milk Fat. Results Chem. 2024, 7, 101343. [Google Scholar] [CrossRef]
- Akram, U.; Sahar, A.; Sameen, A.; Muhammad, N.; Ahmad, M.H.; Khan, M.I.; Usman, M.; Rahman, H.U. ur Use of Fourier Transform Infrared Spectroscopy and Multi-Variant Analysis for Detection of Butter Adulteration with Vegetable Oil. Int. J. Food Prop. 2023, 26, 167–178. [Google Scholar] [CrossRef]
- Ioannidi, E.; Aarøe, E.; Balling Engelsen, S.; Risbo, J.; van den Berg, F.W.J. Using ATR-FT-IR Spectroscopy and Multivariate Curve Resolution to Quantify Variations in the Crystal Structure of Tempered Chocolate. Food Biophys. 2022, 18, 148–160. [Google Scholar] [CrossRef]
- Goodacre, R.; Anklam, E. Fourier Transform Infrared Spectroscopy and Chemometrics as a Tool for the Rapid Detection of Other Vegetable Fats Mixed in Cocoa Butter. J. Am. Oil Chem. Soc. 2001, 78, 993–1000. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Sánchez Del Pulgar, J.; Gabrielli, P.; Lombardi-Boccia, G. Determination of Fatty Acid Content in Meat and Meat Products: The FTIR-ATR Approach. Food Chem. 2018, 267, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- García-Gutiérrez, N.; Mellado-Carretero, J.; Bengoa, C.; Salvador, A.; Sanz, T.; Wang, J.; Ferrando, M.; Güell, C.; Lamo-Castellví, S. de ATR-FTIR Spectroscopy Combined with Multivariate Analysis Successfully Discriminates Raw Doughs and Baked 3D-Printed Snacks Enriched with Edible Insect Powder. Foods 2021, 10, 1806. [Google Scholar] [CrossRef]
- Bölük, E.; Akdeniz, E.; Gunes, R.; Palabiyik, I.; Konar, N.; Toker, O.S. Determination of the Process Effect on Cocoa Butter Crystallization by Rheometer: Kinetic Modeling by Gompertz Equation. J. Food Sci. 2024, 89, 2867–2878. [Google Scholar] [CrossRef]
- Jin, J.; Jin, Q.; Akoh, C.C.; Wang, X. StOSt-Rich Fats in the Manufacture of Heat-Stable Chocolates and Their Potential Impacts on Fat Bloom Behaviors. Trends Food Sci. Technol. 2021, 118, 418–430. [Google Scholar] [CrossRef]
- Norazlina, M.R.; Jahurul, M.H.A.; Hasmadi, M.; Mansoor, A.H.; Norliza, J.; Patricia, M.; Ramlah George, M.R.; Noorakmar, A.W.; Lee, J.S.; Fan, H.Y. Trends in Blending Vegetable Fats and Oils for Cocoa Butter Alternative Application: A Review. Trends Food Sci. Technol. 2021, 116, 102–114. [Google Scholar] [CrossRef]
- Guillén, M.D.; Ruiz, A. 1H Nuclear Magnetic Resonance as a Fast Tool for Determining the Composition of Acyl Chains in Acylglycerol Mixtures. Euro J. Lipid Sci. Tech. 2003, 105, 502–507. [Google Scholar] [CrossRef]
- Siudem, P.; Zielińska, A.; Paradowska, K. Application of 1H NMR in the Study of Fatty Acids Composition of Vegetable Oils. J. Pharm. Biomed. Anal. 2022, 212, 114658. [Google Scholar] [CrossRef]
- Colella, M.F.; Salvino, R.A.; Gaglianò, M.; Litrenta, F.; Oliviero Rossi, C.; Le Pera, A.; De Luca, G. NMR Spectroscopy Applied to the Metabolic Analysis of Natural Extracts of Cannabis Sativa. Molecules 2022, 27, 3509. [Google Scholar] [CrossRef]
- Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.I.; Tsiafoulis, C.G.; Gerothanassis, I.P. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017, 22, 1663. [Google Scholar] [CrossRef]
- Ribeiro, A.P.B.; Masuchi, M.H.; Miyasaki, E.K.; Domingues, M.A.F.; Stroppa, V.L.Z.; de Oliveira, G.M.; Kieckbusch, T.G. Crystallization Modifiers in Lipid Systems. J. Food Sci. Technol. 2015, 52, 3925–3946. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Watanabe, S.; Yamamoto, Y.; Kaneko, F. Binary Phase Behavior of 1,3-Distearoyl-2-Oleoyl-Sn-Glycerol (SOS) and Trilaurin (LLL). Molecules 2020, 25, 5313. [Google Scholar] [CrossRef] [PubMed]
- Darmawan, M.A.; Ramadhan, M.Y.A.; Curie, C.A.; Sahlan, M.; Utami, T.S.; Abd-Aziz, S.; Cognet, P.; Aroua, M.K.; Gozan, M. Physicochemical and Oxidative Stability of Indigenous Traditional Tengkawang Butter as Potential Cocoa Butter Equivalent (CBE). Int. J. Food Prop. 2022, 25, 780–791. [Google Scholar] [CrossRef]
- Duodu, K.; Ashong, G.W.; Ndego, A.; Kwaansa-Ansah, E.E. Investigation on the Improvement of Shea Butter Yield and Quality through Enhanced Pre-Treatment Methods: An Analytical Study on Physicochemical Properties. Food Chem. Adv. 2024, 5, 100840. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Norulaini, N.A.N.; Sahena, F.; Jinap, S.; Azmir, J.; Sharif, K.M.; Mohd Omar, A.K. Cocoa Butter Fats and Possibilities of Substitution in Food Products Concerning Cocoa Varieties, Alternative Sources, Extraction Methods, Composition, and Characteristics. J. Food Eng. 2013, 117, 467–476. [Google Scholar] [CrossRef]
- Mounjouenpou, P.; Belibi, D.; Andoseh, B.K.; Okouda, A.; Mouanfon, K.; Ehabe, E.E.; Ndjouenkeu, R. Temperature/Duration Couples Variation of Cocoa Beans Roasting on the Quantity and Quality Properties of Extracted Cocoa Butter. Ann. Agric. Sci. 2018, 63, 19–24. [Google Scholar] [CrossRef]
- Norazlina, M.R.; Jahurul, M.H.A.; Hasmadi, M.; Mansoor, A.H.; Patricia, M.; Ramlah, M.R.G. Physicochemical Properties of Bambangan Kernel Fat and Its Stearin Mixtures with Cocoa Butter. LWT 2022, 153, 112556. [Google Scholar] [CrossRef]
- Ajikumar, N.; Emmanuel, N.; Abraham, B.; John, A.; Pulparamban, A.; Unni, K.N.N.; Yoosaf, K. Quick and Reagent-Free Monitoring of Edible Oil Saponification Values Using a Handheld Raman Device. Food Chem. 2025, 464, 141580. [Google Scholar] [CrossRef]
- Ivanova, M.; Hanganu, A.; Dumitriu, R.; Tociu, M.; Ivanov, G.; Stavarache, C.; Popescu, L.; Ghendov-Mosanu, A.; Sturza, R.; Deleanu, C.; et al. Saponification Value of Fats and Oils as Determined from 1H-NMR Data: The Case of Dairy Fats. Foods 2022, 11, 1466. [Google Scholar] [CrossRef] [PubMed]
Variety | Fermentation Time | Crystallization | Melting | ||||||
---|---|---|---|---|---|---|---|---|---|
Tonset (°C) | Tc (°C) | Tendset (°C) | Enthalpy (J/g) | Tonset (°C) | Tm (°C) | Tendset (°C) | Enthalpy (J/g) | ||
Criollo Nativo (Peru) | 0 h | 14.48 ± 0.07 a | 9.65 ± 0.09 ab | 14.30 ± 0.15 a | 53.86 ± 1.19 ab | 14.69 ± 0.08 | 20.58 ± 0.02 a | 26.27 ± 0.12 a | 70.70 ± 1.02 ab |
24 h | 14.29 ± 0.14 ab | 9.94 ± 0.16 a | 14.17 ± 0.17 a | 54.84 ± 1.53 a | 14.39 ± 0.06 | 19.74 ± 0.13 e | 25.60 ± 0.10 c | 72.95 ± 1.79 a | |
48 h | 14.28 ± 0.08 ab | 9.49 ± 0.18 b | 14.01 ± 0.07 a | 55.99 ± 0.62 a | 14.37 ± 0.03 | 20.51 ± 0.09 ab | 25.98 ± 0.12 b | 72.73 ± 1.71 a | |
72 h | 13.75 ± 0.08 c | 9.72 ± 0.12 ab | 13.55 ± 0.13 b | 55.19 ± 0.23 a | 13.90 ± 0.13 | 19.15 ± 0.06 f | 26.07 ± 0.08 ab | 69.50 ± 0.97 abc | |
96 h | 13.15 ± 0.10 d | 8.63 ± 0.17 c | 13.02 ± 0.12 c | 50.92 ± 0.59 bc | 14.52 ± 0.14 | 20.23 ± 0.08 bc | 25.99 ± 0.14 ab | 66.09 ± 1.49 c | |
120 h | 14.10 ± 0.18 b | 9.87 ± 0.14 ab | 14.00 ± 0.19 a | 54.23 ± 1.27 ab | 13.55 ± 1.16 | 19.77 ± 0.07 e | 25.39 ± 0.02 c | 73.49 ± 0.65 a | |
144 h | 13.51 ± 0.04 c | 8.68 ± 0.02 c | 13.27 ± 0.03 bc | 52.49 ± 1.45 abc | 14.25 ± 0.25 | 20.09 ± 0.07 cd | 26.07 ± 0.10 ab | 66.79 ± 0.91 bc | |
168 h | 13.12 ± 0.13 d | 8.99 ± 0.26 c | 13.00 ± 0.17 c | 49.89 ± 2.34 c | 14.38 ± 0.23 | 19.89 ± 0.21 de | 25.51 ± 0.06 c | 65.71 ± 2.25 c | |
Forastero (Brazil) | 0 h | 14.69 ± 0.08 c | 10.96 ± 0.04 b | 13.03 ± 2.29 | 64.18 ± 0.84 | 12.40 ± 0.09 b | 19.65 ± 0.05 c | 25.71 ± 0.49 b | 79.84 ± 0.53 |
24 h | 15.60 ± 0.04 b | 11.07 ± 0.02 b | 15.29 ± 0.03 | 63.79 ± 0.84 | 12.31 ± 0.15 b | 20.17 ± 0.01 b | 26.38 ± 0.04 ab | 78.93 ± 0.49 | |
48 h | 14.81 ± 0.21 c | 11.07 ± 0.18 b | 14.64 ± 0.17 | 64.48 ± 1.53 | 13.55 ± 0.37 a | 20.08 ± 0.09 b | 25.54 ± 0.30 b | 79.80 ± 1.47 | |
72 h | 16.03 ± 0.04 a | 11.45 ± 0.17 a | 15.61 ± 0.12 | 63.94 ± 0.15 | 12.18 ± 0.13 b | 20.49 ± 0.19 a | 27.03 ± 0.38 a | 79.67 ± 0.96 | |
Criollo (Mexico) | 0 h | 14.46 ± 0.08 | 10.61 ± 0.10 | 14.26 ± 0.11 | 52.42 ± 0.46 | 14.04 ± 0.06 b | 20.06 ± 0.09 ab | 24.74 ± 0.09 | 70.69 ± 0.92 |
48 h | 14.58 ± 0.03 | 11.11 ± 0.08 | 14.46 ± 0.13 | 53.29 ± 1.66 | 15.02 ± 0.02 a | 19.97 ± 0.06 ab | 24.98 ± 0.29 | 72.61 ± 0.14 | |
72 h | 14.24 ± 0.05 | 11.01 ± 0.12 | 14.26 ± 0.06 | 54.68 ± 0.20 | 14.94 ± 0.10 a | 19.73 ± 0.10 ab | 24.56 ± 0.63 | 73.54 ± 0.74 | |
96 h | 14.53 ± 0.06 | 11.02 ± 0.05 | 14.45 ± 0.03 | 54.19 ± 1.70 | 14.99 ± 0.09 a | 19.76 ± 0.10 ab | 24.68 ± 0.14 | 74.74 ± 0.32 | |
120 h | 14.40 ± 0.04 | 11.05 ± 0.23 | 14.32 ± 0.03 | 53.62 ± 0.95 | 14.91 ± 0.11 a | 19.77 ± 0.20 ab | 24.76 ± 0.28 | 72.38 ± 0.18 | |
144 h | 14.40 ± 0.19 | 10.79 ± 0.38 | 14.30 ± 0.21 | 53.57 ± 2.57 | 15.28 ± 0.16 a | 20.31 ± 0.46 a | 25.17 ± 0.45 | 71.03 ± 4.64 | |
168 h | 14.23 ± 0.39 | 10.63 ± 0.46 | 14.14 ± 0.39 | 55.69 ± 0.61 | 14.24 ± 0.36 b | 19.60 ± 0.19 b | 25.18 ± 0.15 | 70.58 ± 2.75 |
Crystallization Temperature (°C) | Fermentation Time | Criollo Nativo | Forastero | Criollo | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | k (min−n) | t1/2 theo (min) | t1/2 exp (min) | t0 (min) | n | k (min−n) | t1/2 theo (min) | t1/2 exp (min) | t0 (min) | n | k (min−n) | t1/2 theo (min) | t1/2 exp (min) | t0 (min) | ||
16 | 0 h | 3.48 ± 0.10 abcdef | 5.69 × 10−5 ± 1.65 × 10−5 bcd | 15.01 ± 0.18 ghi | 14.97 ± 0.18 ef | 12.68 ± 0.52 fghi | 2.93 ± 0.24 d | 9.22 × 10−4 ± 6.22 × 10−4 a | 10.06 ± 0.39 f | 9.98 ± 0.45 e | 10.40 ± 1.38 d | 3.07 ± 0.08 ab | 1.05 × 10−4 ± 2.05 × 10−5 c | 17.63 ± 0.69 abcde | 17.61 ± 0.52 abcd | 21.70 ± 0.52 bcdef |
24 h | 3.69 ± 0.23 abcd | 5.93 × 10−5 ± 3.59 × 10−5 bcd | 13.23 ± 0.56 i | 13.35 ± 0.54 f | 10.40 ± 0.73 i | 3.21 ± 0.22 bcd | 1.75 × 10−4 ± 1.16 × 10−4 b | 14.09 ± 1.38 de | 14.19 ± 1.47 cd | 11.00 ± 0.83 bcd | NIS | NIS | NIS | NIS | NIS | |
48 h | 3.027 ± 0.33 bcdef | 1.28 × 10−4 ± 1.47 × 10−4 bcd | 18.29 ± 0.16 defghi | 18.99 ± 0.55 bcdef | 14.43 ± 0.65 efghi | 3.52 ± 0.37 abc | 1.49 × 10−4 ± 9.21 × 10−5 b | 14.28 ± 0.69 cde | 14.31 ± 0.73 cd | 13.11 ± 0.73 abcd | 2.04 ± 0.14 c | 3.56 × 10−2 ± 1.29 × 10−2 a | 4.37 ± 0.42 h | 4.56 ± 0.42 e | 10.16 ± 1.18 l | |
72 h | 3.083 ± 0.27 bcdef | 1.89 × 10−4 ± 1.08 × 10−4 bcd | 15.09 ± 0.06 ghi | 15.64 ± 0.10 def | 12.44 ± 1.01 ghi | 3.06 ± 0.06 cd | 1.88 × 10−4 ± 3.97 × 10−5 b | 14.71 ± 0.32 bcde | 14.73 ± 0.38 bcd | 14.12 ± 0.38 abc | 2.86 ± 0.09 abc | 3.21 × 10−4 ± 7.90 × 10−5 c | 14.72 ± 0.25 efg | 15.03 ± 0.45 cd | 12.81 ± 0.31 jkl | |
96 h | 3.01 ± 0.35 bcdef | 1.19 × 10−4 ± 9.99 × 10−5 bcd | 19.52 ± 1.08 defghi | 20.19 ± 1.43 bcdef | 16.35 ± 1.03 defghi | NIS | NIS | NIS | NIS | NIS | 2.95 ± 0.09 ab | 3.31 × 10−4 ± 8.13 × 10−5 c | 13.47 ± 0.09 g | 13.77 ± 0.10 d | 12.75 ± 0.52 jkl | |
120 h | 3.35 ± 0.10 abcdef | 9.43 × 10−5 ± 2.99 × 10−5 bcd | 14.43 ± 0.39 ghi | 14.79 ± 0.36 f | 11.42 ± 0.42 hi | NIS | NIS | NIS | NIS | NIS | 2.87 ± 0.07 abc | 2.05 × 10−4 ± 6.26 × 10−5 c | 17.11 ± 0.59 cdefg | 17.07 ± 0.63 abcd | 12.38 ± 0.28 kl | |
144 h | 2.96 ± 0.25 bcdef | 1.26 × 10−4 ± 2.29 × 10−5 bcd | 14.71 ± 1.95 ghi | 15.33 ± 2.05 def | 11.54 ± 1.30 hi | NIS | NIS | NIS | NIS | NIS | 2.80 ± 0.06 abc | 3.68 × 10−4 ± 1.38 × 10−4 c | 15.07 ± 1.35 efg | 15.03 ± 0.93 cd | 12.20 ± 0.63 kl | |
168 h | 2.43 ± 0.34 f | 2.27 × 10−4 ± 4.39 × 10−5 bc | 24.85 ± 6.75 abcd | 25.61 ± 7.33 ab | 20.68 ± 5.77 cdefg | NIS | NIS | NIS | NIS | NIS | 2.75 ± 0.06 abc | 5.92 × 10−4 ± 2.79 × 10−4 c | 13.65 ± 2.65 fg | 14.31 ± 3.41 cd | 12.87 ± 0.75 jkl | |
17 | 0 h | 4.33 ± 0.22 a | 5.24 × 10−6 ± 3.01 × 10−6 d | 15.67 ± 0.21 fghi | 15.99 ± 0.21 def | 13.65 ± 0.52 fghi | 3.16 ± 0.11 bcd | 2.06 × 10−4 ± 5.76 × 10−5 b | 13.24 ± 0.08 ef | 13.35 ± 0.01 d | 11.54 ± 1.30 abcd | 3.58 ± 0.12 a | 2.19 × 10−5 ± 1.06 × 10−5 c | 18.42 ± 0.54 abcde | 18.39 ± 0.48 abc | 23.99 ± 0.36 bc |
24 h | 3.61 ± 0.04 abcde | 4.71 × 10−5 ± 6.41 × 10−6 bcd | 14.33 ± 0.19 ghi | 14.31 ± 0.21 f | 13.41 ± 0.58 fghi | 3.49 ± 0.18 abcd | 4.01 × 10−5 ± 2.38 × 10−5 b | 17.34 ± 1.66 abc | 17.68 ± 1.65 ab | 10.82 ± 1.43 cd | NIS | NIS | NIS | NIS | NIS | |
48 h | 2.97 ± 0.39 bcdef | 1.39 × 10−4 ± 9.87 × 10−5 bcd | 19.41 ± 1.44 defghi | 20.44 ± 2.14 bcdef | 19.89 ± 0.99 cdefgh | 3.37 ± 0.36 abcd | 7.19 × 10−5 ± 8.73 × 10−5 b | 18.11 ± 1.85 a | 18.39 ± 1.95 a | 11.82 ± 1.72 abcd | 2.35 ± 0.21 bc | 1.58 × 10−2 ± 8.96 × 10−3 b | 5.25 ± 0.65 h | 5.41 ± 0.65 e | 14.85 ± 0.99 ijk | |
72 h | 3.64 ± 0.89 abcd | 5.36 × 10−5 ± 4.97 × 10−5 bcd | 18.96 ± 1.09 defghi | 19.84 ± 1.18 bcdef | 15.27 ± 2.46 defghi | 3.18 ± 0.08 bcd | 1.46 × 10−4 ± 1.41 × 10−4 b | 17.11 ± 1.58 abcd | 17.08 ± 1.57 abc | 14.55 ± 1.98 a | 2.95 ± 0.14 ab | 2.08 × 10−4 ± 6.46 × 10−5 c | 15.85 ± 0.82 defg | 16.17 ± 1.09 bcd | 18.64 ± 0.63 efghi | |
96 h | 2.79 ± 0.25 cdef | 1.05 × 10−4 ± 8.06 × 10−5 bcd | 22.47 ± 3.36 bcdef | 23.19 ± 3.75 abcd | 23.99 ± 2.98 bcd | NIS | NIS | NIS | NIS | NIS | 3.09 ± 0.09 ab | 1.74 × 10−4 ± 5.06 × 10−5 c | 14.82 ± 0.21 efg | 14.97 ± 0.18 cd | 17.37 ± 0.10 fghi | |
120 h | 3.87 ± 0.26 abc | 1.64 × 10−5 ± 1.34 × 10−5 cd | 16.71 ± 0.49 efghi | 17.07 ± 0.38 cdef | 13.83 ± 0.55 efghi | NIS | NIS | NIS | NIS | NIS | 2.97 ± 0.12 ab | 1.46 × 10−4 ± 5.14 × 10−5 c | 17.48 ± 0.35 abcdef | 17.31 ± 0.18 abcd | 19.54 ± 0.55 cdefgh | |
144 h | 2.90 ± 0.21 bcdef | 1.68 × 10−4 ± 5.84 × 10−5 bcd | 18.01 ± 1.78 defghi | 18.52 ± 1.46 bcdef | 15.57 ± 2.85 defghi | NIS | NIS | NIS | NIS | NIS | 2.93 ± 0.15 ab | 2.11 × 10−4 ± 1.19 × 10−4 c | 16.32 ± 0.69 defg | 16.77 ± 0.83 bcd | 17.07 ± 0.68 ghij | |
168 h | 2.51 ± 0.23 ef | 4.99 × 10−4 ± 6.63 × 10−5 a | 20.92 ± 3.99 cdefgh | 22.72 ± 4.51 abcde | 16.66 ± 3.72 defghi | NIS | NIS | NIS | NIS | NIS | 3.38 ± 0.43 a | 8.82 × 10−5 ± 9.07 × 10−5 c | 16.131 ± 0.52 defg | 16.65 ± 0.99 bcd | 15.69 ± 2.73 hijk | |
18 | 0 h | 3.72 ± 0.18 abcd | 2.60 × 10−5 ± 1.28 × 10−5 bcd | 15.92 ± 0.33 fghi | 16.17 ± 0.28 def | 22.78 ± 0.52 bcde | 3.29 ± 0.08 abcd | 6.07 × 10−5 ± 2.63 × 10−5 b | 17.37 ± 1.43 abc | 17.74 ± 1.30 ab | 10.46 ± 0.48 d | 3.04 ± 0.21 ab | 7.55 × 10−5 ± 5.49 × 10−5 c | 21.32 ± 0.43 a | 21.34 ± 0.52 a | 32.10 ± 0.31 a |
24 h | 3.91 ± 0.07 ab | 2.33 × 10−5 ± 5.29 × 10−6 cd | 13.97 ± 0.31 hi | 14.25 ± 0.31 f | 17.73 ± 0.73 defghi | 3.72 ± 0.06 ab | 1.65 × 10−5 ± 1.65 × 10−6 b | 17.52 ± 0.54 ab | 18.04 ± 0.48 a | 14.79 ± 0.90 a | NIS | NIS | NIS | NIS | NIS | |
48 h | 3.19 ± 0.29 bcdef | 2.45 × 10−5 ± 2.64 × 10−5 cd | 29.14 ± 3.98 ab | 29.76 ± 4.02 a | 30.18 ± 0.99 ab | 3.53 ± 0.09 abc | 2.19 × 10−5 ± 9.36 × 10−6 b | 19.11 ± 0.69 a | 19.72 ± 0.68 a | 14.61 ± 0.79 a | 2.49 ± 0.45 bc | 1.35 × 10−2 ± 1.28 × 10−2 bc | 5.54 ± 1.13 h | 5.74 ± 1.26 e | 19.12 ± 1.30 defghi | |
72 h | 2.72 ± 0.07 def | 6.19 × 10−5 ± 1.29 × 10−5 bcd | 30.97 ± 0.21 a | 29.88 ± 0.52 a | 27.29 ± 2.98 abc | 3.78 ± 0.06 a | 8.68 × 10−6 ± 1.56 × 10−6 b | 19.79 ± 0.33 a | 20.14 ± 0.38 a | 14.43 ± 1.01 ab | 2.93 ± 0.13 ab | 1.51 × 10−4 ± 3.87 × 10−5 c | 17.96 ± 0.72 abcde | 18.34 ± 0.99 abc | 24.23 ± 1.15 b | |
96 h | 2.92 ± 0.39 bcdef | 6.84 × 10−5 ± 8.21 × 10−5 bcd | 28.16 ± 0.77 abc | 28.38 ± 0.37 a | 34.93 ± 5.54 a | NIS | NIS | NIS | NIS | NIS | 3.07 ± 0.15 ab | 1.22 × 10−4 ± 5.09 × 10−5 c | 17.14 ± 0.56 bcdefg | 17.25 ± 0.55 abcd | 22.12 ± 0.83 bcde | |
120 h | 3.43 ± 0.87 abcdef | 8.34 × 10−5 ± 1.22 × 10−4 bcd | 21.49 ± 0.43 cdefg | 22.85 ± 0.58 abcd | 21.46 ± 4.55 bcdef | NIS | NIS | NIS | NIS | NIS | 3.17 ± 0.26 ab | 5.52 × 10−5 ± 4.43 × 10−5 c | 21.02 ± 0.81 ab | 21.58 ± 0.85 a | 23.15 ± 1.03 bcd | |
144 h | 3.11 ± 0.18 bcdef | 7.30 × 10−5 ± 1.57 × 10−5 bcd | 23.39 ± 3.15 bcde | 24.07 ± 2.52 abc | 20.02 ± 5.81 cdefgh | NIS | NIS | NIS | NIS | NIS | 2.97 ± 0.19 ab | 1.05 × 10−4 ± 6.52 × 10−5 c | 20.35 ± 1.09 abc | 20.44 ± 1.06 ab | 21.16 ± 1.16 bcdefg | |
168 h | 2.93 ± 0.42 bcdef | 2.36 × 10−4 ± 1.04 × 10−4 b | 20.65 ± 3.94 defgh | 22.66 ± 4.80 abcde | 16.23 ± 4.64 defghi | NIS | NIS | NIS | NIS | NIS | 3.38 ± 0.95 a | 1.53 × 10−4 ± 1.66 × 10−4 c | 19.47 ± 4.07 abcd | 20.20 ± 4.73 ab | 21.16 ± 5.00 bcdefg |
Variety | Fermentation Time | Form I (γ) | Form II (α) | Form III (β’2) |
---|---|---|---|---|
Criollo Nativo | 0 h | 61.61 ± 1.15 abc | 0.00 ± 0.00 | 38.39 ± 1.15 a |
24 h | 70.12 ± 2.55 a | 0.00 ± 0.00 | 29.88 ± 2.55 b | |
48 h | 64.12 ± 7.15 ab | 0.00 ± 0.00 | 35.81 ± 7.07 ab | |
72 h | 61.64 ± 0.16 abc | 0.00 ± 0.00 | 38.36 ± 0.16 a | |
96 h | 53.73 ± 3.03 c | 46.27 ± 3.03 | 0.00 ± 0.00 c | |
120 h | 68.20 ± 2.51 ab | 0.00 ± 0.00 | 31.80 ± 2.51 ab | |
144 h | 60.88 ± 1.85 bc | 0.00 ± 0.00 | 39.12 ± 1.85 a | |
168 h | 70.42 ± 1.75 a | 0.00 ± 0.00 | 29.58 ± 1.75 b | |
Forastero | 0 h | 84.15 ± 3.40 a | 15.85 ± 3.40 b | 0.00 ± 0.00 c |
24 h | 71.43 ± 3.65 b | 0.00 ± 0.00 c | 28.57 ± 3.65 a | |
48 h | 0.00 ± 0.00 c | 83.18 ± 3.21 a | 16.82 ± 3.21 b | |
72 h | 0.00 ± 0.00 c | 83.44 ± 1.74 a | 0.00 ± 0.00 c | |
Criollo | 0 h | 76.99 ± 0.20 a | 0.00 ± 0.00 | 22.62 ± 0.42 b |
48 h | 74.74 ± 0.27 a | 0.00 ± 0.00 | 25.26 ± 0.27 b | |
72 h | 73.35 ± 0.43 a | 0.00 ± 0.00 | 26.91 ± 0.07 b | |
96 h | 71.93 ± 0.97 ab | 0.00 ± 0.00 | 28.10 ± 1.01 ab | |
120 h | 78.99 ± 0.45 a | 0.00 ± 0.00 | 21.01 ± 0.45 b | |
144 h | 74.10 ± 0.46 a | 0.00 ± 0.00 | 25.90 ± 0.46 b | |
168 h | 65.69 ± 6.79 b | 0.00 ± 0.00 | 34.31 ± 6.79 a |
Position | δH, Multiplicity [J in Hz] | COSY |
---|---|---|
A | 2.29 td (7.5) | B |
B | 1.56–1.62 m | A,C |
C | 1.23–1.32 m | B,D,E |
D | 0.86 t (6.78) | C |
E | 1.96–2.04 m | C,F |
F | 5.31–5.34 m | E,G |
G | 2.73–2.77 t (6.5) | F |
H, L (Gly) | 4.13 dd (11.9, 5.9) | H’,L’,I |
I (Gly) | 5.22–5.27 m | H,L’,L,L’ |
H’, L’ (Gly) | 4.28 dd (11.8) | H,L,I |
Triglycerides | δ 13C ppm | ||||
---|---|---|---|---|---|
Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid | ||
C-1 | sn 1–3 | ||||
sn 2 | 172.8 | 172.8 | |||
C-2 | sn 1–3 | 34.0 | 34.0 | - | - |
sn 2 | - | - | 34.2 | 34.2 | |
C-3 | sn 1–3 | 24.9 | 24.9 | - | - |
sn 2 | - | - | 24.9 | 24.9 | |
C-4 | sn 1–3 | 29.1 | 29.1 | - | - |
sn 2 | - | - | - | - | |
C-5 | sn 1–3 | 29.3 | 29.3 | - | - |
sn 2 | - | - | 29.2 | - | |
C-6 | sn 1–3 | 29.5 | 29.5 | - | - |
sn 2 | - | - | 29.1 | 29.1 | |
C-7 | sn 1–3 | 29.7 | - | - | - |
sn 2 | - | - | 29.8 | - | |
C-8 | sn 1–3 | 29.6–29.8 | - | - | |
sn 2 | 27.2 | 27.21 | |||
C-9 | sn 1–3 | 29.6–29.8 | - | - | |
sn 2 | 129.7 | - | |||
C-10 | sn 1–3 | 29.6–29.8 | - | - | |
sn 2 | 130.0 | 126.7 | |||
C-11 | sn 1–3 | 29.6–29.8 | - | - | |
sn 2 | 27.2 | - | |||
C-12 | sn 1–3 | 29.6–29.8 | - | 127.9 | |
sn 2 | 29.8 | - | |||
C-13 | sn 1–3 | 29.4 | - | - | - |
sn 2 | - | - | 29.4 | 130 | |
C-14 | sn 1–3 | 31.9 | - | - | - |
sn 2 | - | - | 29.5 | 27.2 | |
C-15 | sn 1–3 | 22.7 | 29.4 | - | - |
sn 2 | - | - | 29.3 | 29.4 | |
C-16 | sn 1–3 | 14.1 | 31.9 | - | - |
sn 2 | - | - | 31.9 | 31.6 | |
C-17 | sn 1–3 | - | 22.7 | - | - |
sn 2 | - | - | 22.7 | - | |
C-18 | sn 1–3 | - | 14.1 | - | - |
sn 2 | - | - | 14.1 | - |
Variety | Fermentation Time | Iodine Value (g I2/100 g CB) | Saponification Value (mg KOH/g CB) |
---|---|---|---|
Criollo Nativo | 0 h | 31.0762 | 190.5300 |
24 h | 31.2386 | 160.9245 | |
48 h | 31.4988 | 188.6276 | |
72 h | 29.5908 | 146.3459 | |
96 h | 32.8891 | 182.6926 | |
120 h | 30.4913 | 183.4519 | |
144 h | 32.1449 | 180.9272 | |
168 h | 31.6446 | 185.6525 | |
Forastero | 0 h | 18.2358 | 66.3548 |
24 h | 19.3730 | 64.5709 | |
48 h | 28.9005 | 184.8556 | |
72 h | 24.4219 | 136.4746 | |
Criollo | 0 h | 31.5657 | 188.5245 |
48 h | 31.8905 | 184.4995 | |
72 h | 31.5402 | 184.1428 | |
96 h | 31.9401 | 186.9054 | |
120 h | 30.8025 | 179.8106 | |
144 h | 31.8358 | 189.0276 | |
168 h | 16.4199 | 186.1338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcázar-Zumaeta, C.R.; Maicelo-Quintana, J.L.; Chagas Junior, G.C.A.; Ferreira, N.R.; Pinheiro, W.B.d.S.; Cardoso e-C. Filho, L.N.; Santos, A.S.; Iliquin-Chávez, A.F.; García-Alamilla, P.; Cayo-Colca, I.S.; et al. Physicochemical Exploration of Cocoa Butter During Spontaneous Fermentation: A Comparative Study Across Three Latin American Countries. Fermentation 2025, 11, 507. https://doi.org/10.3390/fermentation11090507
Balcázar-Zumaeta CR, Maicelo-Quintana JL, Chagas Junior GCA, Ferreira NR, Pinheiro WBdS, Cardoso e-C. Filho LN, Santos AS, Iliquin-Chávez AF, García-Alamilla P, Cayo-Colca IS, et al. Physicochemical Exploration of Cocoa Butter During Spontaneous Fermentation: A Comparative Study Across Three Latin American Countries. Fermentation. 2025; 11(9):507. https://doi.org/10.3390/fermentation11090507
Chicago/Turabian StyleBalcázar-Zumaeta, César R., Jorge L. Maicelo-Quintana, Gilson C. A. Chagas Junior, Nelson Rosa Ferreira, Wandson Braamcamp de Souza Pinheiro, Luis Nelson Cardoso e-C. Filho, Alberdan Silva Santos, Angel F. Iliquin-Chávez, Pedro García-Alamilla, Ilse S. Cayo-Colca, and et al. 2025. "Physicochemical Exploration of Cocoa Butter During Spontaneous Fermentation: A Comparative Study Across Three Latin American Countries" Fermentation 11, no. 9: 507. https://doi.org/10.3390/fermentation11090507
APA StyleBalcázar-Zumaeta, C. R., Maicelo-Quintana, J. L., Chagas Junior, G. C. A., Ferreira, N. R., Pinheiro, W. B. d. S., Cardoso e-C. Filho, L. N., Santos, A. S., Iliquin-Chávez, A. F., García-Alamilla, P., Cayo-Colca, I. S., & Castro-Alayo, E. M. (2025). Physicochemical Exploration of Cocoa Butter During Spontaneous Fermentation: A Comparative Study Across Three Latin American Countries. Fermentation, 11(9), 507. https://doi.org/10.3390/fermentation11090507