Impact of Cation-Exchange Resin Treatment on Acidification and Quality of Monastrell Red Wine
Abstract
1. Introduction
2. Materials and Methods
2.1. Vineyard Site and Grape Samples
2.2. Vinifications
2.3. Analytical Determinations
2.3.1. Physicochemical Parameters
2.3.2. Spectrophotometric Analysis
2.3.3. Proanthocyanidins Determination by HPLC
2.3.4. Determination of Anthocyanins and Vitisins by HPLC
2.3.5. Determination of Volatile Compounds
2.3.6. Analysis of Metals and Trace Elements by ICP-MS
2.3.7. Sensory Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters of the Wines
3.2. Minerals Present in the Wine
3.3. Chromatic Parameters and Phenolic Compounds of the Wines by Spectrophotometry
3.4. Composition of Tannins, Anthocyanins, and Vitisins in Wines by HPLC
3.5. Anthocyanin Concentration and Composition by HPLC
3.6. Volatile Compounds
3.7. Sensory Profile of Monastrell Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Just-Borràs, A.; Pons-Mercadé, P.; Gombau, J.; Giménez, P.; Vilomara, G.; Conde, M.; Cantos, A.; Canals, J.M.; Zamora, F. Effects of using cationic exchange for reducing ph on the composition and quality of sparkling wine (cava). OENO One 2022, 56, 179–192. [Google Scholar] [CrossRef]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic effects of elevated temperature on organic acid degradation in ripening vitis vinifera fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef]
- Boulton, R. The relationships between total acidity, titratable acidity and ph in wine. Am. J. Enol. Vitic. 1980, 31, 76–80. [Google Scholar] [CrossRef]
- Lafon-Lafourcade, S.; Peynaud, E. Sur l’action antibactérienne de l’anhydride sulfureux sous forme libre et sous forme combinée. OENO One 2016, 8, 187–203. [Google Scholar] [CrossRef]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, E.R. Principles and Practices of Winemaking; Hall, C., Ed.; Springer: New York, NY, USA, 1996; pp. 145–150. [Google Scholar]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology: The Microbiology of Wine and Vinifications, Volume 1, 2nd ed.; John Wiley & Sons: West Sussex, UK, 2005; Volume 44, pp. 481–497. [Google Scholar]
- European Parliament and Council of the European Union. Council Regulation (ec) no 1234/2007 of 22 October 2007 establishing a common organisation of agricultural markets and on specific provisions for certain agricultural products (single cmo regulation). Off. J. Eur. Union 2007, l299, 1–149. [Google Scholar]
- Berg, H.W. Stabilisation des anthocyanes. Comportement de la couleur dans les vins rouges. Ann. Technol. Agric. 1963, 12, 247–259. [Google Scholar]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar] [CrossRef]
- Sheridan, M.K.; Elias, R.J. Reaction of acetaldehyde with wine flavonoids in the presence of sulfur dioxide. J. Agric. Food Chem. 2016, 64, 8615–8624. [Google Scholar] [CrossRef]
- Morata, A. (Ed.) Red Wine Technology; Academic Press: London, UK, 2018. [Google Scholar]
- Martínez-Moreno, A.; Martínez-Pérez, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Use of unripe grape wine as a tool for reducing alcohol content and improving the quality and oenological characteristics of red wines. OENO One 2023, 57, 109–119. [Google Scholar] [CrossRef]
- Benito, Á.; Calderón, F.; Benito, S. Mixed alcoholic fermentation of Schizosaccharomyces pombe and Lachancea thermotolerans and its influence on mannose-containing polysaccharides wine composition. AMB Express 2019, 9, 17. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine (IOV). International Code of Oenological Practices, ICOP. ISBN : 978-2-85038-106-5. 2022. Available online: https://www.oiv.int/sites/default/files/publication/2025-04/CPO%202025%20EN.pdf (accessed on 10 June 2025).
- Lasanta, C.; Gómez, J. Tartrate stabilization of wines. Trends Food Sci. Technol. 2012, 28, 52–59. [Google Scholar] [CrossRef]
- Lasanta, C.; Caro, I.; Pérez, L. The influence of cation exchange treatment on the final characteristics of red wines. Food Chem. 2013, 138, 1072–1078. [Google Scholar] [CrossRef]
- Walker, T.; Morris, J.; Threlfall, R.; Main, G. Quality, sensory and cost comparison for ph reduction of syrah wine using ion exchange or tartaric acid. J. Food Qual. 2004, 27, 483–496. [Google Scholar] [CrossRef]
- Ponce, F.; Mirabal-Gallardo, Y.; Versari, A.; Gleisner, F.L. The use of cation exchange resins in wines: Effects on ph, tartrate stability, and metal content. Cienc. Investig. Agrar. Rev. Latinoam. Cienc. Agric. 2018, 45, 82–92. [Google Scholar] [CrossRef]
- Mislata, A.M.; Puxeu, M.; Nart, E.; de Lamo, S.; Ferrer-Gallego, R. Preliminary study of the effect of cation-exchange resin treatment on the aging of tempranillo red wines. LWT 2021, 138, 110669. [Google Scholar] [CrossRef]
- Payan, C.; Gancel, A.-L.; Jourdes, M.; Christmann, M.; Teissedre, P.-L. Wine acidification methods: A review. OENO One 2023, 57, 113–126. [Google Scholar] [CrossRef]
- EEC Commission Regulation. No. 2676/90 determining community methods for the analysis of wines. Off. J. Eur. Communities 1990, L272, 1–192. [Google Scholar]
- Glories, Y. La couleur des vins rouges. Lre partie: Les équilibres des anthocyanes et des tanins. OENO One 1984, 18, 195–217. [Google Scholar] [CrossRef]
- Ho, P.; Silva, M.d.C.M.; Hogg, T.A. Changes in colour and phenolic composition during the early stages of maturation of port in wood, stainless steel and glass. J. Sci. Food Agric. 2001, 81, 1269–1280. [Google Scholar] [CrossRef]
- Smith, P.A. Precipitation of tannin with methyl cellulose allows tannin quantification in grape and wine samples: Technical review. AWRI 2005, 158, 3–7. [Google Scholar]
- Busse-Valverde, N.; Gómez-Plaza, E.; López-Roca, J.M.; Gil-Muñoz, R.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B. Effect of different enological practices on skin and seed proanthocyanidins in three varietal wines. J. Agric. Food Chem. 2010, 58, 11333–11339. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Bautista-Ortín, A.B. Evolution and impact of extended pomace maceration in red wines: Chromatic, phenolic and sensory perception. LWT 2025, 225, 117934. [Google Scholar] [CrossRef]
- UNE-ISO 6658:2019; Sensory Analysis—Methodology—General Guidance. ISO: Geneva, Switzerland, 2019. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0061499 (accessed on 10 July 2025).
- UNE-ISO 4121:2006; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales (ISO 4121:2003). ISO: Geneva, Switzerland, 2006. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0037445 (accessed on 10 July 2025).
- Pérez Mendoza, A.L.; Martínez-Moreno, A.; Gómez-Plaza, E.; Bautista-Ortín, B. Balancing phenolic maturity and alcohol content: The impact of seed removal on red wines. OENO One 2025, 59. [Google Scholar] [CrossRef]
- Ferreira, J.; Toit, M.D.; Toit, W.J.D. The effects of copper and high sugar concentrations on growth, fermentation efficiency and volatile acidity production of different commercial wine yeast strains. Aust. J. Grape Wine Res. 2006, 12, 50–56. [Google Scholar] [CrossRef]
- Benítez, P.; Castro, R.; Barroso, C.G. Removal of iron, copper and manganese from white wines through ion exchange techniques: Effects on their organoleptic characteristics and susceptibility to browning. Anal. Chim. Acta 2002, 458, 197–202. [Google Scholar] [CrossRef]
- Boulton, R. Red wines. In Fermented Beverage Production; Lea, A.G.H., Piggott, J.R., Eds.; Springer: Boston, MA, USA, 1995; pp. 121–158. [Google Scholar]
- Cosme, F.; Filipe-Ribeiro, L.; Nunes, F.M. Wine stabilisation: An overview of defects and treatments. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; Cosme, F.M., Nunes, F., Filipe-Ribeiro, L., Eds.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- McKinnon, A.J.; Scollary, G.R.; Solomon, D.H.; Williams, P.J. The mechanism of precipitation of calcium l(+)-tartrate in a model wine solution. Colloids A 1994, 82, 225–235. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology. The Chemistry of Wine Stabilisation and Treatments, 2nd ed.; John Wiley & Sons: Chichester, UK, 2006; Volume 2. [Google Scholar]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: West Sussex, UK, 2016. [Google Scholar]
- Bautista-Ortín, A.B.; Martínez-Cutillas, A.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. Improving colour extraction and stability in red wines: The use of maceration enzymes and enological tannins. Int. J. Food Sci. Technol. 2005, 40, 867–878. [Google Scholar] [CrossRef]
- Casassa, L.F.; Harbertson, J.F. Extraction, evolution, and sensory impact of phenolic compounds during red wine maceration. Annu. Rev. Food Sci. Technol. 2014, 5, 83–109. [Google Scholar] [CrossRef]
- Forino, M.; Picariello, L.; Rinaldi, A.; Moio, L.; Gambuti, A. How must ph affects the level of red wine phenols. LWT 2020, 129, 109546. [Google Scholar] [CrossRef]
- Gambuti, A.; Picariello, L.; Forino, M.; Errichiello, F.; Guerriero, A.; Moio, L. How the management of ph during winemaking affects acetaldehyde, polymeric pigments and color evolution of red wine. Appl. Sci. 2022, 12, 2555. [Google Scholar] [CrossRef]
- González-Manzano, S.; Santos-Buelga, C.; Dueñas, M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, T. Colour implications of self-association processes of wine anthocyanins. Eur. Food Res. Technol. 2008, 226, 483–490. [Google Scholar] [CrossRef]
- Dong, Y.; Li, B.; Lu, F. Physical Chemistry; Scientific Publishing Company: Beijing, China, 2001. [Google Scholar]
- Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florêncio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef]
- Kontoudakis, N.; González, E.; Gil, M.; Esteruelas, M.; Fort, F.; Canals, J.M.; Zamora, F. Influence of wine pH on changes in color and polyphenol composition induced by micro-oxygenation. J. Agric. Food Chem. 2011, 59, 1974–1984. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Guyot, S.; Marnet, N.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E.J. The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric. 2003, 83, 564–573. [Google Scholar] [CrossRef]
- Peterson, A.L.; Waterhouse, A.L. 1h nmr: A novel approach to determining the thermodynamic properties of acetaldehyde condensation reactions with glycerol, (+)-catechin, and glutathione in model wine. J. Agric. Food Chem. 2016, 64, 6869–6878. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M.S. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Mechanism of autoxidation of polyphenols and participation of sulfite in wine: Key role of iron. Am. J. Enol. Vitic. 2011, 62, 319–328. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Graña, M.; Oliveira, J.M. Determination of odorants in varietal wines from international grape cultivars (Vitis vinifera) grown in nw spain. S. Afr. J. Enol. Vitic. 2013, 34, 212–222. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Toledo-Gil, R.; Bautista-Ortin, A.B.; Gómez-Plaza, E.; Yuste, J.E.; Vallejo, F. Exploring the impact of extended maceration on the volatile compounds and sensory profile of monastrell red wine. Fermentation 2024, 10, 343. [Google Scholar] [CrossRef]
- Tian, H.; Xiong, J.; Sun, J.; Du, F.; Xu, G.; Yu, H.; Chen, C.; Lou, X. Dynamic transformation in flavor during hawthorn wine fermentation: Sensory properties and profiles of nonvolatile and volatile aroma compounds coupled with multivariate analysis. Food Chem. 2024, 456, 139982. [Google Scholar] [CrossRef]
- Chigo-Hernandez, M.M.; Tomasino, E. Aroma perception of limonene, linalool and α-terpineol combinations in pinot gris wine. Foods 2023, 12, 2389. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications; Academic Press: London, UK, 2008. [Google Scholar]
- Ibeas, V.; Correia, A.C.; Jordão, A.M. Wine tartrate stabilization by different levels of cation exchange resin treatments: Impact on chemical composition, phenolic profile and organoleptic properties of red wines. Food Res. Int. 2015, 69, 364–372. [Google Scholar] [CrossRef]
- Walker, T.; Morris, J.; Threlfall, R.; Main, G. Ph modification of cynthiana wine using cationic exchange. J. Agric. Food Chem. 2002, 50, 6346–6352. [Google Scholar] [CrossRef]
- Fontoin, H.; Saucier, C.; Teissedre, P.-L.; Glories, Y. Effect of ph, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Qual. Prefer. 2008, 19, 286–291. [Google Scholar] [CrossRef]
- Payne, C.; Bowyer, P.K.; Herderich, M.; Bastian, S.E.P. Interaction of astringent grape seed procyanidins with oral epithelial cells. Food Chem. 2009, 115, 551–557. [Google Scholar] [CrossRef]
- Issa-Issa, H.; Lipan, L.; Cano-Lamadrid, M.; Nemś, A.; Corell, M.; Calatayud-García, P.; Carbonell-Barrachina, Á.A.; López-Lluch, D. Effect of aging vessel (clay-tinaja versus oak barrel) on the volatile composition, descriptive sensory profile, and consumer acceptance of red wine. Beverages 2021, 7, 35. [Google Scholar] [CrossRef]
Treatment | Control | Tartaric 20 | Tartaric 30 | FreeK 20 | FreeK 30 |
---|---|---|---|---|---|
%Alcohol | 16.34 ± 0.10a | 16.33 ± 0.12a | 16.3 ± 0.10a | 16.37 ± 0.15a | 16.47 ± 0.17a |
pH | 3.83 ± 0.03c | 3.62 ± 0.03b | 3.55 ± 0.01a | 3.65 ± 0.03b | 3.52 ± 0.02a |
Total acidity (g/L) | 5.57 ± 0.10a | 5.89 ± 0.08b | 6.28 ± 0.04c | 5.86 ± 0.07b | 6.22 ± 0.08c |
Volatile acidity (g/L) | 0.77 ± 0.02d | 0.60 ± 0.01b | 0.68 ± 0c | 0.51 ± 0.01a | 0.53 ± 0.03a |
Minerals | Control | Tartaric 20 | Tartaric 30 | FreeK 20 | FreeK 30 |
---|---|---|---|---|---|
Potassium | 1189 ± 60.6d | 945 ± 21.73b | 855 ± 5.08a | 1065 ± 14.97c | 857 ± 30.22a |
Calcium | 49.18 ± 0.68a | 54.34 ± 2.32b | 55.34 ± 0.46bc | 58.05 ± 0.45cd | 60.0 ± 2.38d |
Iron | 1.34 ± 0.03c | 1.34 ± 0.01c | 1.53 ± 0.02d | 1.24 ± 0.02b | 1.07 ± 0.02a |
Copper | 0.55 ± 0.02d | 0.32 ± 0.04c | 0.25 ± 0.02b | 0.21 ± 0.02b | 0.17 ± 0.01a |
Sodium | 11.26 ± 0.96c | 8.88 ± 0.27b | 9.18 ± 0.03b | 8.74 ± 0.09b | 7.9 ± 0.16a |
Magnesium | 87.54 ± 2.39c | 85.23 ± 1.43c | 86.52 ± 1.85c | 73.59 ± 0.07b | 68.91 ± 0.93a |
Manganese | 0.80 ± 0c | 0.80 ± 0.01c | 0.84 ± 0.02d | 0.71 ± 0.03b | 0.67 ± 0.01a |
Zinc | 1.71 ± 0.02c | 0.71 ± 0.03b | 0.66 ± 0.01ab | 0.64 ± 0.05a | 0.65 ± 0.05ab |
Control | Tartaric 20 | Tartaric 30 | FreeK 20 | FreeK 30 | |
---|---|---|---|---|---|
CI | 15.1 ± 0.3a | 15.1 ± 0.5a | 16.5 ± 0.8b | 16.2 ± 0.2b | 16.2 ± 0.5b |
Hue | 0.58 ± 0.04b | 0.56 ± 0.03b | 0.51 ± 0.01a | 0.51 ± 0.01a | 0.49 ± 0.01a |
420% | 33.8 ± 1.3b | 32.6 ± 0.9b | 30.9 ± 0.2a | 30.8 ± 0.5a | 29.8 ± 1.1a |
520% | 57.9 ± 1.5a | 57.9 ± 1.3a | 60.4 ± 0.7b | 60.3 ± 0.3b | 60.5 ± 0.8b |
620% | 8.3 ± 0.2a | 9.5 ± 0.4bc | 8.7 ± 0.5a | 9.0 ± 0.2ab | 9.8 ± 0.3c |
TPI | 51.8 ± 0.8b | 48.8 ± 1.5a | 48 ± 0.8a | 47.5 ± 0.3a | 49.3 ± 1.6a |
TA | 569 ± 19a | 564 ± 10.7a | 562 ± 12.2a | 561 ± 9.9a | 567 ± 6.1a |
PA | 56.3 ± 0.7c | 54.5 ± 0.8bc | 53.4 ± 1.5b | 48 ± 0.6a | 47.3 ± 1.3a |
TT | 1307 ± 56.3a | 1321 ± 37.7a | 1312 ± 10.8a | 1302 ± 70.7a | 1253 ± 20.5a |
Control | Tartaric 20 | Tartaric 30 | FreeK 20 | FreeK 30 | |
---|---|---|---|---|---|
TT | 397 ± 4.3 | 420 ± 18.9 | 399 ± 11.2 | 417 ± 25.8 | 400 ± 38.8 |
mDP | 6.5 ± 0.3a | 7.8 ± 0.3b | 7.6 ± 0.4b | 7.4 ± 0.1b | 6.7 ± 0.5a |
%EGC | 13.3 ± 0.9a | 22.7 ± 0.8b | 23.3 ± 1.1b | 24.2 ± 1.1b | 26.7 ± 0.2c |
%Gal | 9 ± 0.6b | 7.2 ± 0.3a | 7.6 ± 0.5a | 7.7 ± 0.3a | 8.6 ± 0.6b |
EGC | 179 ± 12.2a | 337 ± 25.3bc | 313 ± 5.6b | 340 ± 24.9bc | 358 ± 32.6c |
ECG | 33.3 ± 0.4b | 31.3 ± 1.5ab | 28.9 ± 1.6a | 30.9 ± 3ab | 32.3 ± 1.7b |
Compounds (mg/L) | Control | Tartaric 20 | Tartaric 30 | FreeK 20 | FreeK 30 |
---|---|---|---|---|---|
Free anthocyanins | |||||
Del-3-glucoside | 17.7 ± 0.8a | 21.8 ± 0.7b | 23.7 ± 0.3cd | 22.9 ± 0.7c | 24.1 ± 0.0d |
Cyn-3-glucoside | 5.5 ± 0.1a | 8.2 ± 0.6bc | 9.4 ± 0.8c | 7.8 ± 1.2b | 9.2 ± 0.4c |
Pet-3-glucoside | 27.5 ± 1.9a | 30.2 ± 1.9a | 29.7 ± 1.6a | 29.9 ± 0.8a | 30.1 ± 1.4a |
Peon-3-glucoside | 17.4 ± 0.4a | 24.0 ± 1.0b | 25.9 ± 0.0c | 24.2 ± 1.1b | 26.1 ± 0.9c |
Malv-3-glucoside | 116.2 ± 7.9a | 135.8 ± 3.2bc | 120.0 ± 0.8ab | 127.6 ± 2.9d | 128.3 ± 4.2cd |
Peon-acetylglucoside | 2.1 ± 0.1a | 2.8 ± 0.2b | 2.7 ± 0.1b | 2.7 ± 0.1b | 2.8 ± 0.1b |
Malv-(6-acetyl)-3-glucoside | 4.3 ± 0.0a | 5.2 ± 0.0d | 4.7 ± 0.2b | 4.9 ± 0.1c | 5.0 ± 0.1c |
Cyn-coumaroylglucoside | 1.9 ± 0.1a | 2.7 ± 0.0c | 2.4 ± 0.0b | 2.7 ± 0.1cd | 2.8 ± 0.1d |
Pet-coumaroylglucoside | 2.2 ± 0.0a | 3.0 ± 0.2b | 3.0 ± 0.0b | 2.9 ± 0.0b | 3.2 ± 0.1c |
Peon-(6-coumaroyl)-3-glucoside | 2.5 ± 0.1a | 3.3 ± 0.0cd | 3.3 ± 0.0bc | 3.2 ± 0.1b | 3.4 ± 0.0d |
Malv-(6-coumaroyl)-3-glucoside | 9.6 ± 0.1a | 13.8 ± 0.4c | 11.7 ± 0.7b | 12.2 ± 0.3b | 14.2 ± 0.5c |
Total Free Anthocyanins | 207.1 ± 9.7a | 250.8 ± 7.4c | 236.4 ± 3.8b | 241.0 ± 6.4bc | 249.4 ± 4.9c |
Vitisins | |||||
Del-3-glucoside-pyruvic acid | 1.7 ± 0.0c | 1.6 ± 0.1b | 1.6 ± 0.0bc | 1.5 ± 0.0ab | 1.5 ± 0.0a |
Pet-3-glucoside-pyruvic acid | 3.1 ± 0.1c | 2.8 ± 0.1b | 2.8 ± 0.1b | 2.9 ± 0.2b | 2.5 ± 0.1a |
Peon-3-glucoside-pyruvic acid | 2.1 ± 0.0b | 2.1 ± 0.0b | 2.3 ± 0.0c | 2.3 ± 0.1c | 2.0 ± 0.0a |
Malv-3-O-glucoside-pyruvic acid (Vitisin A) | 11.5 ± 0.1d | 11.3 ± 0.3cd | 10.8 ± 0.5b | 10.9 ± 0.3bc | 8.9 ± 0.0a |
Malvidin-3-O-glucoside-acetaldehyde (Vitisin B) | 1.6 ± 0.0d | 1.5 ± 0.1bc | 1.5 ± 0.0cd | 1.4 ± 0.0b | 1.3 ± 0.0a |
Malv-6-acetyl-3-glucoside-pyruvic acid | 1.5 ± 0.0c | 1.5 ± 0.0bc | 1.4 ± 0.0b | 1.4 ± 0.0ab | 1.3 ± 0.1a |
Malv-6-coumaroyl-3-glucoside-pyruvic acid | 2.7 ± 0.0d | 2.6 ± 0.1c | 2.4 ± 0.1b | 2.5 ± 0.1c | 2.3 ± 0.0a |
Total Vitisins | 24.2 ± 0.1c | 23.4 ± 0.5bc | 22.7 ± 0.6b | 22.8 ± 0.6b | 19.7 ± 0.3a |
Polymeric Anthocyanins | 28.8 ± 0.3d | 21.2 ± 1.0c | 22.2 ± 1.6c | 19.0 ± 0.5b | 15.7 ± 1.0a |
Total Anthocyanins | 260.1 ± 10.0a | 295.4 ± 8.0c | 281.4 ± 2.8b | 282.8 ± 6.9bc | 284.8 ± 6.2bc |
Compounds | Control | Tartaric 20 | Tartaric 30 | Freek 20 | Freek 30 |
---|---|---|---|---|---|
Alcohols | |||||
1-Butanol | 51.68 ± 9.07b | 29.82 ± 3.61a | 47.01 ± 19.3ab | 33.56 ± 3.12ab | 42.84 ± 11.7ab |
1-Butanol, 3-methyl- | 26,484 ± 1726.88b | 18,046 ± 702.56a | 18,539 ± 735.73a | 19,032 ± 1595.47a | 21,087 ± 385.68a |
1-Hexanol | 616.77 ± 38.16a | 683.65 ± 13.61bc | 728.09 ± 51.07c | 661.43 ± 43.69ab | 633.71 ± 14.81ab |
1-Propanol | 147.54 ± 28.59c | 56.16 ± 16.01a | 45.37 ± 0.80a | 69.46 ± 2.67a | 99.48 ± 8.71b |
1-Propanol, 3-(methylthio)- | 20.39 ± 2.03a | 23.85 ± 0.24b | 27.34 ± 2.45c | 22.66 ± 1.73ab | 20.72 ± 0.46a |
Benzyl alcohol | 57.49 ± 5.24ab | 59.18 ± 1.16b | 53.1 ± 0.70a | 52.83 ± 1.06a | 56.77 ± 1.78ab |
Phenylethyl Alcohol | 8367 ± 355.13a | 8517 ± 204.94ab | 9978 ± 619.47c | 8287 ± 77.38a | 9151 ±483.8b |
Total Alcohols | 35,745 ± 2107.6b | 27,416 ± 916.47a | 29,418 ± 807.06a | 28,159 ± 1722.0a | 31,092 ± 3876.63a |
Esters | |||||
Butanoic acid, 2-methyl-, ethyl ester | 8.03 ± 0.3a | 19.17 ± 1.18c | 11.73 ± 0.11b | 12.39 ± 2.13b | 12.72 ± 1.67b |
Butanoic acid, 3-methyl-, ethyl ester | 11.75 ± 0.59a | 19.37 ± 1.72b | 17.4 ± 4.34b | 15.21 ± 2.3ab | 15.19 ± 2.31ab |
1-butanol-3-methyl-acetate | 762 ±113a | 1282 ±64.65c | 745 ±91.91a | 1264 ±114.8c | 1020 ± 185.15b |
Acetic acid, 2-phenylethyl ester | 347.29 ± 13.6a | 396.76 ± 24.57a | 437.52 ± 55.45a | 420.82 ± 14.98a | 444.7 ± 42.24a |
Ethyl 9-decenoate | 62.98 ± 6.8d | 18.7 ± 32a | 41.926 ± 10.57b | 45.324 ± 3.15bc | 54.47 ± 5.72cd |
Ethyl Acetate | 2557 ± 463.9a | 3153 ± 306.3a | 2602 ± 303.56a | 2723 ± 319.52a | 2763 ± 338.31a |
Ethyl hydrogen succinate | 81.32 ± 11.54c | 28.62 ± 2.66a | 39.13 ± 7.12ab | 28.78 ± 2.9a | 47.98 ± 5.01b |
Ethyl tridecanoate | 61.19 ± 4.32d | 27.05 ± 1.04a | 36.87 ± 5.53b | 42.71 ± 4.63bc | 44.77 ± 3.48c |
Hexadecanoic acid, ethyl ester | 178.56 ± 19.36a | 1561 ± 21.98a | 209.717 ± 62.36a | 142.2 ± 25.25a | 186.24 ± 58.97a |
Hexanoic acid, ethyl ester | 1193 ± 106.53b | 1457 ± 89.17c | 1263 ± 81.84b | 1313 ± 65.03ab | 2320 ± 39.05d |
Isobutyl acetate | 21.66 ± 5.55a | 24.15 ± 2.29a | 20.34 ± 2.32a | 25.12 ± 2.02a | 19.7 ± 4.25a |
Pentadecanoic acid, 3-methylbutyl ester | 16.08 ± 5.82b | 8.61 ± 1.77a | 13.95 ± 1.07ab | 10.7 ± 1.89ab | 11.73 ± 6.18ab |
Pentadecanoic acid, ethyl ester | 7.04 ± 1.53ab | 8.5 ± 0.36b | 8.24 ± 1.69b | 14.35 ± 0.92c | 5.57 ± 1.18a |
Tetradecanoic acid, ethyl ester | 171.3 ± 39.24c | 90.99 ± 34a | 158.96 ± 42bc | 106.25 ± 22a | 110.833 ± 28.55ab |
Total Esters | 5480 ± 792.08ab | 6692 ± 554.89b | 5606 ± 669.87ab | 6165 ± 581.52b | 7058 ± 72.07c |
Terpenes | |||||
Citronellol | 58.6 ± 8.17a | 43.28 ± 1.99a | 55.15 ± 9.54ab | 49 ± 3.25ab | 43.81 ± 7.13a |
Linalool | 50.65 ± 17.6bc | 38.61 ± 1.05a | 44.98 ± 0.01ab | 59.36 ± 0.55c | 92.58 ± 9.0d |
Nerolidol | 45.62 ± 14.6ab | 45.58 ± 12.13ab | 63.11 ± 5.73bc | 46.05 ± 22.52ab | 75.64 ± 12.29c |
Total Terpenes | 154 ± 39.71ab | 127 ± 22.59a | 163 ± 18.3ab | 154 ± 33.57ab | 212 ± 28.51b |
Acids | |||||
Acetic acid | 1566 ± 162.10c | 977 ± 62.37ab | 1048 ± 17.00ab | 913 ± 89.29a | 1111 ± 66.68b |
Butanoic acid, 4-hydroxy- | 36.69 ± 8.62a | 40.82 ± 3.19ab | 40.82 ± 2ab | 41.06 ± 0.96ab | 45.84 ± 1.08b |
n-Decanoic acid | 132.66 ± 43.89a | 107.33 ± 12.53a | 277.14 ± 4.7b | 103.5 ± 10.39a | 131.25 ± 30.66a |
Nonanoic acid | 37.65 ± 5.2a | 40.91 ± 6.82a | 56.46 ± 5.23b | 45.6 ± 3.11ab | 42.91 ± 13.6ab |
Octanoic acid | 383.49 ± 60.11ab | 369.85 ± 34.96a | 451 ± 16.11b | 387 ± 25.69ab | 435 ± 36.8ab |
Propanoic acid, 2-methyl- | 60.04 ± 15.99a | 42.56 ± 6.19ab | 54.46 ± 8.08ab | 47.9 ± 3.41ab | 46.95 ± 8.31a |
Total Acids | 2273 ± 333.31c | 1579 ± 100.94ab | 1866 ± 68.02b | 1538 ± 104.52a | 1826 ± 35.80ab |
Ketones/Aldehydes | |||||
2(3H)-Furanone, dihydro-5-pentyl- | 10.88 ± 3.9a | 9.44 ± 0.68a | 10.15 ± 0.93a | 10.71 ± 2.21a | 10.38 ± 2.11a |
Total Ketones and Aldehydes | 10.88 ± 3.9a | 9.44 ± 0.68a | 10.15 ± 0.93a | 10.71 ± 2.21a | 10.38 ± 2.11a |
Total Aromatic Compounds | 43,787 ± 1182c | 35,598 ± 2239a | 37,222 ± 3027b | 36,099 ± 2222.2ab | 40,198 ± 2643b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Moreno, A.; Pérez-Mendoza, A.L.; Sánchez-Bravo, P.; Gómez-Plaza, E.; Jurado-Fuentes, R.; Bautista-Ortín, A.B. Impact of Cation-Exchange Resin Treatment on Acidification and Quality of Monastrell Red Wine. Fermentation 2025, 11, 512. https://doi.org/10.3390/fermentation11090512
Martínez-Moreno A, Pérez-Mendoza AL, Sánchez-Bravo P, Gómez-Plaza E, Jurado-Fuentes R, Bautista-Ortín AB. Impact of Cation-Exchange Resin Treatment on Acidification and Quality of Monastrell Red Wine. Fermentation. 2025; 11(9):512. https://doi.org/10.3390/fermentation11090512
Chicago/Turabian StyleMartínez-Moreno, Alejandro, Ana Leticia Pérez-Mendoza, Paola Sánchez-Bravo, Encarna Gómez-Plaza, Ricardo Jurado-Fuentes, and Ana Belén Bautista-Ortín. 2025. "Impact of Cation-Exchange Resin Treatment on Acidification and Quality of Monastrell Red Wine" Fermentation 11, no. 9: 512. https://doi.org/10.3390/fermentation11090512
APA StyleMartínez-Moreno, A., Pérez-Mendoza, A. L., Sánchez-Bravo, P., Gómez-Plaza, E., Jurado-Fuentes, R., & Bautista-Ortín, A. B. (2025). Impact of Cation-Exchange Resin Treatment on Acidification and Quality of Monastrell Red Wine. Fermentation, 11(9), 512. https://doi.org/10.3390/fermentation11090512