PerR Deletion Enhances Oxygen Tolerance and Butanol/Acetone Production in a Solvent-Degenerated Clostridium beijerinckii Strain DS
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, and Culturing Conditions
2.2. Construction of Plasmid pMTL007-Cbei1336-Intron
2.3. Electroporation and Identification of perR Mutant
2.4. Aerobic Tolerance Assay of the perR Mutant
2.5. ABE Production Analysis of the Aerobic-Tolerant perR Mutant
2.6. Analytical Methods
2.7. RNA Sequencing
2.8. Real-Time Quantitative RT-PCR (qRT-PCR)
2.9. Statistical Analysis
3. Results and Discussion
3.1. perR Disruption Enables the Survival of C. beijerinckii DS Under Atmospheric Oxygen
3.2. perR Inactivation Enhances ABE Fermentation Performance of C. beijerinckii DS
3.3. Transcriptomic Profiling Reveals Altered Expression of Detoxification and Redox Homeostasis Genes Following perR Deletion
3.3.1. Temporal Profiling of Co-Regulated Detoxification and Redox Genes Across Fermentation Phases in the perR Mutant
3.3.2. Integrative Analysis of STRING-Predicted PerR Targets in Oxidative Stress Defense Across C. acetobutylicum and C. beijerinckii
3.3.3. Temporal Co-Regulation Analysis and STRING-Based Prediction Reveal Key Detoxification and Redox Homeostasis Gene Expression Alterations Following perR Knockout
3.4. Transcriptomic Profiling Following perR Knockout Reveals Altered Expression of Genes in ABE Production-Related Metabolic Pathways
3.4.1. perR Deletion Upregulates PTS Transporters and Core Glycolytic Enzymes for Metabolic Flux from Glucose to Pyruvate
3.4.2. perR Inactivation Upregulates Electron Carriers and Redox Enzymes to Amplify ABE Metabolic Flux
3.4.3. perR Knockout Coordinates Upregulation of Thiolase/BHBD/Crotonase Nodes to Enhance Acetyl-CoA to Acetone/Butanol Conversion in the ABE Pathway
3.4.4. perR Knockout Modulates Acid Accumulation and Reassimilation
3.4.5. perR Knockout Modulates Transcriptional Regulation of Core Terminal Enzymes in Acetone, Ethanol, and Butanol Biosynthesis
3.5. perR Orchestrates Multilayered Redox Homeostasis and Fermentation Adaptation via Conserved Motif Networks
3.6. qRT-PCR Verification of PerR Regulation in C. beijerinckii DS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Liu, Y.; Guan, M.; Tang, H.; Wang, Z.; Lin, L.; Pang, H. Production of butanol from lignocellulosic biomass: Recent advances, challenges, and prospects. RSC Adv. 2022, 12, 18848–18863. [Google Scholar] [CrossRef]
- García, V.; Päkkilä, J.; Ojamo, H.; Muurinen, E.; Keiski, R.L. Challenges in biobutanol production: How to improve the efficiency? Renew. Sust. Energ. Rev. 2011, 15, 964–980. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Z.; Jiang, Y.; Yang, Y.; Jiang, W.; Gu, Y.; Yang, S. Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab. Eng. 2012, 14, 569–578. [Google Scholar] [CrossRef]
- Riaz, S.; Mazhar, S.; Abidi, S.H.; Syed, Q.; Abbas, N.; Saleem, Y.; Nadeem, A.A.; Maryam, M.; Essa, R.; Ashfaq, S. Biobutanol production from sustainable biomass process of anaerobic ABE fermentation for industrial applications. Arch. Microbiol. 2022, 204, 672. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, Y.; Dai, Z.; Li, Y. Engineering clostridium strain to accept unmethylated DNA. PLoS ONE 2010, 5, e9038. [Google Scholar] [CrossRef]
- Czerska, M.; Mikołajewska, K.; Zieliński, M.; Gromadzińska, J.; Wąsowicz, W. Today’s oxidative stress markers. Med. Pr. 2015, 66, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Malych, R.; Fussy, Z.; Zeniskova, K.; Arbon, D.; Hampl, V.; Hrdy, I.; Sutak, R. The response of Naegleria gruberi to oxidative stress. Metallomics 2022, 14, mfac009. [Google Scholar] [CrossRef] [PubMed]
- Morvan, C.; Folgosa, F.; Kint, N.; Teixeira, M.; Martin-Verstraete, I. Responses of Clostridia to oxygen: From detoxification to adaptive strategies. Environ. Microbiol. 2021, 23, 4112–4125. [Google Scholar] [CrossRef]
- Kint, N.; Morvan, C.; Martin-Verstraete, I. Oxygen response and tolerance mechanisms in Clostridioides difficile. Curr. Opin. Microbiol. 2022, 65, 175–182. [Google Scholar] [CrossRef]
- Hillmann, F.; Fischer, R.J.; Saint-Prix, F.; Girbal, L.; Bahl, H. PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol. Microbiol. 2008, 68, 848–860. [Google Scholar] [CrossRef]
- Ji, C.J.; Yang, Y.M.; Kim, J.H.; Ryu, S.H.; Youn, H.; Lee, J.W. The roles of two O-donor ligands in the Fe2+-binding and H2O2-sensing by the Fe2+-dependent H2O2 sensor PerR. Biochem. Biophys. Res. Commun. 2018, 501, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Pinochet-Barros, A.; Helmann, J.D. Bacillus subtilis Fur Is a Transcriptional Activator for the PerR-Repressed pfeT Gene, Encoding an Iron Efflux Pump. J. Bacteriol. 2020, 202, e00697-19. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Tao, W.; Zhu, L.; Zhang, Y.; Li, Y. CAC2634-disrupted mutant of Clostridium acetobutylicum can be electrotransformed in air. Lett. Appl. Microbiol. 2011, 53, 379–382. [Google Scholar] [CrossRef]
- Xiao, C.; Fan, W.; Du, S.; Liu, L.; Wang, C.; Guo, M.; Zhang, L.; Zhang, M.; Yu, L. A novel glycosylated solution from Dioscorea zingiberensis C.H. Wright significantly improves the solvent productivity of Clostridium beijerinckii. Bioresour. Technol. 2017, 241, 317–324. [Google Scholar] [CrossRef]
- Heap, J.T.; Kuehne, S.A.; Ehsaan, M.; Cartman, S.T.; Cooksley, C.M.; Scott, J.C.; Minton, N.P. The ClosTron: Mutagenesis in Clostridium refined and streamlined. J. Microbiol. Methods 2010, 80, 49–55. [Google Scholar] [CrossRef]
- Mermelstein, L.D.; Welker, N.E.; Bennett, G.N.; Papoutsakis, E.T. Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology 1992, 10, 190–195. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Milne, C.B.; Janssen, H.; Lin, W.; Phan, G.; Hu, H.; Jin, Y.S.; Price, N.D.; Blaschek, H.P. Development of a gene knockout system using mobile group II introns (Targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii. Appl. Environ. Microbiol. 2013, 79, 5853–5863. [Google Scholar] [CrossRef]
- Li, L.Q.; Fu, C.H.; Zhao, C.F.; Xia, J.; Wu, W.J.; Yu, L.J. Efficient extraction of RNA and analysis of gene expression in a long-term Taxus cell culture using real-time RT-PCR. Z. Naturforsch C J. Biosci. 2009, 64, 125–130. [Google Scholar] [CrossRef]
- Guedon, E.; Petitdemange, H. Identification of the Gene Encoding NADH-Rubredoxin Oxidoreductase in Clostridium acetobutylicum. Biochem. Biophys. Res. Commun. 2001, 285, 496–502. [Google Scholar] [CrossRef]
- Hillmann, F.; Riebe, O.; Fischer, R.J.; Mot, A.; Caranto, J.D.; Kurtz, D.M., Jr.; Bahl, H. Reductive dioxygen scavenging by flavo-diiron proteins of Clostridium acetobutylicum. FEBS Lett. 2009, 583, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Riebe, O.; Fischer, R.J.; Wampler, D.A.; Kurtz, D.M.; Bahl, H. Pathway for H2O2 and O2 detoxification in Clostridium acetobutylicum. Microbiology (Read.) 2009, 155 Pt 1, 16–24. [Google Scholar] [CrossRef]
- Kawasaki, S.; Sakai, Y.; Takahashi, T.; Suzuki, I.; Niimura, Y. O2 and Reactive Oxygen Species Detoxification Complex, Composed of O2-Responsive NADH: Rubredoxin Oxidoreductase-Flavoprotein A2-Desulfoferrodoxin Operon Enzymes, Rubperoxin, and Rubredoxin, in Clostridium acetobutylicum. Appl. Environ. Microbiol. 2009, 75, 1021–1029. [Google Scholar] [CrossRef]
- Li, J.; Yan, Y.; Yang, L.; Ding, S.; Zheng, Y.; Xiao, Z.; Yang, A.; Liang, W. Duality of H2O2 detoxification and immune activation of Ralstonia solanacearum alkyl hydroperoxide reductase C (AhpC) in tobacco. Int. J. Biol. Macromol. 2024, 279 Pt 1, 135138. [Google Scholar] [CrossRef]
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef]
- Vasileva, D.; Janssen, H.; Hönicke, D.; Ehrenreich, A.; Bahl, H. Effect of iron limitation and fur gene inactivation on the transcriptional profile of the strict anaerobe Clostridium acetobutylicum. Microbiology (Read.) 2012, 158 Pt 7, 1918–1929. [Google Scholar] [CrossRef]
- Troitzsch, D.; Knop, R.; Dittmann, S.; Bartel, J.; Zühlke, D.; Möller, T.A.; Trän, L.; Echelmeyer, T.; Sievers, S. Characterizing the flavodoxin landscape in Clostridioides difficile. Microbiol. Spectr. 2024, 12, e0189523. [Google Scholar] [CrossRef]
- Sofia, H.J.; Chen, G.; Hetzler, B.G.; Reyes-Spindola, J.F.; Miller, N.E. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 2001, 29, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Mathew, L.G.; Brimberry, M.; Lanzilotta, W.N. Class C Radical SAM. Methyltransferases Involved in Anaerobic Heme Degradation. ACS Bio Med. Chem. Au 2022, 2, 655. [Google Scholar] [CrossRef]
- Komori, H.; Higuchi, Y. Structural insights into the O2 reduction mechanism of multicopper oxidase. J. Biochem. 2015, 158, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, Y.; Zhang, Y.; Zhang, Y.; Wang, W.; Han, H.; Yang, C.; Dong, X. Superoxide dismutase ameliorates oxidative stress and regulates liver transcriptomics to provide therapeutic benefits in hepatic inflammation. PeerJ 2023, 11, e15829. [Google Scholar] [CrossRef]
- Knop, R.; Keweloh, S.; Pukall, J.; Dittmann, S.; Zühlke, D.; Sievers, S. A rubrerythrin locus of Clostridioides difficile encodes enzymes that efficiently detoxify reactive oxygen species. Anaerobe 2025, 92, 102941. [Google Scholar] [CrossRef] [PubMed]
- Gheshlaghi, R.; Scharer, J.M.; Moo-Young, M.; Chou, C.P. Metabolic pathways of clostridia for producing butanol. Biotechnol. Adv. 2009, 27, 764–781. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Thakker, C.; Zhu, F.; Pena, M.; San, K.Y.; Bennett, G.N. Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD (P)H availability. J. Ind. Microbiol. Biotechnol. 2018, 45, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Girbal, L.; Soucaille, P. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: Role of NADH/NAD ratio and ATP pool. J. Bacteriol. 1994, 176, 6433–6438. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, J.; Xu, M.; Dong, J.; Varghese, S.; Yu, M.; Tang, I.C.; Yang, S.T. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: Effects of CoA transferase. Appl. Microbiol. Biotechnol. 2015, 99, 4917–4930. [Google Scholar] [CrossRef]
- Yan, R.T.; Chen, J.S. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592. Appl. Environ. Microbiol. 1990, 56, 2591–2599. [Google Scholar] [CrossRef]
Strains | Production (g/L) | Productivity (g/L/h) | Consumption Rate (g/L/h Glucose) | Residual Glucose (g/L) | ||||
---|---|---|---|---|---|---|---|---|
Acetone | Butanol | ABE | Acetone | Butanol | ABE | |||
C. beijerinckii | 5.38 ± 0.13 | 11.98 ± 0.09 | 18.68 ± 0.26 | (8.97 ± 0.22) × 10−2 | (1.99 ± 0.02)×10−1 | 0.31 ± 0.01 | 0.84 ± 0.01 | 9.33 ± 0.58 |
C. beijerinckii DS | 0.15 ± 0.01 | 0.18 ± 0.01 | 1.62 ± 0.12 | (6.25 ± 0.42) × 10−3 | (7.50 ± 0.40) × 10−3 | 0.07 ± 0.01 | 0.23 ± 0.04 | 43.33 ± 0.58 |
perR mutant | 4.85 ± 0.39 | 10.19 ± 0.56 | 15.61 ± 0.89 | (5.77 ± 0.46) × 10−2 | (1.21 ± 0.07) × 10−1 | 0.19 ± 0.01 | 0.72 ± 0.03 | 12.67 ± 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, C.; Dou, J.; Zhang, N.; Liu, L.; Du, S.; Rao, X.; Yu, L. PerR Deletion Enhances Oxygen Tolerance and Butanol/Acetone Production in a Solvent-Degenerated Clostridium beijerinckii Strain DS. Fermentation 2025, 11, 526. https://doi.org/10.3390/fermentation11090526
Xiao C, Dou J, Zhang N, Liu L, Du S, Rao X, Yu L. PerR Deletion Enhances Oxygen Tolerance and Butanol/Acetone Production in a Solvent-Degenerated Clostridium beijerinckii Strain DS. Fermentation. 2025; 11(9):526. https://doi.org/10.3390/fermentation11090526
Chicago/Turabian StyleXiao, Chuan, Jianxiong Dou, Naan Zhang, Laizhuang Liu, Shengjie Du, Xiancai Rao, and Longjiang Yu. 2025. "PerR Deletion Enhances Oxygen Tolerance and Butanol/Acetone Production in a Solvent-Degenerated Clostridium beijerinckii Strain DS" Fermentation 11, no. 9: 526. https://doi.org/10.3390/fermentation11090526
APA StyleXiao, C., Dou, J., Zhang, N., Liu, L., Du, S., Rao, X., & Yu, L. (2025). PerR Deletion Enhances Oxygen Tolerance and Butanol/Acetone Production in a Solvent-Degenerated Clostridium beijerinckii Strain DS. Fermentation, 11(9), 526. https://doi.org/10.3390/fermentation11090526