Harvesting of Microalgae by Flocculation
Abstract
:1. Introduction
2. Flocculation
2.1. Mechanism of Flocculation
2.2. Surface Properties Affecting Flocculation
3. Chemical Flocculation
4. Spontaneous and Forced Alkaline Flocculation
5. Physical Flocculation Methods
6. Autoflocculation and Bioflocculation
7. Genetic Modification
8. Conclusions
Funding
Conflicts of Interest
References
- Granados, M.R.; Acien, F.G.; Gomez, C.; Fernandez-Sevilla, J.M.; Grima, E.M. Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour. Technol. 2012, 118, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Fernandez, C.; Ballesteros, M. Microalgae autoflocculation: An alternative to high-energy consuming harvesting methods. J. Appl. Phycol. 2013, 25, 991–999. [Google Scholar] [CrossRef]
- Vandamme, D.; Foubert, I.; Fraeye, I.; Meesschaert, B.; Muylaert, K. Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresour. Technol. 2012, 105, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef] [PubMed]
- Sukenik, A.; Shelef, G. Algal autoflocculation—Verification and proposed mechanism. Biotechnol. Bioeng. 1984, 26, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2010, 2, 15. [Google Scholar] [CrossRef]
- Fasaei, F.; Bitter, J.H.; Slegers, P.M.; van Boxtel, A.J.B. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 2018, 31, 347–362. [Google Scholar] [CrossRef]
- Amer, L.; Adhikari, B.; Pellegrino, J. Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresour. Technol. 2011, 102, 9350–9359. [Google Scholar] [CrossRef] [PubMed]
- Evodos, B.V. Evodos Dynamic Settlers. Available online: http://www.evodos.eu/algae/ (accessed on 5 November 2018).
- Lane, J. A Breakthrough in Algae Harvesting. Available online: http://www.biofuelsdigest.com/bdigest/2016/08/21/a-breakthrough-in-algae-harvesting/ (accessed on 5 November 2018).
- Singh, G.; Patidar, S.K. Microalgae harvesting techniques: A review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J.; Heaven, S. A review of the harvesting of micro-algae for biofuel production. Rev. Environ. Sci. Bio-Technol. 2013, 12, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.K.; Lewis, D.M.; Ashman, P.J. Harvesting of marine microalgae by electroflocculation: The energetics, plant design, and economics. Appl. Energy 2013, 108, 45–53. [Google Scholar] [CrossRef]
- Fernandez, A.; Fernandez-Sevilla, J.M.; Grima, E.M. Challenges in microalgae biofuels. New Biotech. 2009, 25, S268. [Google Scholar] [CrossRef]
- Adachi, Y. Dynamic Aspects of Coagulation and Flocculation. Adv. Colloid Interface Sci. 1995, 56, 1–31. [Google Scholar] [CrossRef]
- Milledge, J.J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Bio-Technol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- Jorquera, O.; Kiperstok, A.; Sales, E.A.; Embirucu, M.; Ghirardi, M.L. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 2010, 101, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Danquah, M.K.; Ang, L.; Uduman, N.; Moheimani, N.; Fordea, G.M. Dewatering of microalgal culture for biodiesel production: Exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol. 2009, 84, 1078–1083. [Google Scholar] [CrossRef]
- Sanyano, N.; Chetpattananondh, P.; Chongkhong, S. Coagulation-flocculation of marine Chlorella sp for biodiesel production. Bioresour. Technol. 2013, 147, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J. Particles in Water: Properties and Processes; CRC Press: Boca Ranton, FL, USA, 2005. [Google Scholar]
- Wu, Z.C.; Zhu, Y.; Huang, W.Y.; Zhang, C.W.; Li, T.; Zhang, Y.M.; Li, A.F. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour. Technol. 2012, 110, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Alam, M.A.; Zhao, X.Q.; Zhang, X.Y.; Guo, S.L.; Ho, S.H.; Chang, J.S.; Bai, F.W. Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour. Technol. 2015, 184, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.; Kosterink, N.R.; Wacka, N.D.T.; Vermue, M.H.; Wijffels, R.H. Mechanism behind autoflocculation of unicellular green micro algae Ettlia texensis. J. Biotechnol. 2014, 174, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Ndikubwimana, T.; Zeng, X.H.; He, N.; Xiao, Z.Y.; Xie, Y.P.; Chang, J.S.; Lin, L.; Lu, Y.H. Microalgae biomass harvesting by bioflocculation-interpretation by classical DLVO theory. Biochem. Eng. J. 2015, 101, 160–167. [Google Scholar] [CrossRef]
- Li, T.; Zhu, Z.; Wang, D.S.; Yao, C.H.; Tang, H.X. Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technol. 2006, 168, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Vandamme, D.; Muylaert, K.; Fraeye, I.; Foubert, I. Floc characteristics of Chlorella vulgaris: Influence of flocculation mode and presence of organic matter. Bioresour. Technol. 2014, 151, 383–387. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, G.; Lee, H.; Lim, J.; Kim, K.; Kim, C.W.; Park, M.S.; Yang, J.W. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv. 2013, 31, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Hulatt, C.J.; Thomas, D.N. Dissolved organic matter (DOM) in microalgal photobioreactors: A potential loss in solar energy conversion? Bioresour. Technol. 2010, 101, 8690–8697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Amendola, P.; Hewson, J.C.; Sommerfeld, M.; Hu, Q. Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation. Bioresour. Technol. 2012, 116, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, P.F.; Liu, Z.L.; Jiao, Q.C. The released polysaccharide of the cyanobacterium Aphanothece halophytica inhibits flocculation of the alga with ferric chloride. J. Appl. Phycol. 2009, 21, 327–331. [Google Scholar] [CrossRef]
- Henderson, R.K.; Parsons, S.A.; Jefferson, B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Res. 2010, 44, 3617–3624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandamme, D.; Foubert, I.; Fraeye, I.; Muylaert, K. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresour. Technol. 2012, 124, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Prochazkova, G.; Jirku, V.; Bartovska, L.; Branyik, T. Using Physico-Chemical Approaches to Predict Microbial Adhesion. Chem. Listy 2011, 105, 856–863. [Google Scholar]
- Tripathy, T.; De, B.R. Flocculation: A New Way to Treat the Waste Water. J. Phys. Sci. 2006, 10, 93–127. [Google Scholar]
- Myers, D. Colloids and Colloidal Stability. Surface, Interfaces and Colloids: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- James, A.M. Microbial Cell Surface Analysis: Structural and Physicochemical Methods; VCH Publishers: Hoboken, NJ, USA, 1991. [Google Scholar]
- Henderson, R.; Parsons, S.A.; Jefferson, B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 2008, 42, 1827–1845. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, A.; Berberoglu, H. Physico-chemical surface properties of microalgae. Colloid Surf. B-Biointerfaces 2013, 112, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.K.; Baker, A.; Parsons, S.A.; Jefferson, B. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res. 2008, 42, 3435–3445. [Google Scholar] [CrossRef] [PubMed]
- Bilanovic, D.; Andargatchew, A.; Kroeger, T.; Shelef, G. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations—Response surface methodology analysis. Energy Conv. Manag. 2009, 50, 262–267. [Google Scholar] [CrossRef]
- van Oss, C.J. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J. Mol. Recognit. 2003, 16, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Branyikova, I.; Filipenska, M.; Urbanova, K.; Ruzicka, M.C.; Pivokonsky, M.; Branyik, T. Physicochemical approach to alkaline flocculation of Chlorella vulgaris induced by calcium phosphate precipitates. Colloid Surf. B-Biointerfaces 2018, 166, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.; Tan, T.W. Mechanistically harvesting of Chlorella vulgaris and Rhodotorula glutinis via modified montmorillonoid. Bioresour. Technol. 2016, 218, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.G.; Hu, B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour. Technol. 2012, 114, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.R.; Lee, D.J. Coagulation-Membrane Filtration of Chlorella vulgaris at Different Growth Phases. Dry. Technol. 2012, 30, 1317–1322. [Google Scholar] [CrossRef]
- Teixeira, C.; Kirsten, F.V.; Teixeira, P.C.N. Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. J. Appl. Phycol. 2012, 24, 557–563. [Google Scholar] [CrossRef]
- Banerjee, C.; Ghosh, S.; Sen, G.; Mishra, S.; Shukla, P.; Bandopadhyay, R. Study of algal biomass harvesting through cationic cassia gum, a natural plant based biopolymer. Bioresour. Technol. 2014, 151, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Prochazkova, G.; Kastanek, P.; Branyik, T. Harvesting freshwater Chlorella vulgaris with flocculant derived from spent brewer’s yeast. Bioresour. Technol. 2015, 177, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Farooq, W.; Lee, Y.C.; Han, J.I.; Darpito, C.H.; Choi, M.; Yang, J.W. Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem. 2013, 15, 749–755. [Google Scholar] [CrossRef]
- Lee, Y.C.; Kim, B.; Farooq, W.; Chung, J.; Han, J.I.; Shin, H.J.; Jeong, S.H.; Park, J.Y.; Lee, J.S.; Oh, Y.K. Harvesting of oleaginous Chlorella sp by organoclays. Bioresour. Technol. 2013, 132, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Sukenik, A.; Bilanovic, D.; Shelef, G. FLOCCULATION OF MICROALGAE IN BRACKISH AND SEA WATERS. Biomass 1988, 15, 187–199. [Google Scholar] [CrossRef]
- Cerff, M.; Morweiser, M.; Dillschneider, R.; Michel, A.; Menzel, K.; Posten, C. Harvesting fresh water and marine algae by magnetic separation: Screening of separation parameters and high gradient magnetic filtration. Bioresour. Technol. 2012, 118, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Toh, P.Y.; Ng, B.W.; Chong, C.H.; Ahmad, A.L.; Yang, J.W.; Derek, C.J.C.; Lim, J. Magnetophoretic separation of microalgae: The role of nanoparticles and polymer binder in harvesting biofuel. RSC Adv. 2014, 4, 4114–4121. [Google Scholar] [CrossRef]
- Prochazkova, G.; Safarik, I.; Branyik, T. Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour. Technol. 2013, 130, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.R.; Wang, F.; Wang, S.K.; Liu, C.Z.; Guo, C. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresour. Technol. 2013, 138, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, S.Y.; Praveenkumar, R.; Kim, B.; Seo, J.Y.; Jeon, S.G.; Na, J.G.; Park, J.Y.; Kim, D.M.; Oh, Y.K. Repeated use of stable magnetic flocculant for efficient harvest of oleaginous Chlorella sp. Bioresour. Technol. 2014, 167, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Prochazkova, G.; Podolova, N.; Safarik, I.; Zachleder, V.; Branyik, T. Physicochemical approach to freshwater microalgae harvesting with magnetic particles. Colloid Surf. B-Biointerfaces 2013, 112, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.K.; Chieh, D.C.J.; Jalak, S.A.; Toh, P.Y.; Yasin, N.H.M.; Ng, B.W.; Ahmad, A.L. Rapid Magnetophoretic Separation of Microalgae. Small 2012, 8, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.K.; Wang, F.; Hu, Y.R.; Stiles, A.R.; Guo, C.; Liu, C.Z. Magnetic Flocculant for High Efficiency Harvesting of Microalgal Cells. ACS Appl. Mater. Interfaces 2014, 6, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.P.; Frappart, M.; Jaouen, P.; Pruvost, J.; Bourseau, P. Harvesting Chlorella vulgaris by natural increase in pH: Effect of medium composition. Environ. Technol. 2014, 35, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Folkman, Y.; Wachs, A.M. Removal of algae from stabilization pond effluents by lime treatment. Water Res. 1973, 7, 419. [Google Scholar] [CrossRef]
- Spilling, K.; Seppala, J.; Tamminen, T. Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. J. Appl. Phycol. 2011, 23, 959–966. [Google Scholar] [CrossRef]
- Schlesinger, A.; Eisenstadt, D.; Bar-Gil, A.; Carmely, H.; Einbinder, S.; Gressel, J. Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol. Adv. 2012, 30, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Bosma, R.; van Spronsen, W.A.; Tramper, J.; Wijffels, R.H. Ultrasound, a new separation technique to harvest microalgae. J. Appl. Phycol. 2003, 15, 143–153. [Google Scholar] [CrossRef]
- Kumar, H.D.; Yadava, P.K.; Gaur, J.P. Electrical flocculation of the unicellular green-alga chlorella-vulgaris Beijerinck. Aquat. Bot. 1981, 11, 187–195. [Google Scholar] [CrossRef]
- Kim, J.; Ryu, B.G.; Kim, K.; Kim, B.K.; Han, J.I.; Yang, J.W. Continuous microalgae recovery using electrolysis: Effect of different electrode pairs and timing of polarity exchange. Bioresour. Technol. 2012, 123, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Poelman, E.; DePauw, N.; Jeurissen, B. Potential of electrolytic flocculation for recovery of micro-algae. Resour. Conserv. Recycl. 1997, 19, 1–10. [Google Scholar] [CrossRef]
- Vandamme, D.; Pontes, S.C.V.; Goiris, K.; Foubert, I.; Pinoy, L.J.J.; Muylaert, K. Evaluation of Electro-Coagulation-Flocculation for Harvesting Marine and Freshwater Microalgae. Biotechnol. Bioeng. 2011, 108, 2320–2329. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Yang, J.X.; Tian, J.Y.; Ma, F.; Tu, G.; Du, M.A. Electro-coagulation-flotation process for algae removal. J. Hazard. Mater. 2010, 177, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Fayad, N.; Yehya, T.; Audonnet, F.; Vial, C. Harvesting of microalgae Chlorella vulgaris using electro-coagulation-flocculation in the batch mode. Algal Res. 2017, 25, 1–11. [Google Scholar] [CrossRef]
- Salim, S.; Vermue, M.H.; Wijffels, R.H. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour. Technol. 2012, 118, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Craggs, R.; Sutherland, D.; Campbell, H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol. 2012, 24, 329–337. [Google Scholar] [CrossRef]
- Taylor, R.L.; Rand, J.D.; Caldwell, G.S. Treatment with Algae Extracts Promotes Flocculation, and Enhances Growth and Neutral Lipid Content in Nannochloropsis oculata—A Candidate for Biofuel Production. Mar. Biotechnol. 2012, 14, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.; Lewis, D.M.; Ashman, P.J. Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J. Appl. Phycol. 2009, 21, 559–567. [Google Scholar] [CrossRef]
- Zhou, W.G.; Cheng, Y.L.; Li, Y.; Wan, Y.Q.; Liu, Y.H.; Lin, X.Y.; Ruan, R. Novel Fungal Pelletization-Assisted Technology for Algae Harvesting and Wastewater Treatment. Appl. Biochem. Biotechnol. 2012, 167, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Van Den Hende, S.; Vervaeren, H.; Saveyn, H.; Maes, G.; Boon, N. Microalgal Bacterial Floc Properties Are Improved by a Balanced Inorganic/Organic Carbon Ratio. Biotechnol. Bioeng. 2011, 108, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.Y.; Mennerich, A.; Urban, B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011, 45, 3351–3358. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.L.; Gao, Z.; Yin, J.L.; Tang, X.H.; Ji, X.J.; Huang, H. Harvesting of microalgae by flocculation with poly (gamma-glutamic acid). Bioresour. Technol. 2012, 112, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; La, H.J.; Ahn, C.Y.; Park, Y.H.; Oh, H.M. Harvest of Scenedesmus sp with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresour. Technol. 2011, 102, 3163–3168. [Google Scholar] [CrossRef] [PubMed]
- Larkum, A.W.D.; Ross, I.L.; Kruse, O.; Hankamer, B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol. 2012, 30, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Georgianna, D.R.; Mayfield, S.P. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 2012, 488, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Govender, P.; Domingo, J.L.; Bester, M.C.; Pretorius, I.S.; Bauer, F.F. Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2008, 74, 6041–6052. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.; Craig, B.; Yan, P.; Philip, L. Induction of Flocculation in Photosynthetic Organisms. WO 2,009,158,658 A3, 29 April 2010. [Google Scholar]
- Scholz, M.; Hoshino, T.; Johnson, D.; Riley, M.R.; Cuello, J. Flocculation of wall-deficient cells of Chlamydomonas reinhardtii mutant cw15 by calcium and methanol. Biomass Bioenergy 2011, 35, 4835–4840. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages | Dry Solids after Harvesting (%) |
---|---|---|---|
Centrifugation of microalgae | Cell recovery over 90%, can handle most algal types with rapid efficient cell harvesting, reliable. | High capital and operational costs, energy intensive | 12–22 |
Filtration of microalgae | Cell recovery 70–90%, wide variety of filter and membrane types available, reliable, can handle delicate cells. | Highly dependent on algal species, best suited to large algal cells, clogging or fouling an issue, high capital and operational costs. | 5–27 |
Sedimentation of microalgae | Cell recovery 10–90%, low cost, potential for use as a first stage to reduce energy input and cost of subsequent stages. | Algal species specific, best suited to dense (heavy) non-motile cells, separation can be slow or unreliable, low final concentration. | 0.5–3 |
Flotation of microalgae | Cell recovery 50–90%, can be more rapid than sedimentation, possibility to combine with gaseous transfer. | Algal species specific, high capital and operational cost, flocculants usually required. | 3–6 |
Flocculation + sedimentation of microalgal flocs | Cell recovery over 90%, wide range of flocculants available, variable price, can be low-cost. | Removal of flocculants, chemical contamination, fragile flocs and/or longer settling times. | 3–8 |
Electroflocculation + sedimentation or flotation of microalgal flocs | Cell recovery over 90%, low energy consumption, possibility to combine with flotation in one step | Contamination of biomass with metal ions, active chlorine can be formed by treatment of seawater | 10 (sedimentation) 30–40 (flotation) |
Magnetic separation of microalgae | Cell recovery over 90%, fast, can be considered as one harvesting step, cost effective. | Magnetic modification of biomass required, subsequent obtaining of pure and magnetic particle-free biomass can be problematic. | 10–20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T. Harvesting of Microalgae by Flocculation. Fermentation 2018, 4, 93. https://doi.org/10.3390/fermentation4040093
Branyikova I, Prochazkova G, Potocar T, Jezkova Z, Branyik T. Harvesting of Microalgae by Flocculation. Fermentation. 2018; 4(4):93. https://doi.org/10.3390/fermentation4040093
Chicago/Turabian StyleBranyikova, Irena, Gita Prochazkova, Tomas Potocar, Zuzana Jezkova, and Tomas Branyik. 2018. "Harvesting of Microalgae by Flocculation" Fermentation 4, no. 4: 93. https://doi.org/10.3390/fermentation4040093
APA StyleBranyikova, I., Prochazkova, G., Potocar, T., Jezkova, Z., & Branyik, T. (2018). Harvesting of Microalgae by Flocculation. Fermentation, 4(4), 93. https://doi.org/10.3390/fermentation4040093