Food Wastes as a Potential New Source for Edible Insect Mass Production for Food and Feed: A review
Abstract
:1. Introduction
2. Edible Insect Species Commonly Mass Produced for Food, Feed, and Other Applications
3. Edible Insect Species That Can Utilize Food Waste as Feed and Their Nutritional Requirements in Mass Production
4. Rearing Conditions and Insect Mass Technologies
5. Nutritional Composition, Ingredient Characterization, and Food Functional Properties of Edible Insect Species
6. Fermentation Process in Edible Insect Chain Production
7. Legislation, Food Safety, and Potential Hazards Associated with the Edible Insect Food-to-Food Production Chain
8. Edible Insect Rearing Using Food Wastes: Towards Green and Sustainable Food Waste Management
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pal, P.; Roy, S. Edible insects: Future of Human food—A Review. Int. Lett. Nat. Sci. 2014, 26, 1–11. [Google Scholar] [CrossRef]
- Van Itterbeeck, J.; van Huis, A. Environmental manipulation for edible insect procurement: A historical perspective. J. Ethnobiol. Ethnomed. 2012, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yen, A.L. Insects as food and feed in the Asia Pacific region: Current perspectives and future directions. J. Insects Food Feed. 2015, 1, 33–55. [Google Scholar] [CrossRef]
- Yi, C.; He, Q.; Wang, L.; Kuang, R. The Utilization of Insect-resources in Chinese Rural Area. J. Agric. Sci. 2010, 2, 146–154. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Jongema, Y. List of Edible Insects of the World; Wageningen University and Research, Department of Entomology of Wageningen University: Wageningen, The Netherlands, 2015. [Google Scholar]
- Jansson, A.; Berggren, Å. Insects as Food—Something for the Future? Swedish University of Agricultural Sciences (SLU): Uppsala, Sweden, 2015. [Google Scholar]
- Caparros Megido, R.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Pref. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Klocke, M.; Schlüter, O. Insect biodiversity: Underutilized bioresource for sustainable applications in life sciences. Reg. Environ. Change 2017, 17, 1445–1454. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, 45–54. [Google Scholar] [CrossRef]
- Van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible insects: Future prospects for food and feed security. In FAO Forestry Paper; FAO: Rome, Italy, 2013; Volume 171. [Google Scholar]
- Pimentel, D.; Berger, B.; Filiberto, D.; Newton, M.; Wolfe, B.; Karabinakis, E.; Clark, S.; Poon, E.; Abbett, E.; Nandagopal, S. Water Resources: Agricultural and Environmental Issues. BioScience 2004, 54, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Zewdie, A. Impacts of Climate Change on Food Security: A Literature Review in Sub Saharan Africa. J. Earth Sci. Clim. Change 2014, 5, 45–54. [Google Scholar]
- Dunkel, F.V.; Paine, C. Chapter 1—Introduction to Edible Insects. In In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J., Guadalupe Roja, M., Eds.; Academic Press: San Diego, CA, USA, 2016; Volume 2, pp. 1–27. [Google Scholar]
- Gahukar, R.T. Chapter 4—Edible Insects Farming: Efficiency and Impact on Family Livelihood, Food Security, and Environment Compared With Livestock and Crops. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J., Guadalupe Roja, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 85–111. [Google Scholar]
- Van Huis, A. Edible insects contributing to food security? Agric Food Secur. 2015, 4, 20. [Google Scholar] [CrossRef]
- Defoliart, G.R. Edible insects as minilivestock. Biodivers Conserv. 1995, 4, 306–321. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013a, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Kelemu, S.; Niassy, S.; Torto, B.; Fiaboe, K.; Affognon, H.; Tonnang, H.; Maniania, N.K.; Ekesi, S. African edible insects for food and feed: Inventory, diversity, commonalities and contribution to food security. J. Insects Food Feed. 2015, 1, 103–119. [Google Scholar] [CrossRef]
- DeFoliart, G.R. An overview of the role of edible insects in preserving biodiversity. Ecol. Food Nutr. 1997, 36, 109–132. [Google Scholar] [CrossRef]
- Pleissner, D.; Lin, C.S.K. Valorisation of food waste in biotechnological processes. Sustain. Chem. Processes 2013, 1, 13–19. [Google Scholar] [CrossRef]
- Stenmarck, A.; Jensen, C.; Quested, T.; Moates, G. Estimates of European Food Waste Levels. Stockholm, Sweden, 2016. Available online: http://www.eufusions.org/phocadownload/Publications/Estimates%20of%20European%20food%20waste%20levels.pdf (accessed on 3 July 2019).
- Kosseva, M.R. Chapter 3: Processing of Food Wastes. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Academic Press: Heidelberg, Germany, 2009; Volume 58, pp. 57–136. [Google Scholar]
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef]
- Russ, W.; Meyer-Pittroff, R. Utilizing Waste Products from the Food Production and Processing Industries. Crit. Rev. Food Sci. Nutr. 2004, 44, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Duff, S.J.B.; Murray, W.D. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresour. Technol. 1996, 55, 1–33. [Google Scholar] [CrossRef]
- Lalander, C.H.; Fidjeland, J.; Diener, S.; Eriksson, S.; Vinnerås, B. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron. Sustain. Dev. 2015, 35, 261–271. [Google Scholar] [CrossRef]
- van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Cortes Ortiz, J.A.; Ruiz, A.T.; Morales-Ramos, J.A.; Thomas, M.; Rojas, M.G.; Tomberlin, J.K.; Yi, L.; Han, R.; Giroud, L.; Jullien, R.L. Chapter 6—Insect Mass Production Technologies. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J., Guadalupe Roja, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 154–201. [Google Scholar]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Rueda, L.C.; Ortega, L.G.; Segura, N.A.; Acero, V.M.; Bello, F. Lucilia sericata strain from Colombia: Experimental Colonization, Life Tables and Evaluation of Two Artifcial Diets of the Blowfy Lucilia sericata (Meigen) (Diptera: Calliphoridae), Bogotá, Colombia Strain. Biol. Res. 2010, 43, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, J.; Wu, W.-M.; Zhao, J.; Song, Y.; Gao, L.; Yang, R.; Jiang, L. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environ. Sci. Technol. 2015a, 49, 12080–12086. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, J.; Wu, W.-M.; Zhao, J.; Song, Y.; Gao, L.; Yang, R.; Jiang, L. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environ. Sci. Technol. 2015, 49, 12087–12093. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.; Studt Solano, N.M.; Roa Gutiérrez, F.; Zurbrügg, C.; Tockner, K. Biological Treatment of Municipal Organic Waste using Black Soldier Fly Larvae. Waste Biomass Valoriz. 2011, 2, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Loh, J.M.S.; Adenwalla, N.; Wiles, S.; Proft, T. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 2013, 4, 419–428. [Google Scholar] [CrossRef]
- Paul, D.; Dey, S. Essential amino acids, lipid profile and fat-soluble vitamins of the edible silkworm Bombyx mori (Lepidoptera: Bombycidae). Int. J. Trop. Insect Sci. 2014, 34, 239–247. [Google Scholar] [CrossRef]
- Hanboonsong, Y.; Jamjanya, T.; Durst, P.B. Six-Legged Livestock: Edible Insect Farming, Collection and Marketing in Thailand; RAP Publication No. 2013/03; Food and Agriculture Organization (FAO), Regional Office for Asia and the Pacific Bangog: Bangkok, Thailand, 2013. [Google Scholar]
- Omotoso, O.T.; Adedire, C.O. Nutrient composition, mineral content and the solubility of the proteins of palm weevil, Rhynchophorus phoenicis f. (Coleoptera: Curculionidae). J. Zhejiang Univ. Sci. B. 2007, 8, 318–322. [Google Scholar] [CrossRef]
- Elemo, B.O.; Elemo, G.N.; Makinde, M.; Erukainure, O.L. Chemical Evaluation of African Palm Weevil, Rhychophorus phoenicis, Larvae as a Food Source. J. Insect Sci. 2011, 11, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Lundy, M.E.; Parrella, M.P. Crickets Are Not a Free Lunch: Protein Capture from Scalable Organic Side-Streams via High-Density Populations of Acheta domesticus. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Hope, R.A.; Frost, P.G.H.; Gardiner, A.; Ghazoul, J. Experimental analysis of adoption of domestic mopane worm farming technology in Zimbabwe. Dev. S. Afr. 2009, 26, 29–46. [Google Scholar] [CrossRef]
- Halloran, A.; Roos, N.; Eilenberg, J.; Cerutti, A.; Bruun, S. Life cycle assessment of edible insects for food protein: A review. Agron. Sustain. Dev. 2016, 36, 13–19. [Google Scholar] [CrossRef]
- Van Zanten, H.H.E.; Mollenhorst, H.; Oonincx, D.G.A.B.; Bikker, P.; Meerburg, B.G.; de Boer, I.J.M. From environmental nuisance to environmental opportunity: Housefly larvae convert waste to livestock feed. J. Clean. Prod. 2015, 102, 362–369. [Google Scholar] [CrossRef]
- Van Itterbeeck, J. Prospects of Semi-Cultivating the Edible Weaver Ant Oecophylla Smaragdina. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2014. [Google Scholar]
- Phiriyangkul, P.; Chutima, S.; Srisomsap, C.; Chokchaichamnankit, D.; Punyarit, P. Effect of Food Thermal Processing on Allergenicity Proteins in Bombay Locust (Patanga Succincta). Int. J. Food Eng. 2015, 1, 23–28. [Google Scholar] [CrossRef]
- Bednářová, M.; Borkovcová, M.; Mlček, J.; Rop, O.; Zeman, L. Edible insects—Species suitable for entomophagy under condition of Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 587–593. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van der Poel, A.F.B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 2011, 30, 9–16. [Google Scholar] [CrossRef]
- Chen, P.P.; Wongsiri, S.; Jamyanya, T.; Rinderer, T.E.; Vongsamanode, S.; Matsuka, M.; Sylvester, H.A.; Oldroyd, B.P. Honey Bees and other Edible Insects Used as Human Food in Thailand. Am. Entomol. 1998, 44, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Rumpold, B.A.; Schlüter, O. Nutrient composition of insects and their potential application in food and feed in Europe. Food Chain 2014, 4, 129–139. [Google Scholar] [CrossRef]
- De Figueirêdo, R.E.C.R.; Vasconcellos, A.; Policarpo, I.S.; Romeu, R. Edible and medicinal termites: A global overview. J. Ethnobiol. Ethnomed. 2015, 11: 29, 13–19. [Google Scholar]
- Van Huis, A. Insects as Food in sub-Saharan Africa. Insect Sci. Its Appl. 2003, 23, 163–185. [Google Scholar] [CrossRef]
- Dzerefos, C.M.; Witkowski, E.T.F.; Toms, R. Comparative ethnoentomology of edible stinkbugs in southern Africa and sustainable management considerations. J. Ethnobiol. Ethnomed. 2013, 9. [Google Scholar] [CrossRef] [PubMed]
- Durst, P.B.; Leslie, R.N.; Shono, K. Edible Forest Insects: Exploring New horizons and Traditional Practices. In Forest insects as food: Humans bite back; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; FAO-Regional Office for Asia and the Pacific: Chiang Mai, Thailand, 2008; pp. 1–4. [Google Scholar]
- Mitsuhashi, J. Insects as Traditional Foods in Japan. Ecol. Food Nutr. 1997, 36, 187–199. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE 2011, 5, e14445. [Google Scholar] [CrossRef] [PubMed]
- Hervet, V.A.D.; Laird, R.A.; Floate, K.D. A Review of the McMorran Diet for Rearing Lepidoptera Species With Addition of a Further 39 Species. J. Insect Sci. 2016, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sahayraj, K.; Balasubramanian, R. Biological control potential of artificial diet and insect hosts reared Rhynocoris marginatus (Fab.) on three pests. Arch. Phytopathol. Plant. Prot. 2009, 42, 238–247. [Google Scholar] [CrossRef]
- Hogsette, J.A. New Diets for Production of House Flies and Stable Flies (Diptera: Muscidae) in the Laboratory. J. Econ. Entomol. 1992, 85, 2291–2294. [Google Scholar] [CrossRef] [Green Version]
- Morales-Ramos, J.A.; Rojas, M.G.; Coudron, T.A. Chapter 7—Artificial Diet Development for Entomophagous Arthropods. In Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens; Morales-Ramos, J., Shapiro-Illan, D.I., Guadalupe Roja, M., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 203–240. [Google Scholar]
- Costa-Neto, E.M.; Dunkel, F.V. Chapter 2—Insects as Food: History, Culture, and Modern Use around the World. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J., Guadalupe Roja, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 29–60. [Google Scholar]
- Morales-Ramos, J.A.; Rojas, M.G.; Shapiro-llan, D.I.; Tedders, W.L. Use of Nutrient Self-Selection as a Diet Refining Tool in Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2013, 48, 206–221. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G. Effect of Larval Density on Food Utilization Efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2015, 108, 2259–2267. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, H.; Chen, G.; Qiao, L.; Li, J.; Liu, B.; Liu, Z.; Li, M.; Liu, X. Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. Eur. Food Res. Technol. 2019, 245, 1–10. [Google Scholar] [CrossRef]
- Aguilar-Miranda, E.D.; López, M.G.; Escamilla-Santana, C.; Barba de la Rosa, A.P. Characteristics of Maize Flour Tortilla Supplemented with Ground Tenebrio molitor Larvae. J. Agric. Food Chem. 2002, 50, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Barry, T. Evaluation of the Economic, Social, and Biological Feasibility of Bioconverting Food Wastes With the BlackSoldier Fly (Hermetia illucens). Doctoral thesis, University of North Texas, Denton, TX, USA, 2004. [Google Scholar]
- Miech, P.; Berggren, Å.; Lindberg, J.E.; Chhay, T.; Khieu, B.; Jansson, A. Growth and survival of reared Cambodian field crickets (Teleogryllus testaceus) fed weeds, agricultural and food industry by-products. J. Insects Food Feed. 2016, 2, 285–292. [Google Scholar] [CrossRef]
- Žáková, M. Hermetia illucens application in management of selected types of organic waste. In Proceedings of the 2nd Electronic International Interdisciplinary Conference, Section 12, 2–6 September 2013; Available online: http://www.eiic.cz/archive/?vid=1&aid=2&kid=20201-33 (accessed on 2 September 2013).
- Chapman, R.F. The Insects: Structure and Function, 4th ed.; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Lundgren, J.G. Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol. Control. 2009, 51, 294–305. [Google Scholar] [CrossRef]
- Fooddata-DTU. Technical University of Denmark, 2015. Available online: https://frida.fooddata.dk/?lang=en (accessed on 3 August 2019).
- Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Li, S.; Zhu, D.; Li, K.; Yang, Y.; Lei, Z.; Zhang, Z. Soybean Curd Residue: Composition, Utilization, and Related Limiting Factors. ISRN Ind. Eng. 2013. [Google Scholar] [CrossRef]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef]
- Aguilar-Uscanga, B.; François, J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 2003, 37, 268–274. [Google Scholar] [CrossRef]
- Fesel, P.H.; Zuccaro, A. β-Glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 2016, 90, 53–60. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Thielen, U.; Glenney, P.; Moran, C. A Study of Saccharomyces cerevisiae Cell Wall Glucans. J. Inst. Brew. 2009, 115, 151–158. [Google Scholar] [CrossRef]
- Mousa, E.I.; Al-Mohizea, I.S.; Al-Kanhal, M.A. Chemical composition and nutritive value of various breads in Saudi Arabia. Food Chem. 1992, 43, 259–264. [Google Scholar] [CrossRef]
- Liang, S.; McDonald, A.G. Chemical and Thermal Characterization of Potato Peel Waste and Its Fermentation Residue as Potential Resources for Biofuel and Bioproducts Production. J. Agric. Food Chem. 2014, 62, 8421–8429. [Google Scholar] [CrossRef] [PubMed]
- Izmirlioglu, G.; Demirci, A. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization. Int. J. Mol. Sci. 2015, 16, 24490–24505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Zhao, S.; Zhang, Y.; Yu, Y.; Liu, J.; Xu, M. Quality characteristic of spray-drying egg white powders. Mol. Biol. Rep. 2013, 40, 5677–5683. [Google Scholar] [CrossRef] [PubMed]
- Nantiyakul, N.; Furse, S.; Fisk, I.; Foster, T.J.; Tucker, G.; Gray, D.A. Phytochemical Composition of Oryza sativa (Rice) Bran Oil Bodies in Crude and Purified Isolates. J. Am. Oil Chem. Soc. 2012, 89, 1867–1872. [Google Scholar] [CrossRef]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef]
- Fahad, S.M.; Islam, A.F.M.M.; Ahmed, M.; Uddin, N.; Alam, M.R.; Alam, M.F.; Khalik, M.F.; Hossain, M.S.; Hossain, M.L.; Abedin, M.J. Determination of Elemental Composition of Malabar spinach, Lettuce, Spinach, Hyacinth Bean, and Cauliflower Vegetables Using Proton Induced X-Ray Emission Technique at Savar Subdistrict in Bangladesh. BioMed Res. Int. 2015. [Google Scholar] [CrossRef]
- Aro, S.O.; Aletor, V.A.; Tewe, O.O.; Agbede, J.O. Nutritional potentials of cassava tuber wastes: A case study of a cassava starch processing factory in south-western Nigeria. Livestock Res. Rural Dev. 2010, 22. Available online: http://www.lrrd.org/lrrd22/11/aro22213.htm (accessed on 5 June 2019).
- Zhao, X.; Chen, J.; Du, F. Potential use of peanut by-products in food processing: A review. J. Food Sci. Technol. 2012, 49, 521–529. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, W.; Zhu, G.; Zhou, R.; Niu, Y. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. J. Sci. Food Agric. 2014, 94, 1482–1494. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Tomotake, H.; Katagiri, M.; Yamato, M. Silkworm Pupae (Bombyx mori) Are New Sources of High Quality Protein and Lipid. J. Nutr. Sci. Vitaminol. 2010, 56, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; Eisner-Schadler, V.; van Huis, A.; van Boekel, M.A.J.S. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Vázquez-Gutiérrez, J.L.; Johansson, D.P.; Landberg, R.; Langton, M. Yellow Mealworm Protein for Food Purposes—Extraction and Functional Properties. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete Nutrient Content of Four Species of Feeder Insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef]
- Banjo, A.D.; Lawal, O.A.; Songonuga, E.A. The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr. J. Biotechnol. 2006, 5, 298–301. [Google Scholar]
- Low, Y.; Wein, L. Reversing the nutrient drain through urban insect farming—Opportunities and challenges. Bioengineering 2018, 5, 226–237. [Google Scholar] [CrossRef]
- Alattar, M.A.; Alatter, F.N.; Popa, R. Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn plants (Zea mays). Plant Sci. Today 2016, 3, 57–62. [Google Scholar] [CrossRef]
- Borremans, A.; Lenaerts, S.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Marination and fermentation of yellow mealworm larvae (Tenebrio molitor). Food Control. 2018, 92, 47–52. [Google Scholar] [CrossRef]
- Klunder, H.C.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control. 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- European Union (EU). Regulation (EU) 2015/2283 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Official Journal of the European Union. 2015. Available online: http://data.europa.eu/eli/reg/2015/2283/oj (accessed on 1 August 2019).
- European Union (EU). Regulation (EU) 999/2001 on laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Official Journal of the European Union. 2001. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32001R0999 (accessed on 1 August 2019).
- International Platform of Insects for Food and Feed (IPIFF). Available online: http://ipiff.org/insects-eu-legislation (accessed on 1 August 2019).
- Marone, P.A. Chapter 7—Food Safety and Regulatory Concerns. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J., Guadalupe Roja, M., Eds.; Academic Press: San Diego, CA, USA, 2016. [Google Scholar]
- Halloran, A. Discussion Paper: Regulatory Frameworks Influencing Insects as Food and Feed. Food and Agriculture Organization (FAO), 2014. Available online: http://www.fao.org/edible-insects/39620-04ee142dbb758d9a521c619f31e28b004.pdf (accessed on 21 June 2019).
- GPO-U.S. Government Publishing Office. Available online: https://www.gpo.gov/fdsys/pkg/USCODE-2010-title21/pdf/USCODE-2010-title21-chap9-subchapIV-sec348.pdf (accessed on 2 August 2019).
- ANSES-French Agency for Food, Environmental and Occupational Health & Safety. Opinion on: The Use of Insects as Food and Feed and the Review of Scientific Knowledge on the Health Risks Related to the Consumption of Insects. ANSES Opinion Request No. 2014-SA-0153; 2015. Available online: https://www.anses.fr/en/system/files/BIORISK2014sa0153EN.pdf (accessed on 27 June 2019).
- Saeed, T.; Dagga, F.A. Analysis of residual pesticides present in edible locusts captured in kuwait. Arab Gulf J. Sci. Res. 1993, 11, 1–5. [Google Scholar]
- Gaylor, M.O.; Harvey, E.; Hale, R.C. House crickets can accumulate polybrominated diphenyl ethers (PBDEs) directly from polyurethane foam common in consumer products. Chemosphere 2012, 86, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, L.; Block, M. Excretion of cadmium during moulting and metamorphosis in Tenebrio molitor; (Coleoptera; Tenebrionidae). Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol. 1995, 111, 325–328. [Google Scholar]
- Pedersen, S.A.; Kristiansen, E.; Andersen, R.A.; Zachariassen, K.E. Cadmium is deposited in the gut content of larvae of the beetle Tenebrio molitor and involves a Cd-binding protein of the low cysteine type. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2008, 148, 217–222. [Google Scholar]
- Vijver, M.; Jager, T.; Posthuma, L.; Peijnenburg, W. Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicol. Environ. Saf. 2003, 54, 277–289. [Google Scholar] [CrossRef]
- Green, K.; Broome, L.; Johnston, S.; Heinze, D. Long distance transport of arsenic by migrating Bogong moths from agricultural lowlands to mountain ecosystems. Vic. Nat. 2001, 118, 112–116. [Google Scholar]
- Zhuang, P.; Zou, H.; Shu, W. Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: Field study. J. Environ. Sci. 2009, 21, 849–853. [Google Scholar] [CrossRef]
- Cappellozza, S.; Saviane, A.; Tettamanti, G.; Squadrin, M.; Vendramin, E.; Paolucci, P.; Franzetti, E.; Squartini, A. Identification of Enterococcus mundtii as a pathogenic agent involved in the “flacherie” disease in Bombyx mori L. larvae reared on artificial diet. J. Invertebr. Pathol. 2011, 106, 386–393. [Google Scholar] [CrossRef]
- Adesina, A.J. Proximate and anti-nutritional composition of two common edible insects: Yam beetle (Heteroligus meles) and palm weevil (Rhynchophorus phoenicis). Elixir Food Sci. 2012, 49, 9782–9786. [Google Scholar]
- Adeduntan, S.A. Nutritional and antinutritional characteristics of some insects foraging in Akure forest reserve Ondo State, Nigeria. J. Food Technol. 2005, 3, 563–567. [Google Scholar]
- Omotoso, O.T. Nutrient Composition, Mineral Analysis and Anti-nutrient Factors of Oryctes rhinoceros L. (Scarabaeidae: Coleoptera) and Winged Termites, Marcrotermes nigeriensis Sjostedt. (Termitidae: Isoptera). Br. J. Appl. Sci. Technol. 2015, 8, 97–106. [Google Scholar] [CrossRef]
- Armentia, A.; Lombardero, M.; Blanco, C.; Fernández, S.; Fernández, A.; Sánchez-Monge, R. Allergic hypersensitivity to the lentil pest Bruchus lentis. Allergy 2006, 61, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Verhoeckx, K.C.; van Broekhoven, S.; Gaspari, M.; de Hartog-Jager, S.C.; de Jong, G.; Wichers, H.; van Hoffen, E.; Houben, G.; Knulst, A.C. House dust mite (Derp 10) and crustacean allergic patients may be at risk when consuming food containing mealworm proteins. Clin. Transl. Allergy 2013, 3, 12–16. [Google Scholar] [CrossRef]
- Sehgal, R.; Bhatti, H.P.; Bhasin, D.K.; Sood, A.K.; Nada, R.; Malla, N.; Singh, K. Intestinal myiasis due to Musca domestica: A report of two cases. Jpn. J. Infect. Dis. 2002, 55, 191–193. [Google Scholar]
- Graczyk, T.K.; Knight, R.; Tamang, L. Mechanical Transmission of Human Protozoan Parasites by Insects. Clin. Microbiol. Rev. 2005, 18, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Marshall, D.L.; Dickson, J.S.; Nguyen, N.H. Chapter 8—Ensuring Food Safety in Insect Based Foods: Mitigating Microbiological and Other Foodborne Hazards. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J., Guadalupe Roja, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 223–253. [Google Scholar]
- Schabel, H.G. Forest insects as food: A global review. In Edible Forest Insect: Humans Bite Back. Proceedings of a Workshop on Asia-Pacific Resources and Their Potential for Development; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; FAO-Regional Office for Asia and the Pacific: Bangkok, Thailand, 2010. [Google Scholar]
- Fraqueza, M.J.R.; da Silva Coutinho Patarata, L.A. Constraints of HACCP Application on Edible Insect for Food and Feed. 2017. Available online: http://dx.doi.org/10.5772/intechopen.69300 (accessed on 1 July 2019).[Green Version]
- Lupi, O. Could ectoparasites act as vectors for prion diseases? Int. J. Dermatol. 2003, 42, 425–429. [Google Scholar] [CrossRef]
- Kosseva, M.R. Chapter 3—Sources, Characterization, and Composition of Food Industry Wastes. In Food Industry Wastes; Kosseva, M.R., Webb, C., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 3, pp. 37–60. [Google Scholar]
- Arancon, R.A.D.; Lin, C.S.K.; Chan, K.M.; Kwan, T.H.; Luque, R. Advances on waste valorization: New horizons for a more sustainable society. Energy Sci. Eng. 2013, 1, 53–71. [Google Scholar] [CrossRef]
- Luque, R.; Clark, J.H. Valorisation of food residues: Waste to wealth using green chemical technologies. Sustain. Chem. Processes. 2013, 1, 112–116. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Koutinas, A.A.; Stamatelatou, K.; Mubofu, E.B.; Matharu, A.S.; Kopsahelis, N.; Pfaltzgraff, L.A.; Clark, J.H.; Papanikolaou, S.; Kwan, T.H. Current and future trends in food waste valorization for the production of chemicals, materials and fuels: A global perspective. Biofuels Bioprod. Biorefin. 2014, 8, 686–715. [Google Scholar] [CrossRef]
- Woon, K.S.; Lo, I.M.C.; Chiu, S.L.H.; Yan, D.Y.S. Environmental assessment of food waste valorization in producing biogas for various types of energy use based on LCA approach. Waste Manag. 2016, 50, 290–299. [Google Scholar] [CrossRef] [PubMed]
- House, J. Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Apetite 2016, 107, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, C.; Siegrist, M. Insects as food: Perception and acceptance. Findings from current research. Ernahrungs Umschau 2016, 64, 44–50. [Google Scholar] [CrossRef]
Insect species | Common name | Developmental Stage | Source | Application | Reference |
---|---|---|---|---|---|
Bombyx mori | Mulberry silkworm | Larvae, pupae | Farming | Human food, animal feed | [11,15,37] |
Tenebrio molitor | Yellow mealworm | Larvae | Farming | Human food, feed for pets, zoo animals and fish, polystyrene degradation | [15,28,31,33,34] |
Galleria mellonela | Waxworm | Larvae | Farming | Human food, model for human diseases study | [7,30,36] |
Rhynchophorus ferrugineus | Red palm weevil | Larvae, pupae | Semi-cultivation | Human food | [38,39] |
Rhynchophorus phoenicis | Palm weevil | Larvae | Semi-cultivation | Human food | [39,40] |
Acheta domesticus | House cricket | Adult | Farming | Human food, pet food, protein extraction | [15,41] |
Gryllus bimacalatus | Mediterranean field cricket | Adult | Farming | Animal feed | [30] |
Imbrasia belina | Mopane worm (MW) | Larvae (caterpillar) | Farming | Human food | [42] |
Musca domestica | Housefly | Larvae | Farming | Animal and fish feed | [43,44] |
Lucilia sericata | Green bottlefly | Larvae(maggot) | Semi-cultivation | Animal and fish feed, Medical treatment | [30,31,32] |
Omphisa fuscidentalis | Bamboo caterpillar | Larvae | Semi-cultivation | Human food | [1,4] |
Oecophylla smaragdina | Weaver ant | Adult, larvae, pupae, eggs | Semi-cultivation | Human food, medicine use | [38,45] |
Patanga succincta | Grasshopper | Adult | Wild harvesting | Human food | [46] |
Oxya spp. | Grasshopper | Adult | Wild harvesting | Human food | [29] |
Locusta migratoria | Locust | Adult, nymphs | Farming, wild harvesting | Human food, pet food and fish bait | [11,47,48] |
Apis mellifera | Honeybee | Adult | Farming, semi-cultivation | Human food, medical uses (honeybee venom, propolis, royal jelly) | [7,30,49] |
Hermetia illucens | Black soldier fly (BSF) | Larvae | Farming | Human food, animal feed | [50] |
Macrotermes spp. | Termite | Adult | Wild harvesting | Human food | [51,52] |
Encosternum spp. | Stinkbug | Adult | Wild harvesting | Human food | [29,53] |
Vespula spp. | (Social) wasp | Larvae | Wild harvesting | Human food | [54,55] |
Panchoda marginata | Sun beetle | Larvae | Farming | Human food, animal and fish feed | [7,56] |
Order | Family | Species | Common Name | Developmental Stage | Degraded Material | Reference |
---|---|---|---|---|---|---|
Coleoptera | Tenebrionidae | Tenebrio molitor L. | Mealworm | Larvae | Spent grains and beer yeast, bread remains, biscuit remains, potato steam peelings, maize distillers’ dried grains with solubles | [28] |
Coleoptera | Tenebrionidae | Tenebrio molitor L. | Mealworm | Larvae | Mushroom spent corn stover, highly denatured soybean meal, spirit distillers’ grains | [64] |
Coleoptera | Tenebrionidae | Zophobas atratus Fab. | Mealworm | Larvae | Spent grains and beer yeast, bread remains, biscuit remains, potato steam peelings, maize distillers’ dried grains with solubles | [28] |
Coleoptera | Tenebrionidae | Alphitobius diaperinus | Mealworm: | Larvae | Spent grains and beer yeast, bread remains, biscuit remains, potato steam peelings, maize distillers’ dried grains with solubles | [28] |
Diptera | Stratiomyidae | Hermetia illucens | Black soldier fly | Larvae | Waste plant tissues, garden waste, compost tea, catering waste, food scraps | [68] |
Diptera | Muscidae | Musca domestica | Housefly | Larvae | Mixture of egg content, hatchery waste, and wheat bran | [31] |
Orthoptera | Gryllidae | Acheta domesticus | House cricket | Adult | Grocery store food waste after aerobic enzymatic digestion, municipal food waste heterogeneous substrate | [41] |
Orthoptera | Gryllidae | Teleogryllus testaceus | Cambodian field cricket | Adult | Rice bran, cassava plant tops, water spinach, spent grain, residues from mungbean sprout production | [67] |
Macronutrients | Micronutrients | Minerals | |||
---|---|---|---|---|---|
Carbohydrates | Lipids | Proteins | Sterols *** | Vitamins | Elements ***** |
Glucose * Fructose * Galactose * Arabinose ** Ribose ** Xylose ** Galactose ** Maltose * Sucrose * | Linoleic (Pfa) *** Linolenic (Pfa) *** Phospholipids **** | Globulins Nucleoproteins Lipoproteins Insoluble proteins Amino acids: Leucine *** Isoleucine *** Valine *** Threonine *** Lysine *** Arginine *** Methionine *** Histidine *** Phenylalanine *** Tryptophan *** Tyrosine **** (major component of sclerotin) Proline **** (important during flight initiation) Serine **** Cysteine **** Glycine **** Aspartic acid **** Glutamic acid **** | Cholesterol Phytosterols (β-sitosterol, campesterol, stigmasterol) Ergosterol | A: Retinol + α-and β- carotene (Ls) B1: Thiamin (Ws) B2: Riboflavin (Ws) B3: Nicotinamide (Ws) B4: Choline (Ws) B5: Pantothenic acid (Ws) B6: Pyridoxine (Ws) B12: Cobalamine (Ws) C: Ascorbic acid (Ls) D: Cholecalsiferol and Ergocalsiferol (Ls) E: α-tocopherol (Ls) K: Phyloquinone (Ls) | Hydrogen Oxygen Carbon Nitrogen Calcium + Phosphorus +++ Chlorine Potassium +++ Sulphur Sodium +++ Magnesium +++ Iron ++ Copper +++ Zinc +++ Silicone Iodine Cobalt Manganese +++ Molybdenum Fluorine Tin Chromium Selenium Vanadium |
Food * | Chemical Composition | Reference |
---|---|---|
Wheat bran | Total N (2.560%), protein (16.2%), available carbohydrates (24.6%), dietary fiber (40.2%), total fat (5.3%), ash (5.4%), water (8.4%), vitamins (C, E, K1, B1, B2, B3, B5, B6, B9), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Zn, In, Mn, Cr, Se, Mo, Co, Ni, Cd, Pb), carbohydrates (fructose, glucose, sucrose), saturated fatty acids (C16:0, C18:0, C20:0), monounsaturated fatty acids (C16:1 n-7, C18:1 n-9, C20:1 n-11), polyunsaturated fatty acids (C18:2 n-6, C18:3 n-3, C20:4 n-6), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine) | [71,72] |
Soy flour | Total N (6.520%), protein (37.2%), available carbohydrates (20.2%), dietary fiber (10.4%), total fat (22.2%), ash (5.1%), water (5.1%), vitamins (A, β-carotene, E, K1, B1, B2, B3, B5, B6, B9), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Z, In, Mn, Cr, Se, Ni, Hg, Cd, Pb), carbohydrates (sucrose, starch, exoses, pentoses, uronic acids, cellulose, lignin), saturated fatty acids (C12:0, C14:0, C16:0, C18:0, C20:0, C22:0), monounsaturated fatty acids (C16:1 n-7, C18:1 n-9, C20:1 n-11), polyunsaturated fatty acids (C18:2 n-6, C18:3 n-3), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine) | [71,73] |
Spent grain | Total N (1.890%), protein (11.0%), available carbohydrates (64.3%), dietary fiber (8.5%), total fat (4.2%), water (8.7%), vitamins (B1, B2, B3, B6, B9, E), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Zn, In, Mn, Cr, Se, Mo, Co, Ni, Hg, Cd, Pb), amino acids (isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine) | ([71,74] |
Spent brewer’s yeast | Total N (1.340%),%), protein (8.4%), available carbohydrates (12.7%), dietary fiber (6.2%), total fat (1.9%), ash (1.8%), water (69.0%), vitamins (B1, E, B2, B3, B5, B6, B7, B9, C), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Z, In, Mn, Se, Ni, Cd), carbohydrates (mannose, β-(1,3), (1,6)-glucan, α-(1,4)-glucan, chitin) saturated fatty acids (C12:0, C16:0, C18:0), monounsaturated fatty acids (C16:1 n-7, C18:1 n-9), polyunsaturated fatty acids (C18:2 n-6), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine), nucleic acids | [71,75,76,77] |
Bread remains | Total N (1.400%), protein (8.0%), available carbohydrates (48.0%), dietary fiber (4.0%), total fat (4.3%), ash (1.8%), water (33.9%), vitamins (E, B1, B2, B3, B5, B6, B7, B9), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Z, In, Mn, Cr, Se, Ni, Hg, As, Cd, Pb), carbohydrates (fructose, glucose, sucrose), saturated fatty acids (C14:0, C16:0, C18:0, C20:0), monounsaturated fatty acids (C16:1 n-7, C18:1 n-9, C20:1 n-11), polyunsaturated fatty acids (C18:2 n-6, C18:3 n-3), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine) | [71,78] |
Potato steam peelings | Starch (25%), non-starch polysaccharide (30%), acid insoluble and acid soluble lignin (20%), protein (18%), lipids (1%), and ash (6%), | [71,79] |
Potato | Total N (0.324), protein (2.0%), available carbohydrates (15.9%), total fat (0.3%), dietary fiber (1.4%), ash (0.9%), water (79.5%), vitamins (A, B1, B2, B3, B5, B6, B7, B9, C), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Zn, In, Mn, Cr, Se, Ni, Hg, As, Cd, Pb), carbohydrates (fructose, glucose, sucrose, starch, exoses, pentoses, uronic acids, cellulose), saturated fatty acids (C16:0, C18:0), monounsaturated fatty acids (C16:1 n-7, C18:1 n-9), polyunsaturated fatty acids (C18:2 n-6, C18:3 n-3), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine) | [80] |
Dry egg whites | Total N (13.200%), protein (82.3%), available carbohydrates (6.8%), dietary fiber (0.0%), total fat (0.0%), ash (5.1%), water (5.8%), vitamins (B1, B2, B3, B5, B6, B7, B9, B12, D, E), minerals and inorganics (Cl, Na, K, Ca, Mg, P, Fe, Cu, Zn, In, Mn, Cr, Se), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine), cholesterol (16 mg/100 g) | [71,81] |
Rice bran | Total N (2.24%), protein (13.4%), available carbohydrates (28.7%), dietary fiber (21.0%), total fat (0.0%), ash (10.0%), water (6.1%), vitamins (B1, B2, B3), minerals and inorganics (Na, K, Ca, P, Fe), carbohydrates (crude fiber 11.5%), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine) | [71,82] |
Carrot | Total N (0.11%), protein (0.7%), available carbohydrates (5.8%), dietary fiber (2.9%), total fat (0.4%), ash (0.7%), water (89.5%), vitamins (A, β-carotene, Ε, Κ1, B1, B2, B3, Β5, Β6, Β7, Β9, C), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Zn, In, Mn, Cr, Se, Ni, Hg, As, Cd, Pb), carbohydrates (fructose, glucose, sucrose, hexoses, pentoses, uronic acids, cellulose, lignin), saturated fatty acids (C16:0, C18:0), monounsaturated fatty acids (C18:1 n-9), polyunsaturated fatty acids (C18:2 n-6, C18:3 n-3, C20:4 n-6), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine) | [71,83] |
Lettuce | Total N (0.204%), protein (1.3%), available carbohydrates (0.8%), dietary fiber (1.3%), total fat (0.4%), ash (0.8%), water (95.5%), vitamins (A, β-carotene, Ε, Κ1, B1, B2, B3, Β5, Β6, Β7, Β9, C), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Zn, In, Mn), carbohydrates (fructose, glucose, sucrose, starch, hexoses, pentoses, uronic acids, cellulose, lignin), saturated fatty acids (C12:0, C16:0, C18:0), monounsaturated fatty acids (C16:1 n-7, C18:1 n-9, C20:1 n-11, C22:1 n-9), polyunsaturated fatty acids (C18:2 n-6, C18:3 n-3, C18:4 n-3, C20:4 n-6, C20:5 n-3, C22:5 n-3, C22:6 n-3), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine) | [71,84] |
Cassava plant | Total N (0.218%), protein (1.4%), available carbohydrates (36.3%), dietary fiber (1.8%), total fat (0.3%), ash (0.6%), water (59.7%), vitamins (A, β-carotene, B1, B2, B3, Β5, Β6, Β7, Β9, C), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Zn, In, Mn, Cr, Se, Ni, Hg, As, Cd, Pb), carbohydrates (fructose, glucose, sucrose, starch, hexoses, pentoses, uronic acids, cellulose, lignin), saturated fatty acids (C16:0, C18:0), monounsaturated fatty acids (C16:1 n-7, C18:1 n-9), polyunsaturated fatty acids (C18:2 n-6, C18:3 n-3, C20:4 n-6), amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, serine) | [71,85] |
Peanut oil | Total N (0.000%), protein (0.0%), available carbohydrates (27.5%), dietary fiber (0.0%), total fat (72.5%), ash (0.0%), water (0.0%), vitamins (E, γ-tocopherol), minerals and inorganics (Na, K, Ca, Mg, P, Fe, Cu, Zn), saturated fatty acids (C16:0, C18:0, C20:0, C22:0, C24:0), monounsaturated fatty acids (C16:1 n-7, C18:1 n-9, C20:1 n-11), polyunsaturated fatty acids (C18:2 n-6, C18:3 n-3, C22:6 n-3, other fatty acids) | [71,86] |
Insect Species | Common Name | Develop-mental Stage | Crude Protein (% Dry Weight) | Lipids (% Dry Weight) | Carbohydrates, Vitamins, Minerals etc. | General Comments | Reference |
---|---|---|---|---|---|---|---|
Tenebrio molitor | Yellow mealworm | Larvae | 70–76% | 6–12% | c.a. 10% | Leucine, lysine, methionine + cysteine, threonine, and valine were the limiting amino acids comparing with FAO/WHO requirements. Major fatty acids were linoleic acid (C18:2, 30–38%), oleic acid (C18:1, 24–34%), and palmitic acid (C16:0, 14–17%). | [66] |
Tenebrio molitor | Yellow mealworm | Larvae | 46.9–48.6% | 18.9–27.6% | - | Mealworm species can be grown successfully on diets composed of organic by-products. Diet affects mealworm growth, development, and feed conversion efficiency. Diets high in yeast-derived protein appear favorable with respect to reduced larval development time, reduced mortality, and increased weight gain. | [28] |
*Zophobas atratus Fab. | Mealworm | Larvae | 34.2–42.5% | 32.8–42.5% | - | [28] | |
*Alphitobius diaperinus | Mealworm | Larvae | 64.3–65.0% | 13.4–21.8% | - | [28] | |
*Acheta domesticus | House cricket | Adult | 10.2–28.6% | 2.2–12.0% | Carbohydrates (as crude fiber): 13.2–28.9% Minerals: - Vitamins: - | It is possible, using very simple means, to rear local field crickets at ambient temperature in Cambodia. Agricultural and food industry by-products tested here also have potential for use as cricket feed, alone or in combination. | [67] |
Acheta domesticus | House cricket | Adult | 16% | - | - | Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies. Crickets reared on waste substrates of sufficient quality might be the most promising path for producing crickets economically | [41] |
Acheta domesticus | House cricket | Adult | 15.6% ± 8.1% | 4.56% ± 2.15% | Carbohydrates: - Minerals: Na, Fe, Zn, Ca, I Vitamins: B12, B2 | Data show considerable variation within insect species | [29] |
Insect Species | Common Name | Developmental Stage | Characterization of Food Properties | Reference |
---|---|---|---|---|
Bombyx mori | Silkworm | Pupae | Amino acid analysis, lipid determination | [89] |
Tenebrio molitor | Yellow mealworm | Larvae | Amino acid composition (ion exchange chromatography), protein quality (color, protein content, and molecular weight), molecular weight distribution of the insect protein fractions (SDS-PAGE), foam ability and foam stability, rheological properties | [90] |
Tenebrio molitor | Yellow mealworm | Larvae | Amino acid composition, water absorption capacity (WAC), fat absorption capacity (FAC), protein solubility, microstructure and color, rheological properties | [91] |
Acheta domesticus | House cricket | Adult | Amino acid composition (ion exchange chromatography), protein quality (color, protein content, and molecular weight), molecular weight distribution of the insect protein fractions (SDS-PAGE), foam ability and foam stability, rheological properties | [90] |
Musca domestica | Housefly | Pupae | Moisture, protein, fat, ash, acid detergent fiber (ADF), neutral detergent fiber (NDF), minerals, amino acids, fatty acids, vitamins, and selected carotenoid determination | [92] |
Apis mellifera | Honeybee | Eggs, larvae, adult | Determination of water content, crude fiber (structural carbohydrates), fat, free nitrogen extract and mineral salts, crude proteins, Vitamin B2 | [93] |
Hermetia illucens | Black soldier fly | Larvae | Moisture, protein, fat, ash, acid detergent fiber (ADF), neutral detergent fiber (NDF), minerals, amino acids, fatty acids, vitamins, and selected carotenoid determination | [92] |
General Hazard | Specific Hazard | Substance | Insect | Problem | Reference |
---|---|---|---|---|---|
Chemical | Pesticides/fungicides | Organophosphorus pesticides (malathion, sumithion) | Locust | Toxic, carcinogenic | [106] |
Persistent organic pollutants | Polybrominated diphenyl ether (PBDE) | House cricket | Bioaccumulative and toxic | [107] | |
Heavy metals | Cd | Mealworm larvae (Tenebrio molitor) | Toxic, carcinogenic | [108,109,110] | |
As | Agrotis infusa moth (Lepidoptera) | Toxic, carcinogenic | [111] | ||
Ld | Cricket | Toxic, carcinogenic | [105,112] | ||
Pb, Zn, Cu, Cd | Insect larvae(not specified) | Toxic, carcinogenic | |||
Antibiotics | Chloramphenicol | Silkworm (Bombyx mori) | Prohibited use in animal production | [113] | |
Insect toxic substances (for defense or repellent purposes, manufactured by the insect itself or accumulated by the insect via its environment or food) | Quinones | Bombardier beetle | - | [105] | |
Cyanogenic toxic compounds (linamarin or lotaustralin) | Butterfly | - | [105] | ||
Melanization process because of the appearance of toxic products | Larvae of Galleria mellonella infected by a fungus | - | [105] | ||
Phenolic compounds: benzoquinone | Tenebrionidae: Ulomoides dermesetoides, flour beetles (adults) Tribolium confusum and Tribolium castaneum | Cytotoxic against the human lung carcinoma epithelial cell line A-549, DNA damage, possible carcinogen | [98] | ||
Venom (with bristles) | Coleoptera Larvae of Trogoderma spp. | Envenomation by dietary route, intestinal trauma due to the bristles found on the insect, ulcerative colitis | [105] | ||
Antinutritional substances | Hydrocyanic acid | Yam beetle (Heteroligus meles) | Anoxia, highly toxic | [114] | |
Tannins | Yam beetle (Heteroligus meles), ant, termite, cricket, Zonocerus variegatus (grasshopper) | Protein precipitation, toxic | [114,115,116] | ||
Physical | Foreign bodies | Materials from the processes as with any other processed food | - | Choking, injury, toxic, pain, allergy | [105] |
Insect parts | Sting, sharp rostrums, pines, coarse hairs, cuticles, wings | - | Choking, asphyxia, pain, allergy | [102] | |
Allergen | Insect colorants | Carmine dye | Cochineal insects (Dactylopius coccus Costa, Coccus cacti L.) | Anaphylaxis, urticarial, erythematous eruption | [98] |
Insect proteins | Lentil pest proteins | Lentil pests (Bruchus lentis) | Infestation | [117] | |
Cross-reactive proteins: tropomyosin and arginine kinase | Mealworm (Tenebrio molitor L.) | Allergic shock | [118] | ||
Insect enzymes | - | Caterpillars (Lophocampa caryae) | Drooling, difficulty swallowing, pain, and shortness of breath | [98] | |
Insect allergens | Venom | Bee, wasp, hornet | Anaphylactic shock, pain | [105] | |
Chitin | Various edible insect species | Allergic reaction | [105] | ||
Microbial | Parasitics | Human protozoan parasites | Black soldier fly larvae (Hermetia illucens) | Intestinal myiases | [119] |
Human protozoan parasites | Cockroaches and some Diptera | Gastrointestinal diseases, toxoplasmoses | [120] | ||
Bacteria | Salmonella Shigella Vibrio spp. E. coli Yesrinia eneterocolitica Campylobacter Listeria monocytogenes Clostridium perfrigens | Yellow meal beetle (Tenebrio molitor) Desert locust (Schistocerca gregaria) Silkmoth (Bombyx mori) Cricket (Acheta domesticus) Whole locust (Locusta migratoria) | Salmonellosis Shigellosis Vibriosis Diarrhea Yesriniosis Campylobacteriosis Listeriosis Clostridial myonecrosis | [121,122,123] | |
Fungi | Aspergillus, Penicillium, Fusarium, Cladosporium,Phycomycetes | - | Mycotoxins | [98,105] | |
Non-conventional transmissible agents (NCTA) | Prions | Sarcophaga carnaria pupae | Scrapie in hamsters | [105] | |
Prion proteins | Fly larvae, mites | Scrapie (sheep), mad cow disease (cattle) | [124] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varelas, V. Food Wastes as a Potential New Source for Edible Insect Mass Production for Food and Feed: A review. Fermentation 2019, 5, 81. https://doi.org/10.3390/fermentation5030081
Varelas V. Food Wastes as a Potential New Source for Edible Insect Mass Production for Food and Feed: A review. Fermentation. 2019; 5(3):81. https://doi.org/10.3390/fermentation5030081
Chicago/Turabian StyleVarelas, Vassileios. 2019. "Food Wastes as a Potential New Source for Edible Insect Mass Production for Food and Feed: A review" Fermentation 5, no. 3: 81. https://doi.org/10.3390/fermentation5030081
APA StyleVarelas, V. (2019). Food Wastes as a Potential New Source for Edible Insect Mass Production for Food and Feed: A review. Fermentation, 5(3), 81. https://doi.org/10.3390/fermentation5030081