Production of Oligosaccharides from Agrofood Wastes
Abstract
:1. Introduction
2. Autohydrolysis Processes
2.1. Definition and Main Process Variables
2.2. Application to Lignocellulosic Waste Residues
Year | Residue | Treatment | Conditions | Reactor | Product (g/g DS) | Ref. |
---|---|---|---|---|---|---|
2002 | Corncob | Autohydrolysis non-isothermal | 202 °C 39 min (heating) LSR = 8 | Stainless steel Parr reactor V= 3.75. 2 Rushton turbines. Heating with external fabric mantles and cooled by internal stainless steel loops. PID-controlled Temp. | XOS (0.20 g/g) AROS (0.016 g/g) | [44] |
2004 | Rice husks | Autohydrolysis non-isothermal | 212 °C 45 min (heating) LSR = 8 | Parr reactor | XOS (0.10 g/g) GOS (0.027 g/g) | [56] |
2004 | Barley husks | Autohydrolysis non-isothermal | 202 °C 39 min (heating) LSR = 8 | Stainless steel Parr reactor | XOS (0.18 g/g) | [57] |
2016 | Vine shoots | Autohydrolysis non-isothermal | 200 °C LSR = 8 H = 4.01 | 1.5 L stainless steel 5100 Parr reactor. PID-controlled Temp. | XOS (0.10 g/g) GOS (0.069 g/g) | [62] |
2017 | Hazelnut shells | Autohydrolysis isothermal | 190 °C 5 min (heating) 5 min (holding) LSR = 10 N = 300 r.p.m. H = 3.92 | High-pressure reactor (BR-300) 0.6 L stainless steel tank with heating block. Paddle agitator. Tap water cooling through internal coil. | XOS (0.10 g/g) | [44] |
2018 | Chestnut shells | Autohydrolysis non-isothermal | 180 °C LSR = 8 H = 3.08 | 1.5 L stainless steel reactor using a Parr PID controller to control temperature | XOS (0.057 g/g) GOS (0.054 g/g) | [60] |
2018 | Peanut shells | Autohydrolysis non-isothermal | 210 °C LSR = 8 H = 4.09 | 0.6 L stainless steel reactor (Parr 4842) | XOS (0.061 g/g) | [59] |
2019 | Almond shells | Autohydrolysis isothermal | 200 °C 20 min (heating) 5 min (holding) LSR = 10 H = 3.94 | 1 L stainless steel 316 pressure reactor with provision for water circulation. PID-controlled Temp. | High DP XOS (0.077 g/g) Low DP XOS (0.033 g/g) | [58] |
Year | Residue | Treatment | Conditions | Reactor | Product (g/g DS) | Ref. |
---|---|---|---|---|---|---|
2004 | Brewery’s spent grains | Autohydrolysis isothermal | 190 °C 44 min (heating) 5 min (holding) LSR = 8 N = 150 r.p.m. | 2 L stainless steel Parr reactor 4532 M. 2 Rushton turbines. Electric heating. Cooling by water through coil. PID-controlled Temp. | XOS (0.13 g/g) | [46] |
2009 | Sugar beet pulp | Autohydrolysis non-isothermal | 160 °C LSR = 12 H = 2.46 | 3.75 L stainless steel Parr reactor | AROS (0.17 g/g) POS (0.15 g/g) GALOS (0.036 g/g) | [65] |
2010 | Orange peel | Autohydrolysisnon-isothermal | 160 °C LSR = 12 H = 2.46 N = 150 r.p.m. | 3.75 stainless steel Parr reactor fitted with two four-blade turbine impellers. Electric heating. Cooling through internal loop. | POS (0.20 g/g) AROS (0.076 g/g) GALOS (0.066 g/g) | [63] |
2012 | Alperujo | Steam processing, isothermal | 170 °C 15 min, saturated steam | 100 L stainless steel reactor | POS, XOS, GOS (no quantitative info on yield) | [69] |
2013 | Lemon peel | Autohydrolysisnon-isothermal | 160 °C LSR = 12 H = 2.51 N = 150 r.p.m. | 3.75 L stainless steel Parr reactor | POS (0.25 g/g) AROS (0.068 g/g) GALOS (0.026 g/g) | [64] |
2013 | Beet fiber (beet pulp) | Autohydrolysis isothermal | 160 °C 5 min (heating) 2 min (holding) 3 min (cooling) LSR = 8 | 0.05 L reactor vessel made of SUS316. Reactor heated in a molten salt bath. Reactor cooled in a water batch to 50 °C in less than 3 min. | AROS (0.15 g/g) | [71] |
2014 | Citrus peel, Apple pomace | Autohydrolysis isothermal | 150 °C, 5 min (holding) LSR = 30 | Autoclave 0.5 L working volume. Thermocouple and pressure gauge to assay temperature and pressure inside the reactor. | POS (0.17 g/g) | [66] |
2014 | Coconut meal | Autohydrolysisnon-isothermal | 275 °C, 14.5 min (heating + cooling) LSR = 10 H = 4.52 | 0.12 L stainless steel vessel. Heated by an aluminum block heater controlled by a PID. Vessel cooled with running tap water | MANOS (0.23 g/g) | [70] |
2015 | Brewery’s spent grains | Autohydrolysisnon-isothermal | 195 °C LSR = 8 H = 3.65 | Stainless steel Parr reactor | XOS (0.12 g/g) GOS (0.040 g/g) AROS (0.032 g/g) | [59] |
2017 | Fruit passion peel | Autohydrolysisnon-isothermal | 175 °C 5,5 min (heating) LSR = 16 H = 2.21 | 0.125 L stainless steel vessel heated by aluminum block heater and cooled by running tap water | POS (0.14 g/g) GOS (0.051 g/g) | [67] |
2018 | Sugarcane bagasse | Autohydrolysis isothermal | 200 °C 10 min (holding) LSR = 10 | 0.6 L stainless steel reactor. Stirring with two four-blade turbine impellers. Electric heating. Water cooling by internal loop. | Low DP-XOS (0.12 g/g) | [68] |
3. Acid Hydrolysis
3.1. Pectin
3.2. Cellulose
Pectin | Conditions | Product | Yield (g/g Dry Solid) | Ref. |
---|---|---|---|---|
Beet, Apple and Citrus | 0.1 M HCl 80 °C, 72 h | HG, RG, arabinans and AG | Not given | [74] |
Grapefruits | 2 M HCl 110 °C, 2 h | POS and monosaccharides from hemicellulose and cellulose | Not given | [75] |
Green tomato | 0.1 M HCl 80 °C, 1, 8, 24 and 72 h | Polysaccharides, HG, RG | 0.13–0.61 | [76] |
Apple MHR | 0.1M HCl, 80 °C, 48 h followed by 0.05 M TFA 100 °C, 6 h | HG, XGA, RGI | Not given | [77] |
Citrus peel | 1.2–2 M TFA, 85 °C, 2.5 h 88.24 mM-66.18 mM H2O2 pH 10 90 °C, 4 h | POS 3628 and 2673 KDa (TFA) POS 3543, 2661 and 1283 KDa (H2O2) | Not given | [78] |
Orange albedo | HNO3, pH 1.5, 120 °C, 30 min | POS and monosaccharides | 0.16 | [79] |
Citrus | 1 g/L anatase TiO2, pH = 7, UV λ = 220–340 nm, 6h | POS and pectic polysaccharides of lower Mw | 0.88 | [80] |
Residue | Conditions | OGs | Yield (g/g Dry Solid) | Ref. |
---|---|---|---|---|
Bleached kraft pulp | 64% H2SO4, 45 °C, 25 min | DP 7–20 | Not given | [81] |
Cellulose | HCl(c)/H2SO4 (c) 4:1, 22 °C, 4–6h | DP 3–11 | 0.02 | [82] |
cotton linters, fibrous microcrystalline cellulose | 1 M HCl, 105 °C, 3 h | DP 35–101 DP 18–24 | 0.5–0.8 | [83] |
Crystalline cellulose | Sulfonated carbon solid catalyst, water, 100 °C, 6 h | DP 2–10 | 0.68 | [84] |
Cellulose | Oxidized microporous carbon, 180 °C, 1 h, mix-milling | DP 2–13 | 0.70 | [20] |
Cellulose | Sulfonated hydrothermal treated carbon, 165 °C, 6.5 h, ball-milling | DP 1–9 | 0.22–0.47 | [85] |
4. Enzymatic Processes
4.1. Process Variables
4.1.1. Pretreatment of Biomass
4.1.2. Temperature and pH
4.1.3. Particle Size and Solid Loading
4.1.4. Side Products Formation
4.1.5. Source of Enzymes
4.2. Oligosaccharides from Agricultural Wastes Production by Enzymatic Hydrolysis
4.2.1. Cellulose
4.2.2. Hemicellulose
Residue | Pretreatment | Enzymes and Offered Activity | Conditions | Products | Ref. |
---|---|---|---|---|---|
Almond shell | Autohydrolysis (LSR 10 g water/g dry solid, 180–220 °C isothermal, holding different times). | Endoxylanase from Thermomyces lanuginosus (Endoxylanase activity, 5, 10 and 15 U/mL) | 50 °C, 4–48h 70 r.p.m. 1% w/w solid | XOS (DP: 2 and 3, Mw< 250 Da) | [58] |
Brazilian syrah grape pomace flour | Dry and milling | Viscozyme L® and Aspergillus niger 3T5B8 (xylanase activity, 10–100 IU/g dry substrate) | 40 °C, 6 h 200 r.p.m. 5% w/w solid | XOS (DP: 2 to 5) Viscozyme L (0.084 g/g DS, 100 IU/g) Aspergillus niger 3T5B8 (0.081 g/g DS, 100 IU/g) | [119] |
Corn straw | Organic acid pretreatment (13.33% of solids and different lactic acid concentrations) and deep eutectic solvents pretreatment (5% of solids, 120 °C from 2–6 h), | Cellulase mixture provided by Genencor (China) (Cellulase activity, 10 FPU/g dry substrate) | 50 °C, 72 h 2% w/w solid | XOS (DP: 2 to 4) | [120] |
Corncob | Diluted acid pretreatment (1% of solid, 0.1 sulfuric acid, 60 °C and 12 h) filtering and autoclaved 1 h 120 °C. | Xylanase from Bacillus aerophilus KGJ2 (xylanase, 20 UI) | 70 °C, 48 h 10% w/w solid | XOS (DP: 2 to 4) | [121] |
Plantago major L. | Extraction with boiling water (1:25) 2 h stirring. Filtering and precipitation with ethanol (95%) and dry | Manannase (manannase activity, 0.2–4 U/mL) and hemicellulase (50–250 U/mL). | 45 °C, 40 h 1% w/w solid | XOS and AROS (DP: 2 and 3) | [122] |
Almonds shells | Dry almond shells alkaline extraction with NaOH (1–2 M) 121 °C 1h. | Endoxylanase from Thermomyces lanuginosus (5, 10 and 15 U/mL) | 50 °C, 2–48 h and 2–6% w/w solid | XOS (DP: 2 (0.35 g/g) 3 (0.09 g/g) to 4 (0.01 g/g xylan)) | [123,124] |
Reed pulp | Alkaline (0.25–0.75%) and acid (0.55–1.65%) extraction of hemicellulose 150–160 °C, 30 min. | Xilanase activity 66 UI/g dry substrate and cellulose activity 10 FPU/g dry substrate | 50 °C, 8 h, 40 h 5% w/w solid | XOS (0.144 g/g DS) | [125] |
4.2.3. Pectin
5. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Ul’yanin, Y.A.; Kharitonov, V.V.; Yurshina, D.Y. Forecasting the dynamics of the depletion of conventional energy resources. Stud. Russ. Econ. Dev. 2018, 29, 153–160. [Google Scholar] [CrossRef]
- Walmsley, T.G.; Ong, B.H.Y.; Klemeš, J.J.; Tan, R.R.; Varbanov, P.S. Circular Integration of processes, industries, and economies. Ren. Sustain. Energy Rev. 2019, 107, 507–515. [Google Scholar] [CrossRef]
- Gallagher, J.; Basu, B.; Browne, M.; Kenna, A.; McCormack, S.; Pilla, F.; Styles, D. Adapting stand-alone renewable energy technologies for the circular economy through eco-design and recycling. J. Ind. Ecol. 2019, 23, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Overview, 2018. Catalysts 2018, 8, 637. [Google Scholar] [CrossRef] [Green Version]
- Aro, E.M. From first generation biofuels to advanced solar biofuels. Ambio 2016, 45, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, M.K.; Sarsaiya, S.; Wainaina, S.; Rajendran, K.; Kumar, S.; Quan, W.; Duan, Y.; Awasthi, S.K.; Chen, H.; Pandey, A.; et al. A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives. Renew. Sustain. Energy Rev. 2019, 111, 115–131. [Google Scholar] [CrossRef]
- Dahiya, S.; Naresh Kumar, A.; Shanthi Sravan, J.; Omprakash Sarkar, S.C.; Venkata Mohan, S. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Biores. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef]
- Cho, E.J.; Trinh, L.T.P.; Song, Y.; Song, Y.; Lee, Y.G.; Bae, H.J. Bioconversion of biomass waste into high value chemicals. Biores. Technol. 2019, 122386. [Google Scholar] [CrossRef]
- Bhatia, L.; Sharma, A.; Bachheti, R.K.; Chandel, A.K. Lignocellulose derived functional oligosaccharides: Production, properties, and health benefits. Prep. Biochem. Biotechnol. 2019, 49, 744–758. [Google Scholar] [CrossRef]
- Dávila, I.; Gullón, B.; Alonso, J.L.; Labidi, J.; Gullón, P. Vine shoots as new source for the manufacture of prebiotic oligosaccharides. Carbohyd. Polym. 2019, 207, 34–43. [Google Scholar] [CrossRef]
- Pereira, G.A.; Arruda, H.S.; Molina, G.; Pastore, G.M. Extraction optimization and profile analysis of oligosaccharides in banana pulp and peel. J. Food Process Preserv. 2018, 42, e13408. [Google Scholar] [CrossRef] [Green Version]
- Elst, K.; Babbar, N.; Van Roy, S.; Baldassarre, S.; Dejonghe, W.; Maesen, M.; Sforza, S. Continuous production of pectic oligosaccharides from sugar beet pulp in a cross flow continuous enzyme membrane reactor. Bioprocess Biosyst. Eng. 2018, 41, 1717–1729. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, T.; Antov, M. The influence of hydrothermal extraction conditions on recovery and properties of hemicellulose from wheat chaff–A modeling approach. Biomass Bioenergy 2018, 119, 246–252. [Google Scholar] [CrossRef]
- Singh, S.; Ghosh, A.; Goyal, A. Manno-oligosaccharides as prebiotic-valued products from agro-waste. In Biosynthetic Technology and Environmental Challenges; Springer: Singapore, 2018; pp. 205–221. [Google Scholar] [CrossRef]
- Han, Z.L.; Yang, M.; Fu, X.D.; Chen, M.; Su, Q.; Zhao, Y.H.; Mou, H.J. Evaluation of prebiotic potential of three marine algae oligosaccharides from enzymatic hydrolysis. Mar. Drugs 2019, 17, 173–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review. Renew. Sustain. Energy Rev. 2016, 60, 317–329. [Google Scholar] [CrossRef]
- Kido, K.; Tejima, S.; Haramiishi, M.; Uyeno, Y.; Ide, Y.; Kurosu, K.; Kushibiki, S. Provision of beta-glucan prebiotics (cellooligosaccharides and kraft pulp) to calves from pre- to post-weaning period on pasture. Anim. Sci. J. 2019, 90, 1537–1543. [Google Scholar] [CrossRef]
- Fujii, S.; Takahashi, N.; Inoue, H.; Katsumata, S.I.; Kikkawa, Y.; Machida, M.; Ishimi, Y.; Uehara, M. A combination of soy isoflavones and cello-oligosaccharides changes equol/O-desmethylangolensin production ratio and attenuates bone fragility in ovariectomized mice. Biosci. Biotechnol. Biochem. 2016, 80, 1632–1635. [Google Scholar] [CrossRef] [Green Version]
- Karnaouri, A.; Matsakas, L.; Bühler, S.; Muraleedharan, M.N.; Christakopoulos, P.; Rova, U. Tailoring Celluclast® cocktail’s performance towards the production of prebiotic cello-oligosaccharides from waste forest biomass. Catalysts 2019, 9, 897–914. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Shrotri, A.; Fukuoka, A. Soluble cello-oligosaccharides produced by carbon-catalyzed hydrolysis of cellulose. ChemSusChem 2019, 12, 2576–2580. [Google Scholar] [CrossRef]
- Mallek-Fakhfakh, H.; Belghith, H. Physicochemical properties of thermotolerant extracellular β-glucosidase from Talaromyces thermophilus and enzymatic synthesis of cello-oligosaccharides. Carbohyd. Res. 2019, 419, 41–50. [Google Scholar] [CrossRef]
- Chen, J.; Guo, X.; Zhu, M.; Chen, C.; Li, D. Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides. Biotechnol. Biofuels 2019, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Muktham, R.; Bhargava, S.K.; Bankupalli, S.; Ball, A.S. A review on 1st and 2nd generation bioethanol production-recent progress. J. Sustain. Bioenergy Syst. 2016, 6, 72–92. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xu, Y. Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Biores. Technol. 2019, 282, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Sajadimajd, S.; Bahrami, G.; Daglia, M.; Nabavi, S.M.; Naseri, R.; Farzaei, M.H. Plant-derived supplementary carbohydrates, polysaccharides and oligosaccharides in management of diabetes mellitus: A comprehensive review. Food Rev. Intern. 2019, 35, 563–586. [Google Scholar] [CrossRef]
- Korolenko, T.A.; Bgatova, N.P.; Vetvicka, V. Glucan and mannan—Two Peas in a pod. Int. J. Mol. Sci. 2019, 20, 3189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, H.; Chen, W.; Liu, Q.; Yang, G.; Li, K. Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress-and inflammation-activated signaling pathways. Front. Immunol. 2018, 9, 1504–1517. [Google Scholar] [CrossRef] [Green Version]
- Tingirikari, J.M.R. Microbiota-accessible pectic poly-and oligosaccharides in gut health. Food Funct. 2018, 9, 5059–5073. [Google Scholar] [CrossRef]
- Heitz, M.; Carrasco, F.; Rubio, M.; Chauvette, G.; Chornet, E. Generalized correlations for the aqueous liquefaction of lignocellulosics. Can. J. Chem. Eng. 1986, 64, 647–650. [Google Scholar] [CrossRef]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Mild autohydrolysis: An environmentally friendly technology for xylooligosaccharide production from wood. J. Chem. Technol. Biotechnol. 1999, 74, 1101–1109. [Google Scholar] [CrossRef]
- Gallina, G.; Regidor, E.; BiasI, P.; García-serna, J. Hydrothermal extraction of hemicellulose: From lab to pilot scale. Biores.Technol. 2018, 247, 980–991. [Google Scholar] [CrossRef]
- Martínez, M.; Gullón, B.; Yáñez, R.; Alonso, J.L.; Parajó, J.C. Kinetic assessment on the autohydrolysis of pectin-rich by-products. Chem. Eng. J. 2010, 162, 480–486. [Google Scholar] [CrossRef]
- Liu, S. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis. Biotechnol. Adv. 2010, 28, 563–582. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, H.; Rodríguez-jasso, R.M.; Fernandes, B.D.; Vicente, A.A.; Teixeira, J.A. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renew. Sustain. Energy Rev. 2013, 21, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, A.; Requejo, A.; Rodríguez, A.; Jiménez, L. Influence of temperature, time, liquid/solid ratio and sulfuric acid concentration on the hydrolysis of palm empty fruit bunches. Biores.Technol. 2013, 129, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Vallejos, M.E.; Zambon, M.D.; Area, M.C.; Aprigio da silva, A. Low liquid–solid ratio (LSR) hot water pretreatment of sugarcane bagasse. Green Chem. 2012, 7, 1982–1989. [Google Scholar] [CrossRef]
- Carvalheiro, F.; Duarte, L.C.; Gírio, F.; Moniz, P. Hydrothermal/liquid hot water pretreatment (autohydrolysis): A multipurpose process for biomass upgrading. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; Elsevier: Amsterdam, The Netherlands, 2016; pp. 315–347. [Google Scholar] [CrossRef]
- Mosier, N.; Hendrickson, R.; Ho, N.; Sedlak, M.; Ladisch, M. Optimization of pH controlled liquid hot water pretreatment of corn stover. Biores.Technol. 2005, 96, 1986–1993. [Google Scholar] [CrossRef]
- Mosier, N.; Hendrickson, R.; Brewer, M.; Ho, N.; Sedlak, M.; Dreshel, R.; Welch, G.; Dien, B.; Aden, A.; Ladisch, M.R. Industrial scale-up of ph-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl. Biochem. Biotechnol. 2005, 125, 77–97. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1987, 321, 523–536. [Google Scholar]
- Romaní, A.; Garrote, G.; Alonso, J.L.; Parajó, J.C. Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Biores.Technol. 2010, 101, 8706–8712. [Google Scholar] [CrossRef]
- Lloyd, T.A.; Wyman, C.E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Biores.Technol. 2005, 96, 1967–1977. [Google Scholar] [CrossRef]
- Chum, H.L.; Johnson, D.K.; Black, S.K. Organosolv pretreatment for enzymatic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind. Eng. Chem. Res. 1990, 29, 156–162. [Google Scholar] [CrossRef]
- Surek, E.; Buyukkileci, A.O. Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohyd. Polym. 2017, 174, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Autohydrolysis of corncob: Study of non-isothermal operation for xylooligosaccharide production. J. Food Eng. 2002, 52, 211–218. [Google Scholar] [CrossRef]
- Carvalheiro, F.; Esteves, M.P.; Parajó, J.C.; Pereira, H.; Gírio, F.M. Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Biores. Technol. 2004, 91, 93–100. [Google Scholar] [CrossRef]
- Vargas, F.; Domínguez, E.; Vila, C.; Rodríguez, A.; Garrote, G. Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production. Biores. Technol. 2015, 191, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Gullón, P.; Romaní, A.; Vila, C.; Garrote, G.; Parajó, J.C. Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels Bioprod. Biores. 2012, 6, 219–232. [Google Scholar] [CrossRef]
- Lora, J.H.; Wayman, M. Delignification of hardwoods by autohydrolysis and extraction. Tappi 1978, 61, 47–50. [Google Scholar]
- Dekker, R.F.H.; Wallis, A.F.A. Autohydrolysis-explosion as pretreatment for the enzymic saccharification of sunflower seed hulls. Biotechnol. Lett. 1983, 5, 311–316. [Google Scholar] [CrossRef]
- Dekker, R.F.H.; Karageorge, H.; Wallis, A.F.A. Pretreatment of hardwood (Eucalyptus Regnans) sawdust by autohydrolysis explosion and its saccharification by trichodermal cellulases. Biocatalysis 1987, 1, 47–61. [Google Scholar] [CrossRef]
- Biermann, C.J.; Schultz, T.P.; Mcginnia, G.D. Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. J. Wood Chem. Technol. 1984, 4, 111–128. [Google Scholar] [CrossRef]
- Okazaki, M.; Fujikawa, S.; Matsumoto, N. Effect of xylooligosaccharide on the growth of bifidobacteria. Bifidobact. Microflora 1990, 9, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Crittenden, R.G.; Playne, M.J. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 1996, 7, 353–361. [Google Scholar] [CrossRef]
- Korte, H.E.; Offermann, W.; Puls, J. Characterization and preparation of substituted xylo-oligosaccharides from steamed birchwood. Holzforschung 1991, 45, 419–424. [Google Scholar] [CrossRef]
- Vegas, R.; Alonso, J.L.; Domínguez, H.; Parajó, J.C. Processing of rice husk autohydrolysis liquors for obtaining food ingredients. J. Agric. Food Chem. 2004, 52, 7311–7317. [Google Scholar] [CrossRef]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Production of substituted oligosaccharides by hydrolytic processing of barley husks. Ind. Eng. Chem. Res. 2004, 43, 1608–1614. [Google Scholar] [CrossRef]
- Sing, R.D.; Nadar, C.G.; Muir, J.; Arora, A. Green and clean process to obtain low degree of polymerisation xylooligosaccharides from almond shell. J. Clean. Prod. 2019, 241, 118237. [Google Scholar] [CrossRef]
- Gómez, B.; Míguez, B.; Veiga, A.; Parajó, J.C.; Alonso, J.L. Production, purification, and in vitro evaluation of the prebiotic potential of arabinoxylooligosaccharides from brewer’s spent grain. J. Agric. Food Chem. 2015, 63, 8429–8438. [Google Scholar] [CrossRef]
- Gullón, B.; Eibes, G.; Dávila, I.; Moreira, M.T.; Labidi, J.; Gullón, P. Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds. Carbohyd. Polym. 2018, 192, 75–83. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Alonso, J.L.; Parajó, J.C.; Yáñez, R. Valorization of peanut shells: Manufacture of bioactive oligosaccharides. Carbohyd. Polym. 2018, 183, 21–28. [Google Scholar] [CrossRef]
- Dávila, I.; Gordobil, O.; Labidi, J.; Gullón, P. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Biores. Technol. 2016, 211, 636–644. [Google Scholar] [CrossRef]
- Martínez, M.; Yáñez, R.; Alonso, J.L.; Parajó, J.C. Chemical production of pectic oligosaccharides from orange peel wastes. Ind. Eng. Chem. Res. 2010, 49, 8470–8476. [Google Scholar] [CrossRef]
- Gómez, B.; Gullón, B.; Yáñez, R.; Parajó, J.C.; Alonso, J.L. Pectic oligosacharides from lemon peel wastes: Production, Purification, and Chemical Characterization. J. Agric. Food Chem. 2013, 61, 10043–10053. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.; Gullón, B.; Schools, H.A.; Alonso, J.L.; Parajó, J.C. Assessment of the production of oligomeric compounds from sugar beet pulp. Ind. Eng. Chem. Res. 2009, 48, 4681–4687. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Lü, X. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocol. 2014, 38, 129–137. [Google Scholar] [CrossRef]
- Klinchongkon, K.; Khuwijitjaru, P.; Wiboonsirikul, J.; Adachi, S. Extraction of oligosaccharides from passion fruit peel by subcritical water treatment. J. Food Proc. Eng. 2017, 40, e12269. [Google Scholar] [CrossRef]
- Zhang, W.; You, Y.; Lei, F.; Li, P.; Jiang, J. Acetyl-assisted autohydrolysis of sugarcane bagasse for the production of xylo-oligosaccharides without additional chemicals. Biores. Technol. 2018, 265, 387–393. [Google Scholar] [CrossRef]
- Lama, A.; Rodríguez, G.; Rubio, F.; Fernández, J. Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocol. 2012, 28, 92–104. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Pokpong, A.; Klinchongkon, K.; Adachi, S. Production of oligosaccharides from coconut meal by subcritical water treatment. Food Sci. Technol. 2014, 49, 1946–1952. [Google Scholar] [CrossRef]
- Sato, N.; Takano, Y.; Mizuno, M.; Nozaki, K.; Umemura, S.; Matsuzawa, T.; Amano, Y.; Makishima, S. Production of feruloylated arabino-oligosaccharides (FA-AOs) from beet fiber by hydrothermal treatment. J. Supercrit. Fluids 2013, 79, 84–91. [Google Scholar] [CrossRef]
- Di Donato, P.; Polia, A.; Taurisano, V.; Nicolaus, B. Polysaccharides: Applications in biology and biotechnology/polysaccharides from bioagro-waste new biomolecules-life. In Polysaccharides; Ramawat, K., Mérillon, J.M., Eds.; Springer: Cham, Switzerland, 2014; pp. 1–29. [Google Scholar] [CrossRef]
- Shrotri, A.; Kobayashi, H.; Fukuoka, A. Cellulose depolymerization over heterogeneous catalysts. Acc. Chem. Res. 2018, 51, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Thibault, J.F.; Renard, C.M.G.M.; Axelos, M.A.V.; Roger, P.; Crépeau, M.J. Studies of the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohydr. Res. 1993, 238, 271–286. [Google Scholar] [CrossRef]
- La Cava, E.L.; Gerbino, E.; Sgroppo, S.C.; Gómez-Zavaglia, A. Pectin hydrolysates from different cultivars of pink/red and white grapefruits (Citrus Paradisi[macf.]) as Culture and Encapsulating Media for Lactobacillus Plantarum. J. Food Sci. 2019, 84, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Round, A.N.; Rigby, N.M.; MacDougall, A.J.; Morris, V.J. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydr. Res. 2010, 345, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Coenen, G.J.; Bakx, E.J.; Verhoef, R.P.; Schols, H.A.; Voragen, A.G.J. Identification of the connectin linkage between homo- or xylogalacturonan and rhamnogalacturonan type I. Carbohydr. Polym. 2007, 70, 224–235. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem. 2018, 244, 232–237. [Google Scholar] [CrossRef]
- Manderson, K.; Pinart, M.; Tuohy, K.M.; Grace, W.E.; Hotchkiss, A.T.; Widmer, W.; Yadhav, M.P.; Gibson, G.R.; Rastall, R.A. In Vitro Determination of Prebiotic Properties of Oligosaccharides Derived from an Orange Juice Manufacturing By-Product Stream. Appl. Environ. Microbiol. 2005, 71, 8383–8389. [Google Scholar] [CrossRef] [Green Version]
- Burana-osot, J.; Soonthornchareonnon, N.; Hosoyama, S.; Linhardt, R.J.; Toida, T. Partial depolymerization of pectin by a photochemical reaction. Carbohydr. Res. 2010, 345, 1205–1210. [Google Scholar] [CrossRef]
- Bouchard, J.; Méthot, M.; Fraschini, C.; Beck, S. Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 2016, 23, 3555–3567. [Google Scholar] [CrossRef]
- Zhang, Y.-H.P.; Lynd, L.R. Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal. Biochem. 2003, 322, 225–232. [Google Scholar] [CrossRef]
- Isogai, T.; Yanagisawa, M.; Isogai, A. Degrees of polymerization (DP) and DP distribution of dilute acid-hydrolyzed products of alkali-treated native and regenerated celluloses. Cellulose 2008, 15, 815–823. [Google Scholar] [CrossRef]
- Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci. 2010, 12, 1029–1034. [Google Scholar] [CrossRef]
- Scholz, D.; Xie, J.; Krocher, O.; Vogel, F. Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process. RSC Adv. 2019, 9, 33525–33538. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Zhang, Y.; Wang, P.; Wu, S.; Jin, Y. Comparison of the interactions between fungal cellulases from different origins and cellulose nanocrystal substrates with different polymorphs. Cellulose 2018, 25, 1185–1195. [Google Scholar] [CrossRef]
- De Assis, T.; Huang, S.; Driemeier, C.E.; Donohoe, B.S.; Kim, C.; Kim, S.H.; Gonzalez, R.; Jameel, H.; Park, S. Toward an understanding of the increase in enzymatic hydrolysis by mechanical refining. Biotechnol. Biofuels 2018, 289, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solarte-Toro, J.C.; Romero-García, J.M.; Martínez-Patiño, J.C. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renew. Sustain. Energy Rev. 2019, 107, 587–601. [Google Scholar] [CrossRef]
- Chen, Y.; Stevens, M.A.; Zhu, Y.; Holmes, J.; Xu, H. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol. Biofuels 2013, 6, 8. [Google Scholar] [CrossRef]
- Mota, T.R.; Oliveira, D.M.; Morais, G.R.; Marchiosi, R. Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Ind. Crops Prod. 2019, 140, 111657. [Google Scholar] [CrossRef]
- Marques, N.P.; De Cassia Pereira, J.; Gomes, E.; Da Silva, R.; Araújo, A.R.; Ferreira, H.; Rodrigues, A.; Johana Dussán, K.; Alonso Bocchini, D. Production by endophytic fungi by solid-state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind. Crops Prod. 2018, 122, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Røjel, N.; Kari, J.; Borch, K.; Westh, P. pH profiles of cellulases depend on the substrate and architecture of the binding region. Biotechnol. Bioeng. 2019, 117, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Baldrian, P.; Valásková, V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 2008, 32, 501–521. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.J.; Youn, H.J.; Kim, K.H. Synergism of an auxiliary activity 9 (AA9) from Chaetomium globosum with xylanase on the hydrolysis of xylan and lignocellulose. Proc. Biochem. 2016, 51, 1445–1451. [Google Scholar] [CrossRef]
- Jugwanth, Y.; Sewsynker-Sukai, Y.; Kana, E.B.G. Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel 2020, 262, 116552. [Google Scholar] [CrossRef]
- Caro, I.; Blandino, A.; Díaz, A.B.; Marzo, C. A kinetic model considering the hydrolysis of lignocellulosic materials. Biofuel Bioprod. Biorefining 2019, 13, 1044–1056. [Google Scholar] [CrossRef]
- Kapoor, M.; Semwal, S.; Satlewal, A.; Christopher, J.; Gupta, R.P. The impact of particle size of cellulosic residue and solid loadings on enzymatic hydrolysis with a mass balance. Fuel 2019, 245, 514–520. [Google Scholar] [CrossRef]
- Du, J.; Cao, Y.; Liu, G.; Zhao, J.; Li, X.; Qu, Y. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Biores. Technol. 2017, 229, 88–95. [Google Scholar] [CrossRef]
- Rasmussen, H.; Sørensen, H.R.; Meyer, A.S. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: Sugar reaction mechanisms. Carbohydr. Res. 2014, 385, 45–57. [Google Scholar] [CrossRef]
- Glass, N.L.; Schmoll, M.; Cate, J.H.D.; Coradetti, S. Plant cell wall deconstruction by ascomycete fungi. Annu. Rev. Microbiol. 2013, 67, 477–498. [Google Scholar] [CrossRef]
- Rytioja, J.; Hildén, K.; Yuzon, J.; Hatakka, A.; De Vries, R.P.; Mäkelä, R. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol. Mol. Biol. Rev. 2014, 78, 614–649. [Google Scholar] [CrossRef] [Green Version]
- Kuba, Y.; Kashiwagi, Y.; Okada, G.; Sasaki, T. Production of cello-oligosaccharides by enzymatic hydrolysis in the presence of activated carbon. Enzym. Microb. Technol. 1990, 12, 72–75. [Google Scholar] [CrossRef]
- Sorensen, H. On the specificity and products of action of xylanase from Chaetominm globosum Kunze. Physiol. Plant. 1952, 5, 183–198. [Google Scholar] [CrossRef]
- Jermyn, M.A.; Tomkins, R.G. The chromatographic examination of the products of the action of pectinase on pectin. Biochem. J. 1950, 47, 437–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilke, C.R.; Mitra, G. Process development studies on the enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 1975, 5, 253–274. [Google Scholar]
- Wilke, C.R.; Yang, R.D. Process development studies of the enzymatic hydrolysis of newsprint. Biotechnol. Bioeng. 1976, 6, 135–175. [Google Scholar]
- Wilke, C.R.; Sciamanna, A.F. Raw materials evaluation and process development studies for conversion of biomass to sugars and ethanol. Biotechnol. Bioeng. 1981, 23, 163–183. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Li, W.; Wang, Y.; Zheng, Y.; Tan, F.; Ma, X. Processive degradation of crystalline cellulose by a multimodular endoglucanase via a wirewalking mode. Biomacromolecules 2018, 19, 1686–1696. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Li, X.; Xu, Y.; Wang, Z.; Huang, J.; Yu, S.; Yong, Q. Functional cello-oligosaccharides production from the corncob residues of xylo-oligosaccharides manufacture. Process Biochem. 2014, 49, 1217–1222. [Google Scholar] [CrossRef]
- Birhade, S.; Pednekar, M.; Sagwal, S.; Odaneth, A.; Lali, A. Preparation of cellulase concoction using differential adsorption phenomenon. Prep. Biochem. Biotechnol. 2017, 47, 520–529. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Moreira, L.R.S.; Filho, E.X.F. Insights into the mechanism of enzymatic hydrolysis of xylan. Appl. Microbiol. Biotechnol. 2016, 100, 5205–5214. [Google Scholar] [CrossRef]
- Hespell, R.B.; Bryan, P.J.O.; Moniruzzaman, M.; Bothast, R.J. Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans. Appl. Biochem. Biotechnol. 1997, 62, 87–97. [Google Scholar] [CrossRef]
- Mazlan, N.A.; Samad, K.A.; Wan Yussof, H.; Saufi, S.M.; Jahim, J. Xylooligosaccharides from potential agricultural waste: Characterization and screening on the enzymatic hydrolysis factors. Ind. Crops Prod. 2019, 129, 575–584. [Google Scholar] [CrossRef]
- Jagtap, S.; Deshmukh, R.A.; Menon, S.; Das, S. Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Biores. Technol. 2017, 245, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.F.A.; de Oliva Neto, P.; de Almeida, P.Z.; da Silva, J.B.; Escaramboni, B.; Pastore, G.M. Screening of xylanolytic Aspergillus fumigatus for prebiotic xylooligosaccharide production using bagasse. Food Technol. Biotechnol. 2015, 53, 428–435. [Google Scholar] [CrossRef]
- Nguyen, Q.A.; Cho, E.J.; Lee, D.S.; Bae, H.J. Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds. Biores. Technol. 2019, 272, 209–216. [Google Scholar] [CrossRef]
- Rungruangsaphakun, J.; Keawsompo; Ng, S. Optimization of hydrolysis conditions for the mannooligosaccharides copra meal hydrolysate production. 3 Biotech 2018, 8, 169. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.R.; Tonon, R.V.; Gottschalk, L.M.F.; de A Santiago, M.C.P.; Mellinger-Silva, C.; Pastrana, L.; Pintado, M.M.; Cabral, L.M.C. Enzymatic production of xylooligosaccharides from Brazilian Syrah grape pomace flour: A green alternative to conventional methods for adding value to agricultural by- products. J. Sci. Food Agric. 2018, 99, 12501257. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wei, W.; Wu, S. Synergism of organic acid and deep eutectic solvents pretreatment for the co-production of oligosaccharides and enhancing enzymatic saccharification. Biores. Technol. 2019, 290, 121775. [Google Scholar] [CrossRef] [PubMed]
- Gowdhaman, D.; Ponnusami, V. Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. Int. J. Biol. Macromol. 2015, 79, 595–600. [Google Scholar] [CrossRef]
- Lukova, P.K.; Karcheva-bahchevanska, D.P.; Bivolarski, V.P.; Mladenov, R.D.; Iliev, I.N.; Nikolova, M.M. Enzymatic hydrolysis of water extractable polysaccharides from leaves of Plantago major L. Folia Med. (Plovdiv) 2017, 59, 210–216. [Google Scholar] [CrossRef]
- Singh, R.D.; So, D.; Yao, C.K.; Gill, P.; Pillai, N.; Muir, J. Production and faecal fermentation of pentose oligomers of hemicellulose: Study of variables influencing bioprocess efficiency. Food Chem. 2019, 297, 124945. [Google Scholar] [CrossRef]
- Singh, R.D.; Banerjee, J.; Sasmal, S.; Muir, J.; Arora, A. High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation. Biores. Technol. 2018, 256, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lu, J.; Cheng, Y.; Li, Q.; Wang, H. Novel process for the coproduction of xylo-oligosaccharide and glucose from reed scraps of reed pulp mill. Carbohydr. Polym. 2019, 215, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Combo Michel, A.M.; Aguedo, M.; Goffin, D.; Wathelet, B.; Paquot, M. Enzymatic production of pectic oligosaccharides from polygalacturonic acid with commercial pectinase preparations. Food Bioprod. Process. 2012, 90, 588–596. [Google Scholar] [CrossRef]
- Gómez, B.; Yáñez, R.; Parajó, J.C.; Luis, J.L. Production of pectin-derived oligosaccharides from lemon peels by extraction, enzymatic hydrolysis and membrane filtration. J. Chem. Technol. Biotechnol. 2016, 91, 234–247. [Google Scholar] [CrossRef]
- Khodaei, N.; Karboune, S. Enzymatic generation of galactose-rich oligosaccharides/oligomers from potato rhamnogalacturonan I pectic polysaccharides. Food Chem. 2016, 197, 406–414. [Google Scholar] [CrossRef]
- Li, P.; Xia, J.; Nie, Z.; Shan, Y. Pectic oligosaccharides hydrolyzed from orange peel by fungal multi- enzyme complexes and their prebiotic and antibacterial potentials. LWT Food Sci. Technol. 2016, 69, 203–210. [Google Scholar] [CrossRef]
- Baldassarre, S.; Babbar, N.; Van Roy, S.; Dejonghe, W.; Maesen, M.; Sforza, S.; Elst, K. Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chem. 2018, 267, 101–110. [Google Scholar] [CrossRef]
- Combo, A.M.M.; Aguedo, M.; Quievy, N.; Danthine, S.; Goffin, D.; Jacquet, N.; Blecker, C.; Devaux, J.; Paquot, M. Characterization of sugar beet pectic-derived oligosaccharides obtained by enzymatic hydrolysis. Int. J. Biol. Macromol. 2013, 52, 148–156. [Google Scholar] [CrossRef]
- Sabater, C.; Corzo, N.; Olano, A.; Montilla, A. Enzymatic extraction of pectin from artichoke (Cynara scolymus L.) by-products using Celluclast 1.5 L. Carbohydr. Polym. 2018, 190, 43–49. [Google Scholar] [CrossRef]
- Sabater, C.; Olano, A.; Corzo, N.; Montilla, A. GC—MS characterisation of novel artichoke (Cynara scolymus) pectic- oligosaccharides mixtures by the application of machine learning algorithms and competitive fragmentation modelling. Carbohydr. Polym. 2019, 205, 513–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, R.; Wang, C.; Zhang, L.; Wang, Y.; Chen, G.; Fan, J.; Jia, Y.; Fengwen, Y.; Ning, C. Pectin oligosaccharides from fruit of Actinidia arguta: Structure-activity relationship of prebiotic and antiglycation potentials. Carbohydr. Polym. 2019, 217, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhang, X.; Wang, Y.; Zhang, L.; Zhao, J.; Chen, G.; Jungang, F.; Youfeng, J.; Fengwen, Y.; Ning, C. Characterization of polysaccharide fractions from fruit of Actinidia arguta and assessment of their antioxidant and antiglycated activities. Carbohydr. Polym. 2019, 210, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Babbar, N.; Baldassarre, S.; Maesen, M.; Prandi, B.; Dejonghe, W.; Sforza, S.; Elst, K. Enzymatic production of pectic oligosaccharides from onion skins. Carbohydr. Polym. 2016, 146, 245–252. [Google Scholar] [CrossRef]
- Lin, O.; Li, H.; Ren, J.; Deng, A.; Li, W.; Liu, C.; Sun, R. Production of xylooligosaccharides by microwave-induced, organic acid-catalyzed hydrolysis of different xylan-type hemicelluloses: Optimization by response surface methodology. Carbohydr. Polym. 2017, 157, 214–225. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Yu, S. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Biores. Technol. 2017, 234, 343–349. [Google Scholar] [CrossRef]
- Fracasso, A.F.; Perussello, C.A.; Carpine, D.; de Oliveira Petkowicz, C.L.; Haminiuk, C.W.I. Chemical modification of citrus pectin: Structural, physical and rheologial implications. Int. J. Biol. Macromol. 2018, 109, 784–792. [Google Scholar] [CrossRef]
- Caillot, S.; Rat, S.; Tavernier, M.L.; Michaud, P.; Kovensky, J.; Wadouachi, A.; Clement, C.; Baillieul, F.; Petit, E. Native and sulfated oligoglucuronans as elicitors of defence-related responses inducing protection against Botrytis cinerea of Vitis vinifera. Carbohyd. Polym. 2012, 87, 1728–1736. [Google Scholar] [CrossRef]
Enzyme name | Enzyme commission number | Activity | Product |
---|---|---|---|
Endo-cellulase (endoglucanase) | 3.2.1.4 | Endohydrolysis of (1→4)-β-D-glycosidic linkages in cellulose | Cellodextrins |
Cellulose 1,4-β-cellobiohydrolase (reducing end) | 3.2.1.176 | Hydrolysis of (1→4)-β-D-glycosidic linkages of reducing end of polymer | Cellobiose |
Cellulose 1,4-β- cellobiohydrolase (non-reducing end) | 3.2.1.91 | Hydrolysis of (1→4)-β-D-glycosidic linkages from non-reducing end of polymer | Cellobiose |
β-glucosidase | 3.2.1.21 | Hydrolysis of (1→ > 4)-β-D-glycosidic linkages in cellobiose | β-D-glucose |
Enzyme name | Enzyme commission number | Reaction | Product |
---|---|---|---|
Endo-1,4-β-xylanase (Endo-xylanase) | 3.2.1.8 | Random endohydrolysis of (1→4)-β-D-glycosidic bond | Xylan oligomers |
Xylan 1,4-β-xylosidase | 3.2.1.37 | Hydrolysis of (1→4)-β-D-xylans from their non-reducing end | β-D-xylose |
α-L-arabino-furanosidase | 3.2.1.55 | Hydrolysis of terminal non reducing α-D-arabinose of arabinan oligomers | α-D-arabinose |
α-D-galactosidase | 3.2.1.22 | Hydrolysis of terminal non reducing α-D-galactose of galactan oligomers | α-D-galactose |
Acetyl esterase | 3.1.1.6 | Release acetate by removing acetyl ester groups | Deacetylated xylan |
Feruloyl esterase | 3.1.1.73 | Hydrolysis of ester bond between monosaccharides and ferulic acid | Ferulic acid and polysaccharide |
Enzyme | Enzyme Commission Number | Reaction | Product |
---|---|---|---|
Endo-polygalacturonase | 3.2.1.15 | Random hydrolysis of galacturonic acid backbone in pectin | Oligomers of 1,4-α-D-galacturonoside |
Exo-polygalacturonase | 3.2.1.67 | Hydrolysis of the first α(1→4) bond from non-reducing end of polygalacturonic acid | α-D-Galacturonic acid |
Exo-poly-α-digalacturonosidase | 3.2.1.82 | Second α(1→4) bond from non-reducing end of polygalacturonic acid | Digalacturonate |
Pectate lyase | 4.2.2.2 | Eliminate α(1→4) bond in galacturonic acid backbone | 4-deoxy-α-D-galact-4-enuronosyl groups |
Rhamnogalacturonan hydrolase | 3.2.1.171 | Hydrolyse α-D-galacturonic acid-(1→2)-α-L-rhamnose bond | Oligosaccharides with β-D-galacturonic acid at the reducing end |
Rhamnogalacturonan endolyase | 4.2.2.23 | Eliminate α-D-galacturonic acid-(1→2)-α-L-rhamnose bond | 4-deoxy-4,5-unsaturated D-galactopyranosyl uronic acid |
Residue | Pretreatment | Enzymes and Offered Acti4vity | Conditions | Product | Ref. |
---|---|---|---|---|---|
Orange Peel Wastes | Water washing (4%, 6h, 30 °C, 170 r.p.m. rotational stirring) oven dry 65 °C 48 h | Fungal enzyme cocktail: xilanase (50 U/mL), pectinase(48,3 U/mL) cellulase (0,2 U/mL) and endo-celulase(2,8 U/mL) | 4% of solid, 45 °C, 6 h and 170 r.p.m. | POS (DP 6 (0.06 g/g), 9 (0.28 g/g), 19 (0.04 g/g extracted DS)) | [130] |
Onion skins | 50 g/L of dry and grinded biomass extracted with sodium hexametaphosphate (2%) 95 °C, 0.5 h | Viscozyme L® (endo-polygalacturonidase activity, 82.7 U/mL, 41.4 U/mL and 20.7 U/mL) | 45 °C, 15–30 min, 200 r.p.m., 2.5–5% w/w dry solid(membrane reactor) | POS (DP 2 to 8) 22.0 g/(L⋅h) | [131] |
Sugar beet | Acid hydrolysis with HCl (pH1.5), 80 °C, 1h. Cooling, filtering and adjusted at pH 3.5 with KOH. Finally, etanolic precipitation and demethoxylation step. | Endo-polygalacturonidase-M2 (Endopolygalacturonidase activity, 9.55 U/mL) and Rapidase Smart ® (Pectinmethylesterase activity, 0.52 U/mL) | 50 °C, 2–15 min 0.5% w/w solid | POS (DP 2 to 9; MW 400–2000 Da) | [132] |
Novel artichoke | Pectin extraction enzymatically assisted (Celluclast 1.5 L) at 50 °C. Filtering and ethanolic precipitation | Pectinex® Ultra-Olio (pectinase activity, 6.75 U/mL), Glucanex ® 200G (pectinase activity, 0.63 U/mL) and Pentopan® Mono-BG (pectinase activity, 0.54 U/mL) | 50 °C, 0.5–4 h, 750 r.p.m. 2% w/w solid | POS (DP 2 (0.023 g/g),3 (0.047 g/g), >3 (0.225 g/g pectin); MW 78–3500 Da) | [133,134] |
Hardy kiwi (Actinidia arguta) | Biomass was homogenate and defatted. Filtering deproteinization (Sevag method) and ethanolic precipitation | Endopolygalacturonidase from Rhizopus sp. (endo-pectinase activity, 0.2 U/mL) | 50 °C, 3 h 2% w/w solid | POS (MW < 700 Da (0.12–0.20 g/g), 700 > MW > 3000 (0.66–0.68 g/g) and MW > 3000 (0.10–0.06 g/g pectin) | [135,136] |
Onion skins | 1 g of onion skins extracted with 2% sodium hexametaphosphate 95 °C 0.5 h. Centrifugation and supernatant collection | Viscozyme L ®, Pectinase from Sigma Aldrich and endo-polygalacturonase M2 (endo-polygalacturonidase activity, 82.7 U/mL, 52.2 U/mL and 5.2 U/mL) | 45 °C, 2h, 150 r.p.m. 10% w/w solid | POS (DP 2 (0.03 g/g DS), 3 (0.06 g/g DS), 4 (0.06 g/g DS) to 5) | [137] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano, M.E.; García-Martin, A.; Comendador Morales, P.; Wojtusik, M.; Santos, V.E.; Kovensky, J.; Ladero, M. Production of Oligosaccharides from Agrofood Wastes. Fermentation 2020, 6, 31. https://doi.org/10.3390/fermentation6010031
Cano ME, García-Martin A, Comendador Morales P, Wojtusik M, Santos VE, Kovensky J, Ladero M. Production of Oligosaccharides from Agrofood Wastes. Fermentation. 2020; 6(1):31. https://doi.org/10.3390/fermentation6010031
Chicago/Turabian StyleCano, María Emilia, Alberto García-Martin, Pablo Comendador Morales, Mateusz Wojtusik, Victoria E. Santos, José Kovensky, and Miguel Ladero. 2020. "Production of Oligosaccharides from Agrofood Wastes" Fermentation 6, no. 1: 31. https://doi.org/10.3390/fermentation6010031
APA StyleCano, M. E., García-Martin, A., Comendador Morales, P., Wojtusik, M., Santos, V. E., Kovensky, J., & Ladero, M. (2020). Production of Oligosaccharides from Agrofood Wastes. Fermentation, 6(1), 31. https://doi.org/10.3390/fermentation6010031